ebook img

Modal interval analysis. New tools for numerical information PDF

330 Pages·2014·1.495 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modal interval analysis. New tools for numerical information

Lecture Notes in Mathematics 2091 Miguel A. Sainz · Joaquim Armengol Remei Calm · Pau Herrero Lambert Jorba · Josep Vehi Modal Interval Analysis New Tools for Numerical Information Lecture Notes in Mathematics 2091 Editors-in-Chief: J.-M.Morel,Cachan B.Teissier,Paris AdvisoryBoard: CamilloDeLellis(Zurich) MarioDiBernardo(Bristol) AlessioFigalli(Pisa/Austin) DavarKhoshnevisan(SaltLakeCity) IoannisKontoyiannis(Athens) GaborLugosi(Barcelona) MarkPodolskij(Heidelberg) SylviaSerfaty(ParisandNY) CatharinaStroppel(Bonn) AnnaWienhard(Heidelberg) Forfurthervolumes: http://www.springer.com/series/304 Miguel A. Sainz • Joaquim Armengol Remei Calm (cid:129) Pau Herrero (cid:129) Lambert Jorba Josep Vehi Modal Interval Analysis New Tools for Numerical Information 123 MiguelA.Sainz JoaquimArmengol InformáticaMatemática EnginyeriaEleJctrica AplicadayEstadística ElectroJnicaiAutomaJtica EscolaPolitecnicaSuperior EscolaPolitecnicaSuperior UniversityofGirona UniversityofGirona Girona,Spain Girona,Spain RemeiCalm PauHerrero InformáticaMatemática ImperialCollegeLondon AplicadayEstadística London,UnitedKingdom EscolaPolitecnicaSuperior UniversityofGirona Girona,Spain LambertJorba JosepVehi MatemáticaEconómica EnginyeriaEleJctrica FinancierayActuarial ElectroJnicaiAutomaJtica FacultaddeEconomiayEmpresa EscolaPolitecnicaSuperior UniversitatdeBarcelona UniversityofGirona Barcelona,Spain Girona,Spain ISBN978-3-319-01720-4 ISBN978-3-319-01721-1(eBook) DOI10.1007/978-3-319-01721-1 SpringerChamHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 MathematicsSubjectClassification(2010):65G40,65G50,03B10,26A24,65F10 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ThebasicideaofIntervalMathematicsisthatordinaryset-theoreticalintervalsI.R/ providea consistentsupportfornumericalcomputing.The set-theoreticalformof IntervalAnalysishasproducedalargeamountofworksinceitsinitiationinthelate 1950s,[1,60,61].Therearesomelaterpapersdevotedtothestructuralanalysisof themethodoritscompletion[13,14,49,66,72,87,96,97],butwithnofundamental departurefromitsinitialset-theoreticalfoundations. Thisbookpresentsanewintervaltheory,theModalIntervalAnalysis(MIA),as astructural,algebraic,andlogicalcompletionoftheclassicalintervals.Thestarting pointofMIA isquitesimple:todefinea modalintervalattachingaquantifierto a classical interval, and to introduce the basic relation of inclusion between modal intervals by means of the inclusion between the sets of predicates they accept. So a modal interval consists in a classical interval, which defines its domain, and a quantifier, which defines its modality. This modal approach introduces interval extensions of the real continuous functions, gives equivalences between logical formulas and interval inclusions, and provides the semantic theorems that justify theseequivalencesandguidelinestogettheseinclusions. The significant change of perspective in the treatment of information, coming from this new approach, makes Modal Interval Analysis more a new tool for the general practice of Numerical Applied Mathematics than a contribution to the previous Interval Theory. It supposes a complete philosophy of numerical information which is, or can be, its best virtue and produces at each stage of its development not only one body of solutions, but also questions leading to the constructionofthenextstageofthetheory.Modalintervalssystemisnotabreaking- off with the classic intervals, but a algebraic, structural, and logic completion of themthatopensawaytonewformsofnumericalinformationtreatment. This book summarizes the most relevant results and features of MIA and also provides several application examples that illustrate the use of them in different problemsanddomains.Thebookcontainsthedetaileddevelopmentofthetheory, the main concepts and results, together with several examples to clarify their