ebook img

Model-based analysis of aeration in lab and full-scale activated sludge systems PDF

78 Pages·2014·3.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Model-based analysis of aeration in lab and full-scale activated sludge systems

Faculty of Bioscience Engineering Academic year 2013 – 2014 Model-based analysis of aeration in lab and full-scale activated sludge systems Giacomo Bellandi Promoter: Prof. dr. ir. Ingmar Nopens Tutor: Ing. Youri Amerlinck Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Environmental Sanitation Faculty of Bioscience Engineering Academic year 2013 – 2014 Model-based analysis of aeration in lab and full-scale activated sludge systems Giacomo Bellandi Promoter: Prof. dr. ir. Ingmar Nopens Tutor: Ing. Youri Amerlinck Master’s dissertation submitted in partial fulfillment of the requirements for the degree of Master in Environmental Sanitation ad Ivaldo 04-06-2014 De auteur en de promotor geven de toelating dit afstudeerwerk voor consultatie beschikbaar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit dit afstudeerwerk. The author and the promoter give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis. The promoter, The tutor, The author, Prof. dr. Ir. Ingmar Nopens Youri Amerlinck Giacomo Bellandi Contents Contents ................................................................................................................................................ i Acknowledgments............................................................................................................................... iii Abstract ............................................................................................................................................... iv Summary .............................................................................................................................................. v 1. Introduction and literature review ................................................................................................ 1 1.1. Brief history of wastewater treatment.............................................................................................................. 1 1.2. Wastewater treatment plants ................................................................................................................................ 3 1.2.1. The UCT (University of Cape Town) configuration .......................................................................... 4 1.2.2. Submerged aeration systems ....................................................................................................................... 6 1.3. Modelling of wastewater treatment plants..................................................................................................... 6 1.3.1. Mathematical models ....................................................................................................................................... 6 1.3.2. Activated sludge model ................................................................................................................................... 7 1.3.3. Modelling Oxygen transfer ............................................................................................................................ 7 1.3.4. Predictions of oxygen transfer in presence of surfactants ......................................................... 10 1.3.5. Bubble column tests ....................................................................................................................................... 12 2. Materials and methods ................................................................................................................ 16 2.1. The Eindhoven WWTP............................................................................................................................................. 16 2.2. The Eindhoven wastewater treatment plant model in WEST® .......................................................... 17 2.3. Experimental data collection................................................................................................................................ 19 2.3.1. Off-gas measurements ................................................................................................................................... 19 2.3.2. Bubble column ................................................................................................................................................... 21 2.3.3. Imaging and bubble size measurements .............................................................................................. 23 3. Results ........................................................................................................................................ 27 3.1. Bubble column ............................................................................................................................................................. 27 3.1.1. Rheological measurements ......................................................................................................................... 27 3.1.2. Bubble size measurements ......................................................................................................................... 28 3.1.2.1 Clean water bubble size measurements ............................................................................................... 28 3.1.2.2 Effects of salt addition (50 mg/l) ............................................................................................................. 30 3.1.2.3 Effects of salt addition (100 mg/l) .......................................................................................................... 33 i 3.1.2.4 Effects of viscosity variation (0.2 g/l Xanthan TER) ...................................................................... 36 3.1.2.5 Effects of viscosity variation (0.8 g/l Xanthan TER) ...................................................................... 39 3.1.3. Lab scale oxygen transfer measurements ........................................................................................... 42 3.2. Full-scale aeration efficiency ................................................................................................................................ 45 3.2.1. Off-gas measurements ................................................................................................................................... 