ebook img

model analysis and predictive control of double electrode submerged arc welding process for fillet PDF

144 Pages·2017·3.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview model analysis and predictive control of double electrode submerged arc welding process for fillet

UUnniivveerrssiittyy ooff KKeennttuucckkyy UUKKnnoowwlleeddggee Theses and Dissertations--Electrical and Electrical and Computer Engineering Computer Engineering 2014 MMOODDEELL AANNAALLYYSSIISS AANNDD PPRREEDDIICCTTIIVVEE CCOONNTTRROOLL OOFF DDOOUUBBLLEE EELLEECCTTRROODDEE SSUUBBMMEERRGGEEDD AARRCC WWEELLDDIINNGG PPRROOCCEESSSS FFOORR FFIILLLLEETT JJOOIINNTTSS WWIITTHH RROOOOTT OOPPEENNIINNGG Yi Lu University of Kentucky, [email protected] RRiigghhtt cclliicckk ttoo ooppeenn aa ffeeeeddbbaacckk ffoorrmm iinn aa nneeww ttaabb ttoo lleett uuss kknnooww hhooww tthhiiss ddooccuummeenntt bbeenneefifittss yyoouu.. RReeccoommmmeennddeedd CCiittaattiioonn Lu, Yi, "MODEL ANALYSIS AND PREDICTIVE CONTROL OF DOUBLE ELECTRODE SUBMERGED ARC WELDING PROCESS FOR FILLET JOINTS WITH ROOT OPENING" (2014). Theses and Dissertations-- Electrical and Computer Engineering. 44. https://uknowledge.uky.edu/ece_etds/44 This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. SSTTUUDDEENNTT AAGGRREEEEMMEENNTT:: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. RREEVVIIEEWW,, AAPPPPRROOVVAALL AANNDD AACCCCEEPPTTAANNCCEE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Yi Lu, Student Dr. YuMing Zhang, Major Professor Dr. Cai-Cheng Lu, Director of Graduate Studies MODEL ANALYSIS AND PREDICTIVE CONTROL OF DOUBLE ELECTRODE SUBMERGED ARC WELDING PROCESS FOR FILLET JOINTS WITH ROOT OPENING _________________________________________________________________________ DISSERTATION _________________________________________________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky By Yi Lu Lexington, Kentucky Co-Directors: Dr. YuMing Zhang, Professor of Electrical and Computer Engineering and Dr. Lawrence E. Holloway, Professor of Electrical and Computer Engineering Lexington, Kentucky Copyright © Yi Lu 2014 ABSTRACT OF DISSERTATION MODEL ANALYSIS AND PREDICTIVE CONTROL OF DOUBLE ELECTRODE SUBMERGED ARC WELDING PROCESS FOR FILLET JOINTS WITH ROOT OPENING Submerged Arc Welding (SAW) for fillet joints is one of the major applications in the shipbuilding industry. Due to the requirement for the weld size, a sufficient amount of metal must be deposited. In conventional SAW process, the heat input is proportional to the amount of metal melted and is thus determined by the required weld size. To meet this requirement, an excessive amount of heat is applied causing large distortions on the welded structures whose follow-up straightening is highly costly. In order to reduce the needed heat input, Double-Electrode (DE) technology has been practiced creating the Double-Electrode SAW (DE-SAW) method for fillet joints. The reduction in the heat input, however, also reduces the penetration capability of the process, and the ability to produce required weld beads has to be compromised. To eliminate the unwanted side effect after using DE-SAW, a root opening between the panel and the tee has been proposed in this dissertation to form a modified fillet joint design. Experimental results verified that the use of root opening improves the ability of DE-SAW to produce the required weld beads at reduced heat input and penetration capability. Unfortunately, the use of root opening decreases the stability of the process significantly. To control the heat input at a minimally necessary level that guarantees the weld size and meanwhile the process stability, a feedback is needed to control the currents at their desired levels. To this end, the fillet DE-SAW process is modeled and a multivariable predictive control algorithm is developed based on the process model. Major parameters including the root opening size, travel speed and heat input level have been selected/optimized/minimized to produce required fillet weld beads with a minimized heat input based on qualitative and quantitative analyses. At the end of this dissertation, a series of experiments validated the feasibility and repeatability of the predictive control based DE-SAW process for fillet joints with root opening. KEYWORDS: Submerged Arc Welding (SAW), Fillet Joint, Double-Electrode (DE), Predictive Control, Root Opening Yi Lu Feb 18, 2014 MODEL ANALYSIS AND PREDICTIVE CONTROL OF DOUBLE ELECTRODE SUBMERGED ARC WELDING PROCESS FOR FILLET JOINTS WITH ROOT OPENING By Yi Lu Dr. YuMing Zhang ___________________________ Director of Dissertation Dr. Cai-Cheng Lu ___________________________ Director of Graduate Studies Feb 18, 2014 ___________________________ Date ACKNOWLEDGEMENTS This research is funded by the Navy under contracts N65538-08-M-0049 and N00024- 09-C-4140 and Kentucky Cabinet for Economic Development (CED) Office of Commercialization and Innovation through Kentucky Science and Engineering Corp. under agreements KSTC-184-512-08-038 and KSTC-184-512-09-067. I would like to gratefully and sincerely thank my advisor, Dr. YuMing Zhang, for his guidance, patience, support, and most importantly, his encouragement during my graduate studies at University of Kentucky. Also thanks to my dissertation committee members Drs. Alan T. Male, Larry Holloway and Yuan Liao for their help both in my graduate courses and my dissertation research. Moreover, my appreciation is also given to my colleagues from Adaptive Intelligent Systems LLC and Welding Research Lab: Xiangrong Li, Jinsong Chen, Kun Qian, Zeng Shao, Chenglin Yi, Yi Huang, Xiaoji Ma, Weijie Zhang, Yan Shao, Yukang Liu and Kehai Li. Last but most important, I want to express my deep gratitude to my parents and girlfriend for their love, faith in me, and long-term solid support for my work. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................................ iii Table of Contents ............................................................................................................................ iv List of Tables ................................................................................................................................. vii List of Figures ............................................................................................................................... viii Chapter 1 Introduction .................................................................................................................... 1 1.1 Background ............................................................................................................................ 1 1.2 Objectives .............................................................................................................................. 2 1.3 Organization ........................................................................................................................... 4 Chapter 2 Review of Double-Electrode Technology ........................................................................ 6 2.1 Background ............................................................................................................................ 6 2.2 Principle of Double-Electrode GMAW ................................................................................. 7 2.3 Non-Consumable DE-GMAW Using Constrained Bypass Arc .......................................... 11 2.4 Non-Consumable DE-GMAW Using Unconstrained Bypass Arc ...................................... 13 2.5 Metal Transfer in Non-Consumable DE-GMAW Using Unconstrained Bypass Arc ......... 17 2.6 Consumable DE-GMAW and Analysis ............................................................................... 