meaningandtobalancethemathematicalitemsandproofs.Definitionscontainthe v vi Preface concepts,theoremsprovidethe main results, and corollariesand lemmasembrace detailedlogicaldevelopments. Implementation of arithmetics, computation rules, and some algorithms is in thesoftwareMISOdevelopedbytheresearchgroupMiceLaboftheUniversityof Girona(Spain)andavailableathttp://www.cs.utep.edu/interval-comp/intsoft.html After the introductory Chap.1, about real, digital numbers and intervals, and limitationsofclassicalintervaltheory,Chap.2givesanaccountofthefundamental definitionsandstructureswhichsupportthesemanticallyorientedsystemofmodal intervals I(cid:2).R/. Basic concepts such as predicates, canonical coordinates, modal inclusion,andequality,duality,intervalpredicatesandco-predicates,rounding,and latticeoperatorsarepresentedindetail.ThesetI(cid:2).R/ofmodalintervalsturnsout tobeacompletionofI.R/,inasimilarwaytothatinwhichthecomplexnumbers are a completion of the real numbers. So, a subset of I(cid:2).R/, the “proper” modal interval(Œa;b(cid:2)witha (cid:2) b)isidentifiablewithaclassicalintervalŒa;b(cid:2)andallthe resultsofClassicalIntervalAnalysisarealsoresultsofModalIntervalAnalysis. InaccordancewiththesenseofthetermanalysisinMathematics,asadiscipline inwhichtheobjectsofstudyare,firstandforemost,functions,ModalIntervaltheory can be considered, indeed, as an analysis because it studies a numerical field, the modalintervals,andthefunctionsdefinedonit.So,Chap.3dealswiththeinterval extensionoftherealcontinuousfunctions.Thehistoricreasonforthetheoryofthese extensionsofcontinuousrealfunctionsistoovercomethelimitedcharacterofthe classicalset-theoreticalapproach.Thegeometricalsemanticsof.nC1/-dimensional realspace,RnC1,isbasicallydefinedbythecontinuousfunctionsf fromRn toR. The semantic interval functionsf(cid:2) and f(cid:2)(cid:2) from I(cid:2).Rn/ to I(cid:2).R/, consistently referringto the continuousfunctionsf from Rn to R, are obtained by translating tomodaltermstheset-theoreticaldefinitionofasimpleintervalextensionofareal continuousfunction.Whenthecontinuousrealfunctionisconsideredasasyntactic tree,itcanalsobeextendedtoarationalintervalfunctionfRfromRntoR,byusing thecomputingprogramimplicitlydefinedbythesyntaxoftheexpressiondefining the function.The idea of interpretability is givenas a definite formulationvia the cornerstoneswhicharetheSemanticTheorems. Chapter 4 is devoted to characterizing the existence of optimal computations for a semantic function. Both modal extensions f(cid:2) and f(cid:2)(cid:2) are semantically interpretable, but not computable in general. When f(cid:2) and f(cid:2)(cid:2) are computed through the modal rational extension fR, a null, partial, or complete loss of informationisgenerated.ThepointistofindfunctionsforwhichtheprogramfR isoptimal,thatis,forwhichfR.X/equalsf(cid:2).X/andf(cid:2)(cid:2).X/. Modal interval arithmetic operators and metric functions are considered in Chap.5. The modal arithmetic coincides, certainly, with the arithmetic of the Kaucher’sExtendedIntervalSpaceIR[49]withanimportantdifference:inI(cid:2).R/ interval results provided by the arithmetic have a logical meaning related to the pointsoftheoperandintervalsdomains,thankstothesemanticandinterpretability theorems. Thus, unlike Extended Interval Space, which is a formal and algebraic completion of the Classic Intervals Space I.R/, Gardenyes’ Modal Intervals are alsoasemanticcompletionofI.R/. Preface vii Chapter6containsproceduresforsolvingintervallinearequationsandsystems. The Jacobi method is adapted to interval systems together with convergence and non-convergenceconditions.Animportantpointistoprovidealogicalmeaningto thesolutionusingthesemantictheorems. The definitionofthe semanticextensionofa realcontinuousfunctiondoesnot provide any indication about how to compute it. Some conditions under which f(cid:2) can be computed through the syntactic extension are given in Chap.3, but in the most general case it is obtained by means of an algorithm developed in