ebook img

Mocassin: A fully three-dimensional Monte Carlo photoionization code PDF

18 Pages·1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mocassin: A fully three-dimensional Monte Carlo photoionization code

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Mocassin: A fully three-dimensional Monte Carlo photoionization code B. Ercolano1, M. J. Barlow1, P. J. Storey1, X.-W. Liu1,2 1UniversityCollegeLondon,GowerStreet,LondonWC1E6BT,UK 2Currentaddress:DepartmentofAstronomy,PekingUniversity,Beijing100871,P.R.China 3 0 0 2 Received: n a ABSTRACT J 7 The study of photoionized environments is fundamental to many astrophysical prob- lems. Up to the present most photoionization codes have numerically solved the equations 3 v of radiative transfer by making the extreme simplifying assumption of spherical symmetry. 8 Unfortunatelyveryfew realastronomicalnebulaesatisfy this requirement.To remedythese 7 shortcomings,aself-consistent,three-dimensionalradiativetransfercodehasbeendeveloped 3 usingMonteCarlo techniques.The code,Mocassin,is designedto build realistic modelsof 9 photoionizednebulaehavingarbitrarygeometryanddensitydistributions,withboththestel- 0 lar and diffuse radiation fields treated self-consistently. In addition, the code is capable of 2 treatingonesormoreexcitingstarslocatedatnon-centrallocations. 0 ThegaseousregionisapproximatedbyacuboidalCartesiangridcomposedofnumerous / h cells. The physical conditions within each grid cell are determined by solving the thermal p equilibriumandionizationbalanceequations.Thisrequiresaknowledgeofthelocalprimary - and secondary radiation fields, which are calculated self-consistently by locally simulating o theindividualprocessesofionizationandrecombination.Thestructureandthecomputational r t methodsusedintheMocassincodearedescribedinthispaper. s a Mocassin has been benchmarkedagainst established one-dimensionalspherically sym- : metriccodesforanumberofstandardcases,asdefinedbytheLexington/Meudonphotoion- v ization workshops(Pe´quignot1986; Ferlandetal. 1995; Pe´quignotetal. 2001). The results i X obtainedfor the benchmarkcases are satisfactory and are presentedin this paper. A perfor- manceanalysishasalsobeencarriedoutandisdiscussedhere. r a Keywords: HIIregions–planetarynebulae:general–ISM:abundances–atomicprocesses 1 INTRODUCTION more ions in calculations. Mendoza (1983) presented a compila- tion of radiative and collisional data for collisionally excited ul- Amongstthefirstnumericalmodelsforphotoionizedgaseousneb- traviolet, optical and infrared lines which was widely adopted, ulae were those calculated by Flower (1968), Harrington (1968) withsomeofthesedatastillinusetoday,thoughmosthavebeen and Rubin (1968). These early models included the basic phys- sepercededbymorerecentcalculationssuchastheR-matrixcalcu- ical processes of ionization and recombination of hydrogen and lations of the Iron Project (Hummeretal. 1993) and the Belfast helium, thermal balance and escape of the emitted photons from group (e.g. McLaughlin&Bell 1998; Ramsbottometal. 1998). the nebula. However, the lack of reliable atomic data heavily Currently, radiative and dielectronic recombination rates are still limited the success of these models, as well as the fact that highly uncertain or unavailable for some ions; recent efforts to a number of important physical processes, such as charge ex- improve the situation have been reviewed by Nahar&Pradhan change and dielectronic recombination (Aldrovandi&Pe´quignot (1999) and Nahar (2000). Most photoionization models include 1973;Pe´quignotetal.1978;Storey1981),werenotaccountedfor temperature-dependentanalyticalfitstotheserecombinationrates, atthetime. Theevolution of photoionization modelling hasgone such as those of Aldrovandi&Pe´quignot (1973) for radiative handinhandwithadvancesmadeinatomicphysicsandcomputer and high temperature dielectronic recombination, and those of technology. Theapplicationofphotoionization modelstoawider Nussbaumer&Storey(1983)forlowtemperaturedielectronicre- rangeofionshasbeenaidedbythephotoionizationcross-section combination. calculationsbyReilman&Manson(1979),and,morerecently,the OpacityProject(Hummeretal.1993).Compilationsbasedonthe Available computer power has increased enormously since latter’s data (e.g. Verner&Yakovlev 1995), have made possible the dawn of photoionization modelling. This has allowed more theinclusion of accurate photoionization cross-sections for many complexmodelstobebuilt,includingmoreions,morefrequency 2 Ercolanoet al. points, more linesand moreatomiclevels. Nevertheless, thefun- (Flanneryetal.1980;Boisse´1990),resonance-likescatteringinac- damental assumption of spherical symmetry has always been re- cretiondiscwinds(Kniggeetal.1995)andpolarizationmapsfor tained.However,aglanceatanimageofanyGalacticHIIregion the circumstellar envelopes of protostars (Fischeretal. 