ebook img

Mod Two Homology and Cohomology PDF

539 Pages·2014·6.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mod Two Homology and Cohomology

Universitext Jean-Claude Hausmann Mod Two Homology and Cohomology Universitext Universitext Series editors Sheldon Axler San Francisco State University, San Francisco, CA, USA Vincenzo Capasso Università degli Studi di Milano, Milan, Italy Carles Casacuberta Universitat de Barcelona, Barcelona, Spain Angus MacIntyre Queen Mary University of London, London, UK Kenneth Ribet University of California, Berkeley, CA, USA Claude Sabbah CNRS, École polytechnique Centre de mathématiques, Palaiseau, France Endre Süli University of Oxford, Oxford, UK Wojbor A. Woyczynski Case Western Reserve University, Cleveland, OH, USA Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 Jean-Claude Hausmann Mod Two Homology and Cohomology 123 Jean-Claude Hausmann Universityof Geneva Geneva Switzerland ISSN 0172-5939 ISSN 2191-6675 (electronic) ISBN 978-3-319-09353-6 ISBN 978-3-319-09354-3 (eBook) DOI 10.1007/978-3-319-09354-3 LibraryofCongressControlNumber:2014944717 JELClassificationCode:55-01,55N10,55N91,57R91,57R20,55U10,55U25,55S10,57R19,55R91 SpringerChamHeidelbergNewYorkDordrechtLondon (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Simplicial (Co)homology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Definitions of Simplicial (Co)homology. . . . . . . . . . . . . . . . . 11 2.3 Kronecker Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 First Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Reduction to Components . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 0-Dimensional (Co)homology. . . . . . . . . . . . . . . . . . . 20 2.4.3 Pseudomanifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.4 Poincaré Series and Polynomials . . . . . . . . . . . . . . . . 23 2.4.5 (Co)homology of a Cone. . . . . . . . . . . . . . . . . . . . . . 23 2.4.6 The Euler Characteristic . . . . . . . . . . . . . . . . . . . . . . 25 2.4.7 Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 The Homomorphism Induced by a Simplicial Map . . . . . . . . . 30 2.6 Exact Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7 Relative (Co)homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 Mayer-Vietoris Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.9 Appendix A: An Acyclic Carrier Result. . . . . . . . . . . . . . . . . 49 2.10 Appendix B: Ordered Simplicial (Co)homology . . . . . . . . . . . 50 2.11 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Singular and Cellular (Co)homologies. . . . . . . . . . . . . . . . . . . . . 59 3.1 Singular (Co)homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.2 Relative Singular (Co)homology. . . . . . . . . . . . . . . . . 66 3.1.3 The Homotopy Property . . . . . . . . . . . . . . . . . . . . . . 73 3.1.4 Excision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1.5 Well Cofibrant Pairs. . . . . . . . . . . . . . . . . . . . . . . . . 78 3.1.6 Mayer-Vietoris Sequences. . . . . . . . . . . . . . . . . . . . . 87 v vi Contents 3.2 Spheres, Disks, Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3 Classical Applications of the mod2 (Co)homology. . . . . . . . . 94 3.4 CW-Complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.5 Cellular (Co)homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.6 Isomorphisms Between Simplicial and Singular (Co)homology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.7 CW-Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.8 Eilenberg-MacLane Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.9 Generalized Cohomology Theories . . . . . . . . . . . . . . . . . . . . 123 3.10 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4 Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1 The Cup Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1.1 The Cup Product in Simplicial Cohomology . . . . . . . . 127 4.1.2 The Cup Product in Singular Cohomology. . . . . . . . . . 131 4.2 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.1 Disjoint Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.2 Bouquets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.2.3 Connected Sum(s) of Closed Topological Manifolds. . . 135 4.2.4 Cohomology Algebras of Surfaces . . . . . . . . . . . . . . . 137 4.3 Two-Fold Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1 H1, Fundamental Group and 2-Fold Coverings. . . . . . . 139 4.3.2 The Characteristic Class . . . . . . . . . . . . . . . . . . . . . . 142 4.3.3 The Transfer Exact Sequence of a 2-Fold Covering . . . 144 4.3.4 The Cohomology Ring of RPn. . . . . . . . . . . . . . . . . . 146 4.4 Nilpotency, Lusternik-Schnirelmann Categories and Topological Complexity. . . . . . . . . . . . . . . . . . . . . . . . . 147 4.5 The Cap Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.6 The Cross Product and the Künneth Theorem. . . . . . . . . . . . . 156 4.7 Some Applications of the Künneth Theorem . . . . . . . . . . . . . 165 4.7.1 Poincaré Series and Euler Characteristic of a Product. . 165 4.7.2 Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.7.3 The Cohomology Ring of a Product of Spheres . . . . . . 166 4.7.4 Smash Products and Joins . . . . . . . . . . . . . . . . . . . . . 167 4.7.5 The Theorem of Leray-Hirsch . . . . . . . . . . . . . . . . . . 172 4.7.6 The Thom Isomorphism . . . . . . . . . . . . . . . . . . . . . . 180 4.7.7 Bundles Over Spheres. . . . . . . . . . . . . . . . . . . . . . . . 189 4.7.8 The Face Space of a Simplicial Complex . . . . . . . . . . 194 4.7.9 Continuous Multiplications on KðZ ;mÞ . . . . . . . . . . . 196 2 4.8 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Contents vii 5 Poincaré Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.1 Algebraic Topology and Manifolds. . . . . . . . . . . . . . . . . . . . 