Chap.7,referredasf(cid:2)-algorithm.First,someconsiderationsabouttwins(intervals ofintervals)aregiventoprovideabackgroundforthisf(cid:2)-algorithm. The matter of the necessary rounding is introduced in Chap.1 and dealt with in the following chapters. Nevertheless, a shortcoming of the modal theory is managingtheroundingofanintervalwhenitappearsbothasitisanddualizedin thesamecomputation,forexampleinthesolutionofalinearsystem.Toovercome this difficulty, in Chap.8 a new object based on modal intervals is introduced: marks. Definitions, relations, the extension of a continuousfunction to a function of marks, operators of marks, and the corresponding semantic results are given in detail together with examples, not only to illustrate the different concepts and results, but also to show that marks can be used in a very practical way to aware aboutillcomputationswhichcanappearintheuseofalgorithmswithrealnumbers. Chapter 9 closes the loop opened in Chap.2 dealing with intervals and modal intervals of marks, following a parallel developmentto the one started in Chap.2 for modalintervalsof realnumbersI(cid:2).R/. Predicates, relations, lattice operators, semanticandsyntacticfunctionalextensionstointervalsofmarks,andthesemantic theorem,togetherwiththearithmeticoperators,areoutlinedthroughoutthechapter. Finally, Chap.10 is devoted to showing some applications of modal intervals. Specifically, they are used to deal with three problems:minimax,characterization of solution sets of quantified constraint satisfaction problems, and statement of problemsin controlengineeringorprocesscontrolfroma semantic pointofview. Algorithmsandproceduresaboutthesetopicsarepresented,togetherwithexamples toillustratetheprocedures. The beginningsof MIAcan besituated in the SIGLAproject,developedatthe University of Barcelona in the late 1970s. In the 1980s and 1990s it was further continued by the SIGLA/X group (University of Barcelona and Polytechnical University of Catalonia in Spain), some of whose results can be found in [20– 27,86,90]. The kernel of its main applications has been developed inside the MiceLaboftheUniversityofGirona(Spain)fromthe1990stothepresent. We,theauthors,areindebtedtomanypeoplewhohaveplayedsignificantrolesin thedevelopmentofModalIntervalTheory.Firstofall,toDr.E.Gardenyes,founder oftheModalIntervalAnalysissince hisfirst worksinthe 1980suntilearly2000s together with a set of coworkers, Dr. H. Mielgo, Dr. A. Trepat, Dr. J.M. Janer, Dra. R. Estela, and some of us. With this book we want to render him tribute. Along the hardcore of the theory, we have wanted to preserve, in some way, his conceptualiststyleandnotation,exceptforsomeadaptationstothestandards.Also, we wish to thank several colleagues for their valuable comments and criticisms, viii Preface Dr.V.Kreinovich,Dr.A.Neumaier,Dr.L.Jaulin,Dr.A.Goldsztein,Dr.S.Ratschan and, in a very special way, we thank Dr. S.P. Shary and Dr. E. Walter, for the patient reading of the manuscript. Nevertheless, any error, omission, or obscurity areentirelyourresponsibility. Girona,Spain MiguelA.Sainz Girona,Spain JoaquimArmengol Girona,Spain RemeiCalm London,UK PauHerrero Barcelona,Spain LambertJorba Girona,Spain JosepVehi Notations Inordertomakeclearenoughthemainmathematicalsubjectsputtoworkalongthe text,wehaveusedthefollowingtypefacesandnotations: (cid:129) Lowercaseanditalicxforarealnumber. (cid:129) Lowercaseanditalicf forarealfunctionofonevariable. (cid:129) Lowercase,boldanditalicxforavectorwithrealcomponents xD.x ;x ;:::;x /: 1 2 m (cid:129) Lowercase,boldanditalicf foravectorialfunctionwithfunctionalcomponents f D.f ;f ;:::;f /: 1 2 m (cid:129) Uppercase,italicAandapostropheforaclassicalintervalwithrealbounds A0 DŒa ;a (cid:2)0 or A0 DŒa;a(cid:2)0: 1 2 (cid:129) UppercaseanditalicAforamodalintervalwithrealbounds ADŒa ;a (cid:2) or ADŒa;a(cid:2): 1 2 (cid:129) Uppercase, bold and italic for an modal interval vector with modal interval components AD.A ;A ;:::;A /: 1 2 m (cid:129) Uppercaseandboldforarealmatrixwithrealelements AD.a /: ij ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.