1994). In willimmediatelydemonstratethattheseobjectsareneitherspher- theexamples described above theabsorption andscattering coef- icallysymmetricnorhomogeneous.Inaddition,theyusuallyhave ficientsarenotcoupled totheradiationfieldand, therefore,these multipleexcitingstarslocatedatnon-centralpositionsintheneb- problemsdonotrequiresolutionbyiteration. ula.Bycontrast,planetarynebulae(PNe)haveonlyasingle,cen- However, Monte Carlo techniques have also been used for trallylocated,excitingstar.However,evenforPNe,sphericalsym- dust radiative equilibrium calculations for some time, see e.g. metry is not a realistic assumption, as demonstrated by observa- Lefevreetal. (1982), Lefevreetal. (1983) and, more recently, tionswithinstrumentssuchastheHubbleSpaceTelescope,which Wolfetal.(1999).Theseauthorsuseatechniqueinwhichstellar revealanoverwhelmingvarietyintheshapesofplanetarynebulae. and diffuse photon packets are emittedseparately; thenumber of Theseobjectsareveryrarelycircularinprojection;arecentstudy diffuse photon packets (i.e.packets emittedby thedust) isdeter- inferredthatabout50%ofallknownplanetarynebulaearelowec- minedbythedust graintemperature, whichinturnisdetermined centricityellipticals,whileonlyabout10%arecircularinprojec- bythebalancebetweenthenumberofabsorbedandemittedphoton tion,withtheremainderhavingmoreextremeellipticalorbipolar packets.Aninitialguessforthedustgraintemperatureisprovided geometries(Soker1997,2001).Someobjects,forexamplethetwo bythenumberofpacketsabsorbed,andtheiterationcontinuesun- youngplanetarynebulaeHe2-47andPNM1-37,(alsodubbedthe tilthe grain temperatures converge. Using this method the stellar starfishtwins;Sahai2000),show evenmorecomplicatedgeome- luminosityisnotautomaticallyconservedduringtheMonteCarlo tries,withmultiplelobes.OtherPNehaveFLIERs(fast,lowion- simulation;onlyafterthegraintemperatureshavereachedconver- ization emitting regions; Balicketal. 1993, 1994, 1998), BRETS genceisthestellarluminosityapproximatelyconserved.Thecon- (bipolar,rotating,episodicjets;e.g.Lopezetal.1993),ansae,jets, vergenceofsuchcodesisoftenveryslowandrequiresalargenum- knots, filaments, tails or multiple envelopes. (see e.g. Perinotto berofiterationsandsimulationquantainordertoreachtherequired 2000;Corradietal.1999;Garc´ia-Segura1997). accuracy. To our knowledge, only two three-dimensional photoioniza- Bjorkman&Wood(2001)havedescribedageneralradiative tioncodeshavebeendevelpedsofar,onebyBaesgenetal.(1990) equilibriumandtemperaturecorrectionprocedureforuseinMonte and the other by Gruenwald, Viegas&de Broguiere (1997). The Carlo radiative transfer codes having sources of temperature- firstcodeusedafixednumberofequallysizedcellsandtheon-the- independent opacity, such as dust. Their technique makes use of spotapproximationforthediffuseradiationfield,withonlythesix informationnaturallygivenbytheMonteCarlomethod,which,by more abundant chemical elements being taken into account. The tracking every photon/energy packet, makes it easy to determine work by Gruenwaldetal. (1997) improves on this by allowing a whereinthesimulationgridenergyisbeingabsorbed. Whenen- more flexible spatial grid and by using an iterative technique for ergyisdepositedatagivenlocation,followingapacket’sabsorp- thedeterminationofthediffusefieldandalsobyincludingtwelve tion, the local medium is heated. Whenever this occurs the new chemicalelementsinthesimulations. local temperataure iscalculated and thepacket isthen re-emitted Since most existing one-dimensional photoionization codes accordingly.Thepacketsarefollowedintheirpaththroughthere- are based on the numerical solution of the equations of radiative gion,astheyundergo scatteringsandabsorptionsfollowedbyre- transferassumingsphericalsymmetry,theirexpansiontothreedi- emissions, with the temperatures being updated after each event, mensions can be either very difficult or impractical, resulting in untilthepacketsreachtheedgeofthenebulaandescapetoinfinity, verylargecodes.TheMonteCarloapproachtotransferproblems hence contributing tothe emergent spectrum. Once all the stellar providesageometry-independent techniquewhichcanhandlethe photon packets have escaped, the resulting envelope temperature radiation transport problem self-consistently. With