20 2.7 Control of Consumable DE-GMAW ................................................................................... 23 2.8 Variants of DE-GMAW and Double-electrode Arc Welding .............................................. 25 2.8.1 Dual-Bypass GMAW .................................................................................................... 26 2.8.2 Arc Assisted Hot-Wire GTAW ..................................................................................... 28 2.8.3 Arcing-Wire GTAW and Double-Electrode Arc Welding ........................................... 30 Chapter 3 DE-SAW and Use of Root Opening ................................................................................ 34 3.1 Submerged Arc Welding (SAW) ......................................................................................... 34 3.2 Double-Electrode SAW (DE-SAW) .................................................................................... 36 3.3 Fillet DE-SAW and Use of Root Opening ........................................................................... 40 3.4 Necessity of Effective Control in DE-SAW for Fillet Joints ............................................... 42 Chapter 4 Parameters Selection .................................................................................................... 47 4.1 Experimental Conditions ..................................................................................................... 48 4.2 Root Opening Effect and Selection ...................................................................................... 48 iv 4.2.1 “No Root Opening” Experiment ................................................................................... 49 4.2.2 “Small Root Opening” Experiment ............................................................................... 51 4.2.3 “Large Root opening” Experiment ............................................................................... 54 4.2.4 Remarks on Root Opening Effect ................................................................................. 55 4.3 Travel Speed Optimization .................................................................................................. 56 4.3.1 Analysis Method ........................................................................................................... 57 4.3.2 Experiment Design and Study Approaches................................................................... 60 4.3.3 Experimental Results and Analysis ............................................................................... 61 4.3.4 Standard Deviation and Extreme Difference Analysis ................................................. 66 4.3.5 Average and Minimum Leg Sizes Analysis .................................................................. 67 4.3.6 Remarks on Travel Speed Optimization ....................................................................... 68 4.4 Heat Input (Initial Main Wire Feed Speed) Selection .......................................................... 69 4.4.1 Experiment Design ........................................................................................................ 70 4.4.2 Experimental Results and Analysis ............................................................................... 71 4.4.3 Standard Deviation and Extreme Difference Analysis ................................................. 74 4.4.4 Average and Minimum Leg Sizes Analysis .................................................................. 76 4.4.5 Heat Input Comparison ................................................................................................. 77 4.4.6 Remarks on Heat Input Optimization ........................................................................... 78 4.5 Chapter Summary ................................................................................................................ 79 Chapter 5 Process Modeling .......................................................................................................... 81 5.1 Physical Process ................................................................................................................... 81 5.2 Basic Equations .................................................................................................................... 82 5.3 Linearization and Static Incremental Model ........................................................................ 84 5.4 Filter Design and Dynamic Incremental Model ................................................................... 87 Chapter 6 Predictive Control Algorithm Design ............................................................................. 90 6.1 Review of Predictive Control ............................................................................................... 90 6.2 Output Prediction ................................................................................................................. 91 6.3 Trajectory ............................................................................................................................. 96 6.4 Cost Function and Control Law ........................................................................................... 97 Chapter 7 Experiments and Analysis ........................................................................................... 100 7.1 Experimental Conditions ................................................................................................... 100 7.2 Bead-On-Plate Experiment ................................................................................................ 101 v 7.3 Fillet Welding Experiments ............................................................................................... 103 7.4 Weld Bead and Heat Input Comparison ............................................................................ 108 7.5 Experiments and Analysis on Large Panels ....................................................................... 110 Chapter 8 Simplified Version of Predictive Control ..................................................................... 113 8.1 Background ........................................................................................................................ 113 8.2 Algorithm Simplification ................................................................................................... 113 8.3 Experiment and Analysis on Small Panels ........................................................................ 116 8.4 Experiment and Analysis on Large Panels ........................................................................ 120 Chapter 9 Conclusion and Future Work ....................................................................................... 123 9.1 Conclusion ......................................................................................................................... 123 9.2 Future Work ....................................................................................................................... 124 References .................................................................................................................................... 126 VITA ............................................................................................................................................ 130 vi

Description:
Theses and Dissertations--Electrical and Computer Engineering. Submerged Arc Welding (SAW) for fillet joints is one of the major 09-C-4140 and Kentucky Cabinet for Economic Development (CED) Office of joint DE-SAW process with root opening based on the analysis to the principles and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.