Model-Assisted Bayesian Designs for Dose Finding and Optimization Methods and Applications Bayesian adaptive designs provide a critical approach to improve the efficiency and success of drug development that has been embraced by the US Food and Drug Administration (FDA). This is particularly important for early phase trials as they form the basis for the development and success of subsequent phase II and III trials. The objective of this book is to describe the state-of-the-art model-assisted designs to facilitate and accelerate the use of novel adaptive designs for early phase clinical trials. Model-assisted designs possess avant-garde features where superiority meets simplicity. Model-assisted designs enjoy exceptional performance comparable to more complicated model-based adap- tive designs, yet their decision rules often can be pre-tabulated and included in the protocol— making implementation as simple as conventional algorithm-based designs. An example is the Bayesian optimal interval (BOIN) design, the first dose-finding design to receive the fit- for-purpose designation from the FDA. This designation underscores the regulatory agency’s support of the use of the novel adaptive design to improve drug development. Features • Represents the first book to provide comprehensive coverage of model-assisted designs for various types of dose-finding and optimization clinical trials • Describes the up-to-date theory and practice for model-assisted designs • Presents many practical challenges, issues, and solutions arising from early-phase clinical trials • Illustrates with many real trial applications • Offers numerous tips and guidance on designing dose finding and optimization trials • Provides step-by-step illustrations of using software to design trials • Develops a companion website (www.trialdesign.org) to provide freely available, easy-to-use software to assist learning and implementing model-assisted designs Written by internationally recognized research leaders who pioneered model-assisted designs from the University of Texas MD Anderson Cancer Center, this book shows how model- assisted designs can greatly improve the efficiency and simplify the design, conduct, and optimization of early-phase dose-finding trials. It should therefore be a very useful practical reference for biostatisticians, clinicians working in clinical trials, and drug regulatory profes- sionals, as well as graduate students of biostatistics. Novel model-assisted designs showcase the new KISS principle: Keep it simple and smart! Chapman & Hall/CRC Biostatistics Series Series Editors Shein-Chung Chow, Duke University School of Medicine, USA Byron Jones, Novartis Pharma AG, Switzerland Jen-pei Liu, National Taiwan University, Taiwan Karl E. Peace, Georgia Southern University, USA Bruce W. Turnbull, Cornell University, USA Recently Published Titles Statistical Thinking in Clinical Trials Michael A. Proschan Simultaneous Global New Drug Development Multi-Regional Clinical Trials after ICH E17 Edited by Gang Li, Bruce Binkowitz, William Wang, Hui Quan, and Josh Chen Quantitative Methodologies and Process for Safety Monitoring and Ongoing Benefit Risk Evaluation Edited by William Wang, Melvin Munsaka, James Buchanan and Judy Li Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS Qingzhao Yu and Bin Li Hybrid Frequentist/Bayesian Power and Bayesian Power in Planning Clinical Trials Andrew P. Grieve Advanced Statistics in Regulatory Critical Clinical Initiatives Edited By Wei Zhang, Fangrong Yan, Feng Chen, Shein-Chung Chow Medical Statistics for Cancer Studies Trevor F. Cox Real World Evidence in a Patient-Centric Digital Era Edited by Kelly H. Zou, Lobna A. Salem, Amrit Ray Data Science, AI, and Machine Learning in Pharma Harry Yang Model-Assisted Bayesian Designs for Dose Finding and Optimization Methods and Applications Ying Yuan, Ruitao Lin, and J. Jack Lee For more information about this series, please visit: https://www.routledge.com/ Chapman--Hall-CRC-Biostatistics-Series/book-series/CHBIOSTATIS Model-Assisted Bayesian Designs for Dose Finding and Optimization Methods and Applications Ying Yuan The University of Texas MD Anderson Cancer Center, USA Ruitao Lin The University of Texas MD Anderson Cancer Center, USA J. Jack Lee The University of Texas MD Anderson Cancer Center, USA First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2023 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here- after invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Yuan, Ying (Professor of biostatistics), author. | Lin, Ruitao, author. | Lee, J. Jack, author. Title: Model-assisted Bayesian designs for dose finding and optimization : methods and applications / Ying Yuan, Ruitao Lin, J. Jack Lee. Other titles: Chapman & Hall/CRC biostatistics series. Description: First edition. | Boca Raton : C&Hall/CRC Press, 2023. | Series: Chapman & Hall/CRC biostatistics series | Includes bibliographical references and index. Identifiers: LCCN 2022017949 (print) | LCCN 2022017950 (ebook) | ISBN 9780367146245 (hardback) | ISBN 9781032357126 (paperback) | ISBN 9780429052781 (ebook) Subjects: MESH: Drug Development--methods | Drug Design--methods | Drug Dosage Calculations | Models, Statistical | Bayes Theorem | Clinical Trials, Phase I as Topic Classification: LCC RM301.25 (print) | LCC RM301.25 (ebook) | NLM QV 745 | DDC 615.1/9--dc23/eng/20220801 LC record available at https://lccn.loc.gov/2022017949 LC ebook record available at https://lccn.loc.gov/2022017950 ISBN: 978-0-367-14624-5 (hbk) ISBN: 978-1-032-35712-6 (pbk) ISBN: 978-0-429-05278-1 (ebk) DOI: 10.1201/9780429052781 Typeset in CMR10 by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. To my wife, Suyu, and daughter, Selina. Ying Yuan To the memory of my mother, a brave cancer fighter. Ruitao Lin To my wife, Vei-Vei, and children, Joseph and Hope, for their love and support. J. Jack Lee Contents Preface xi Author Biographies xiii 1 Bayesian Statistics and Adaptive Designs 1 1.1 Basics of Bayesian statistics . . . . . . . . . . . . . . . . . . 1 1.1.1 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . 5 1.2 Bayesian adaptive designs . . . . . . . . . . . . . . . . . . . . 7 1.3 Adoption of Bayesian adaptive designs . . . . . . . . . . . . 10 2 Algorithm-Based and Model-Based Dose Finding Designs 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Traditional 3+3 design . . . . . . . . . . . . . . . . . . . . . 16 2.3 Cohort expansion . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Accelerated titration design . . . . . . . . . . . . . . . . . . . 20 2.5 Continual reassessment method . . . . . . . . . . . . . . . . 21 2.6 Bayesian model averaging CRM . . . . . . . . . . . . . . . . 25 2.7 Escalation with overdose control . . . . . . . . . . . . . . . . 28 2.8 Bayesian logistic regression method . . . . . . . . . . . . . . 30 2.9 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Model-Assisted Dose Finding Designs 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Modified toxicity probability interval design . . . . . . . . . 33 3.3 Keyboard design . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Bayesian optimal interval (BOIN) design . . . . . . . . . . . 38 3.4.1 Trial design . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Theoretical derivation . . . . . . . . . . . . . . . . . . 42 3.4.3 Specification of design parameters . . . . . . . . . . . 46 3.4.4 Statistical properties . . . . . . . . . . . . . . . . . . . 47 3.4.5 Frequently asked questions . . . . . . . . . . . . . . . 49 3.5 Operating characteristics . . . . . . . . . . . . . . . . . . . . 52 3.6 Software and case study . . . . . . . . . . . . . . . . . . . . . 57 vii viii 4 Drug-Combination Trials 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Model-based designs . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Model-assisted designs . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 BOIN combination design . . . . . . . . . . . . . . . . 