45 3.2.2. The Eindhoven aeration model performances on αSOTE prediction ................................... 50 3.2.2.1 Predictions of DO and NH using full scale αSOTE measurements ........................................ 53 4 4. Discussion ................................................................................................................................... 59 4.1. Bubble column tests .................................................................................................................................................. 59 4.2. Off-gas measurements ............................................................................................................................................. 60 4.3. Aeration model of Eindhoven WWTP .............................................................................................................. 60 5. Conclusions and perspectives ..................................................................................................... 62 References .......................................................................................................................................... 64 ii Acknowledgments First and foremost, I would like to thank my academic promoter Ingmar Nopens for his always kind availability, contagious positive energy and strength which always characterize his person and motivate who is in contact with him. I have a secret question to ask myself in the hard times, “What would Ingmar do?!”, and that’s the answer too. In the same warm way I would like to thank very much my tutor Youri who sustained me through the long forest of the bad results, through which every student has to pass sooner or later (in my case quite some time later), with stimulating ideas, precious organization and motivation. There are so many people that have been important in this period and I would like to thank all and each one of them. First of all Tinne (before I forgot like the last time!) for the precious help and source of noise in the lab, Thomas who’s my very good friend and excellent colleague, Stijn who has always been keeping my back, Andreia who came directly from Portugal to help me, Daan for all the loughs and the motivational playlist, Sophie for her kind attitude and surprising skills with the ADCP, Michael for the excellent learning curve on Italian statements to catch girls, Robin for the memorable time in the BIOMATH weekend, and last but not least Chaim and Stijn for all the respirometer parties in the lab. Nonetheless, all the BIOMATH family to which I’ll always owe a lot of gratitude. Thanks Elena, Ivo, Ashish, Usman, Wouter, Séverine, Timothy, Stijn, Wim, Andres, Katrijn and everyone that passed through the BIOMATH walls. Ora, dopo tutti i discorsi di rito, vorrei però arrivare al dunque. Voglio ringraziare la mia famiglia, la forza che mi ha sostenuto e mi sostiene tutti i giorni. Babbo e mamma, vi voglio un bene che scoppio e vi voglio ringraziare per tutto il sostegno e la fiducia che mi avete dato, spero siate fieri di me almeno un millesimo di quanto lo sono io di voi. Gianluca e Elena, che sono tutto il mondo per me, li voglio ringraziare per essere cosi bellini che li mangerei, ma soprattutto per essere sempre nei miei pensieri vicini vicini. Ci sono stati e ci saranno sempre momenti duri, e questa tesi non è uno di quelli, e se c’è qualcosa che mi da la forza per tirare avanti anche un carro armato in quei momenti, quella cosa e il pensiero di Gianluca, Elena e Annalisa. Grazie Na’, che ci sei sempre come un pilastro in ogni cosa che faccio, e ci portiamo sempre insieme. Linda, semplicemente la persona piu bella del mondo. La persona che mi fa ridere e innamorare, arrabbiare e scompisciare. Mi regali ogni giorno quella scintilla che rende le giornate piene di vita. Grazie, senza di te questa tesi non l’avrei mai fatta. Sicuramente prima di finire voglio ringraziare la mia altra parte della famiglia, Massimo, la Tiziana, Simone (Toxy) e Simone (Gloxy), che per me sono importanti come parti del corpo, e che per me son tutti fratelli (Tiziana compresa), vi voglio bene. E grazie a tutti i letterati che allietano le serate al barre con poemi e sonetti, ma soprattutto grazie a Grazia, Graziella e Grazialcazzo (che tanto i ringraziamenti non li legge mai nessuno ☺). iii Abstract Aeration in activated sludge treatment is used to supply the amount of oxygen needed in order to accomplish the oxidation of part of the nutrients and pollutants unwanted in our river systems. As the most energy intensive step in wastewater treatment, oxygen supply needs to be performed efficiently, facilitating the transport of oxygen from the gas to the liquid phase. To do so, the available surface for exchange needs to be maximized and the coalescence process hindered. Moreover, the chemical and physical properties of the liquid play an important role affecting the surface tension and ultimately the diffusion coefficient of oxygen. In the framework of the development of a sound aeration model, this work studied the (i) effects of salt addition and viscosity variation on oxygen transfer in a lab scale bubble column, along with (ii) aeration efficiency measurements performed at a full scale wastewater treatment plant and (iii) the evaluation and analysis of the prediction performances of one available aeration model. The bubble column tests provided precious informations on the role singularly played by typical wastewater characteristics (i.e. low electrolyte concentrations help the oxygen transfer process while increasing viscosity not necessarily hinders it) and were a valuable tool for the interpretation of the off-gas measurements performed at the full scale municipal facility of Eindhoven. However, further experiments should be carried out to rigorously answer some unsolved questions. The model results confirm the need of a better understating and finer representation of those dynamics important in the oxygen transfer process, and of the definition of new dependencies for the accomplishment of robust predictions. iv

Description:
Master's dissertation submitted in partial fulfillment of the requirements for the degree of .. development of a sound aeration model, this work studied the (i) effects of salt addition and viscosity variation on dynamics, studied in lab scale bubble column, are presented in the results along with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.