Modal fixpoint logic: some model theoretic questions Ga¨elle Fontaine Modal fixpoint logic: some model theoretic questions ILLC Dissertation Series DS-2010-09 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ Modal fixpoint logic: some model theoretic questions Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 9 december 2010, te 10.00 uur door Ga¨elle Marie Marguerite Fontaine geboren te Messancy, Belgi¨e. Promotiecommissie: Promotores: Prof.dr. J. F. A. K. van Benthem Prof.dr. Y. Venema Overige Leden: Prof.dr. E. Gra¨del Prof.dr. L. Santocanale Prof.dr. J. Va¨a¨n¨anen Prof.dr. I. Walukiewicz Dr. B. D. ten Cate Dr. M. Marx Dr. D. Niwin´ski Faculteit der Natuurwetenschappen, Wiskunde en Informatica The investigations were supported by VICI grant 639.073.501 of the Netherlands Organization for Scientific Research (NWO). Copyright (cid:13)c 2010 by Ga¨elle Fontaine Printed and bound by Printondemand-worldwide. ISBN: 978-90-5776-215-4 Contents Acknowledgments ix 1 Introduction 1 2 Preliminaries 11 2.1 Syntax of the µ-calculus . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Semantics for the µ-calculus . . . . . . . . . . . . . . . . . . . . . 15 2.3 Game terminology and the evaluation game . . . . . . . . . . . . 21 2.4 µ-Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 ω-Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 µ-automata . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Disjunctive formulas . . . . . . . . . . . . . . . . . . . . . 31 2.5 Axiomatization of the µ-calculus . . . . . . . . . . . . . . . . . . . 32 2.6 Expressivity of the µ-calculus . . . . . . . . . . . . . . . . . . . . 33 2.6.1 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.2 Expressivity results . . . . . . . . . . . . . . . . . . . . . . 35 2.6.3 Expressivity results for µ-programs . . . . . . . . . . . . . 39 2.7 Graded µ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Completeness for the µ-calculus on finite trees 45 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Rank of a formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Completeness for generalized models . . . . . . . . . . . . . . . . 50 3.4 Completeness for finite trees . . . . . . . . . . . . . . . . . . . . . 55 3.5 Adding shallow axioms to Kµ +µx.(cid:50)x . . . . . . . . . . . . . . . 58 3.6 Graded µ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 v 4 The µ-calculus and frame definability on trees 67 4.1 µMLF-definability on trees . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Graded µ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 Preservation under p-morphic images . . . . . . . . . . . . . . . . 84 4.4 Local definability . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Negative and projective definability . . . . . . . . . . . . . . . . . 108 4.5.1 Negative definability . . . . . . . . . . . . . . . . . . . . . 108 4.5.2 Projective definability . . . . . . . . . . . . . . . . . . . . 110 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Characterizations of fragments of the µ-calculus 115 5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1.1 Structures and games . . . . . . . . . . . . . . . . . . . . . 117 5.1.2 Guarded and disjunctive formulas . . . . . . . . . . . . . . 118 5.1.3 Expansion of a formula . . . . . . . . . . . . . . . . . . . . 119 5.1.4 Monotonicity and positivity . . . . . . . . . . . . . . . . . 120 5.2 Finite path property . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.3 Finite width property . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.4.1 Link with Scott continuity . . . . . . . . . . . . . . . . . . 139 5.4.2 Constructivity . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.4.3 Semantic characterization of continuity . . . . . . . . . . . 141 5.5 Complete additivity . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6 CoreXPath restricted to the descendant relation 165 6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.1.1 XML trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.1.2 CoreXPath, the navigational core of XPath 1.0 . . . . . . 167 6.1.3 Connections with modal logic . . . . . . . . . . . . . . . . 169 6.2 CoreXPath(↓+) node expressions . . . . . . . . . . . . . . . . . . 171 6.3 CoreXPath(↓+) path expressions . . . . . . . . . . . . . . . . . . 179 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7 Automata for coalgebras: an approach using predicate liftings 189 7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.1.1 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.1.2 Graph games . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.2 Automata for the coalgebraic µ-calculus . . . . . . . . . . . . . . 197 7.3 Finite model property . . . . . . . . . . . . . . . . . . . . . . . . 203 7.4 One-step tableau completeness . . . . . . . . . . . . . . . . . . . . 214 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 vi 8 Conclusion 223 Bibliography 227 Index 237 List of symbols 241 Samenvatting 243 Abstract 245 vii