74 4.3.2 Keyboard combination design . . . . . . . . . . . . . . 77 4.3.3 Waterfall design . . . . . . . . . . . . . . . . . . . . . 77 4.4 Operating characteristics . . . . . . . . . . . . . . . . . . . . 82 4.5 Software and case study . . . . . . . . . . . . . . . . . . . . . 85 5 Late-Onset Toxicity 93 5.1 A common logistical problem . . . . . . . . . . . . . . . . . . 93 5.2 Late-onset toxicities . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 TITE-CRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 TITE-BOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4.1 Trial design . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4.2 Incorporating prior information . . . . . . . . . . . . . 102 5.4.3 Statistical properties . . . . . . . . . . . . . . . . . . . 103 5.4.4 Operating characteristics . . . . . . . . . . . . . . . . 103 5.5 A unified approach using “effective” data . . . . . . . . . . . 105 5.6 TITE-keyboard and TITE-mTPI designs . . . . . . . . . . . 109 5.7 Software and case study . . . . . . . . . . . . . . . . . . . . . 112 6 Incorporating Historical Data 119 6.1 Historical data and prior information . . . . . . . . . . . . . 119 6.1.1 Incorporate prior information in CRM . . . . . . . . . 119 6.2 BOIN with Informative Prior (iBOIN) . . . . . . . . . . . . . 121 6.2.1 Trial design . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.2 Practical guidance . . . . . . . . . . . . . . . . . . . . 125 6.3 iKeyboard design . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4 Operating characteristics . . . . . . . . . . . . . . . . . . . . 127 6.5 Software and case study . . . . . . . . . . . . . . . . . . . . . 128 7 Multiple Toxicity Grades 137 7.1 Multiple toxicity grades . . . . . . . . . . . . . . . . . . . . . 137 7.2 gBOIN accounting for toxicity grade . . . . . . . . . . . . . . 140 7.2.1 Trial design . . . . . . . . . . . . . . . . . . . . . . . . 140 7.2.2 Statistical derivation and properties . . . . . . . . . . 142 7.3 Multiple toxicity BOIN . . . . . . . . . . . . . . . . . . . . . 144 7.3.1 Trial design . . . . . . . . . . . . . . . . . . . . . . . . 144 7.3.2 Statistical derivation and properties . . . . . . . . . . 147 7.4 Software and illustration . . . . . . . . . . . . . . . . . . . . 149 ix 8 Finding Optimal Biological Dose 155 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.1.1 Phase I–II design paradigm . . . . . . . . . . . . . . . 156 8.2 EffTox design . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2.1 Efficacy–toxicity trade-off . . . . . . . . . . . . . . . . 159 8.2.2 Joint probability model for efficacy and toxicity . . . . 160 8.2.3 Admissible rules . . . . . . . . . . . . . . . . . . . . . 161 8.2.4 Dose-finding algorithm . . . . . . . . . . . . . . . . . . 161 8.3 U-BOIN design . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3.1 Utility-based risk-benefit trade-off . . . . . . . . . . . 163 8.3.2 Statistical model . . . . . . . . . . . . . . . . . . . . . 165 8.3.3 Admissible rules . . . . . . . . . . . . . . . . . . . . . 166 8.3.4 Dose-finding algorithm . . . . . . . . . . . . . . . . . . 167 8.3.5 Operating characteristics . . . . . . . . . . . . . . . . 170 8.4 BOIN12 design . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.4.1 Utility estimation using quasi-binomial likelihood . . . 173 8.4.2 Admissible rules and dose comparison . . . . . . . . . 174 8.4.3 Dose-finding rules . . . . . . . . . . . . . . . . . . . . 176 8.4.4 Operating characteristics . . . . . . . . . . . . . . . . 180 8.4.5 Extension to more complicated endpoints . . . . . . . 181 8.5 TITE-BOIN12 design . . . . . . . . . . . . . . . . . . . . . . 183 8.6 Other model-assisted phase I/II designs . . . . . . . . . . . . 188 8.6.1 uTPI design . . . . . . . . . . . . . . . . . . . . . . . . 188 8.6.2 STEIN and BOIN-ET designs . . . . . . . . . . . . . . 190 8.7 Software and case study . . . . . . . . . . . . . . . . . . . . . 193 Bibliography 205 Index 217