201 5.2 Poincaré Duality in Polyhedral Homology Manifolds . . . . . . . 202 5.3 Other Forms of Poincaré Duality. . . . . . . . . . . . . . . . . . . . . . 211 5.3.1 Relative Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.3.2 Manifolds with Boundary . . . . . . . . . . . . . . . . . . . . . 215 5.3.3 The Intersection Form. . . . . . . . . . . . . . . . . . . . . . . . 217 5.3.4 Non Degeneracy of the Cup Product. . . . . . . . . . . . . . 219 5.3.5 Alexander Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.4 Poincaré Duality and Submanifolds. . . . . . . . . . . . . . . . . . . . 221 5.4.1 The Poincaré Dual of a Submanifold . . . . . . . . . . . . . 221 5.4.2 The Gysin Homomorphism . . . . . . . . . . . . . . . . . . . . 225 5.4.3 Intersections of Submanifolds. . . . . . . . . . . . . . . . . . . 227 5.4.4 The Linking Number. . . . . . . . . . . . . . . . . . . . . . . . . 231 5.5 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.1 The Cohomology Ring of Projective Spaces—Hopf Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.2 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 6.2.1 The Borsuk-Ulam Theorem . . . . . . . . . . . . . . . . . . . . 245 6.2.2 Non-singular and Axial Maps. . . . . . . . . . . . . . . . . . . 246 6.3 The Hopf Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.3.2 The Hopf InvariantandContinuous Multiplications. . . . 250 6.3.3 Dimension Restrictions . . . . . . . . . . . . . . . . . . . . . . . 252 6.3.4 Hopf Invariant and Linking Numbers . . . . . . . . . . . . . 253 6.4 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7 Equivariant Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.1 Spaces with Involution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 7.3 Localization Theorems and Smith Theory . . . . . . . . . . . . . . . 283 7.4 Equivariant Cross Products and Künneth Theorems. . . . . . . . . 288 7.5 Equivariant Bundles and Euler Classes . . . . . . . . . . . . . . . . . 298 7.6 Equivariant Morse-Bott Theory. . . . . . . . . . . . . . . . . . . . . . . 309 7.7 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 8 Steenrod Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 8.1 Cohomology Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 8.2 Properties of Steenrod Squares . . . . . . . . . . . . . . . . . . . . . . . 330 8.3 Construction of Steenrod Squares . . . . . . . . . . . . . . . . . . . . . 333 8.4 Adem Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 viii Contents 8.5 The Steenrod Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 8.6 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 8.7 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 9 Stiefel-Whitney Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 9.1 Trivializations and Structures on Vector Bundles . . . . . . . . . . 355 9.2 The Class w —Orientability. . . . . . . . . . . . . . . . . . . . . . . . . 363 1 9.3 The Class w_ —Spin Structures. . . . . . . . . . . . . . . . . . . . . . . 367 2 9.4 Definition and Properties of Stiefel-Whitney Classes. . . . . . . . 372 9.5 Real Flag Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 9.5.1 Definitions and Morse Theory . . . . . . . . . . . . . . . . . . 376 9.5.2 Cohomology Rings. . . . . . . . . . . . . . . . . . . . . . . . . . 381 9.5.3 Schubert Cells and Stiefel-Whitney Classes. . . . . . . . . 389 9.6 Splitting Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 9.7 Complex Flag Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 9.8 The Wu Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 9.8.1 Wu’s Classes and Formula. . . . . . . . . . . . . . . . . . . . . 411 9.8.2 Orientability and Spin Structures . . . . . . . . . . . . . . . . 415 9.8.3 Applications to 3-Manifolds. . . . . . . . . . . . . . . . . . . . 418 9.8.4 The Universal Class for Double Points . . . . . . . . . . . . 420 9.9 Thom’s Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 9.9.1 Representing Homology Classes by Manifolds. . . . . . . 425 9.9.2 CobordismandStiefel-WhitneyNumbers. . . . . . . . . . . 429 9.10 Exercises for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 10 Miscellaneous Applications and Developments. . . . . . . . . . . . . . . 433 10.1 Actions with Scattered or Discrete Fixed Point Sets . . . . . . . . 433 10.2 Conjugation Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 10.3 Chain and Polygon Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . 444 10.3.1 Definitions and Basic Properties. . . . . . . . . . . . . . . . . 444 10.3.2 Equivariant Cohomology. . . . . . . . . . . . . . . . . . . . . . 449 10.3.3 Non-equivariant Cohomology. . . . . . . . . . . . . . . . . . . 458 10.3.4 The Inverse Problem. . . . . . . . . . . . . . . . . . . . . . . . . 464 10.3.5 Spatial Polygon Spaces and Conjugation Spaces. . . . . . 468 10.4 Equivariant Characteristic Classes. . . . . . . . . . . . . . . . . . . . . 470 10.5 The Equivariant Cohomology of Certain Homogeneous Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 10.6 The Kervaire Invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 10.7 Exercises for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Contents ix 11 Hints and Answers for Some Exercises . . . . . . . . . . . . . . . . . . . . 501 11.1 Exercises for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 11.2 Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 11.3 Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 11.4 Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 11.5 Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 11.6 Exercises for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 11.7 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 11.8 Exercises for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 11.9 Exercises for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.