this in mind, andtheemergentspectrumarecorrectwithouttheneedofanyfur- the Mocassin code (MOnte CArlo SimulationS of Ionised Nebu- theriterations. lae)wasdeveloped, inordertoprovideathree-dimensional mod- A great limitation of Bjorkman & Wood’s method is that it ellingtool capable of dealingwithasymmetric and/or inhomoge- cannotbeappliedtosituationswheretheopacitiesaretemperature- neous nebulae, as well as, if required, multiple, non-centrally lo- dependent, as is the case in photoionized nebulae. There are two catedexcitingstars. reasonsforthefailureofthismethodwhentheopacityvarieswith Section 2contains a description of thegeneral Mocassin ar- the local temperature: firstly, the number of photon packets ab- chitecture and of some of the main computational methods used sorbedbythecellpriortoatemperatureupdatewouldbeeithertoo in the code. The code has been benchmarked against established small or too large, and, secondly, achange in temperature would spherically symmetricone-dimensional photoionization codes for alsoimplyachangeoftheinteractionlocationsofpreviouspack- a set of standard nebulae and in Section 3 we present the results ets,signifyingthatthepathsofthepreviousphotonpacketsshould ofthisbenchmarking,togetherwithaperformanceanalysisofthe havebeendifferent.While,itisclearthat,whendealingwithpho- codes.Insection4wediscusstheresultsofthebenchmarkingand toionised gas, Bjorkman & Wood’s technique is not applicable, presentsomegeneralguidelinesonhowtorunthecodeefficiently. their work is nevertheless very enlightening and should be taken intoaccountforfurtherdevelopmentsoftheMocassincode,when atreatmentfordustgrainswillbeintroduced. ArecentexampleoftheapplicationoftheMonteCarlotech- 2 DESCRIPTIONOFTHEMONTECARLOCODE nique to problems requiring solution by iteration is the work of Lucy(1999),whoobtainedthetemperaturestratificationandemer- 2.1 Background gentspectrumofanon-greysphericallysymmetricextendedstel- TheMonte Carlomethod hasbeenwidelyappliedtoavarietyof laratmosphereinLTE.Hisresultsshowverygoodagreementwith astrophysical problems, such as the penetration of ultraviolet ra- thepredictionsofCastor(1974),hencedemonstratingthevalidity diation into the interiors of uniform or lumpy, interstellar clouds of the Monte Carlotechniques applied, someof which werealso Mocassin 3 usedinthedevelopmentofMocassin.Thecurrentworkfolowsthe 2.3 Initiation approach described by Lucy (1999) and also applied in the one- In our modelling the gaseous region is approximated by a three- dimensional code developed by Och, Lucy & Rosa (1998). They dimensional Cartesian grid, where the ionising source can be employedadifferentMonteCarlotreatmentoftheradiativetrans- placedatthecentreofthegridoranywhereelseinthegrid.This ferinordertoiterativelydeterminethetemperatureandionisation feature is very useful when dealing with axisymmetric nebulae, stratification for a spherically symmetric photoionised nebula of since,byplacingthesourceinacornerofthegrid,weneedonly uniform density. Some of the techniques that they used are also consideroneeighthofthenebula,whichcanthenbereconstructed describedindetailbyLucy(1999,2001,2002).Thebasicconcept infullattheendofthesimulation.Thisallowstherunningofmod- isthat, when calculating radiative equilibrium temperatures, con- elswithmuchhigherspatialresolutionthanthosewhichwouldbe servation of stellar luminosity is more important than the details possibleifafullnebulahadtobeconsidered,byputtingthesource ofthespectralenergydistribution.Withthisinmindconservation inthecentreand,therefore,notmakinguseofanysymmetryprop- of stellar luminosity is enforced by using energy packets of con- ertiesof theobject. Switchesbuilt inside the code allow the user stantnetenergythroughoutthesimulations.Moreover,allabsorbed tospecifywhetherthenebulahassomedegreeofsymmetryand,if packets are re-emitted immediately after every absorption event. so,whetherthesymmetryistobeused. The frequencies of the re-emitted energy packets are determined Insideeachgridcellallnebular properties,suchasthemass bythelocal gasemissivities. Although thefrequency distribution densityofthegas,ρ;theelectrontemperatureanddensity,T and ofthere-emittedpacketswillnotbecorrectuntilthenebulartem- e N ; and the frequency dependent gas opacity and emissivity, κ peratureshaveconverged,thismethodnaturallyenforcesradiative e ν andj ,areconstantbydefinition.Thermalbalanceandionisation equlibrium at each point in the nebula and so naturally provides ν equlibriumareimposedineachgridcellinordertoobtainthephys- conservationofenergy.Thisnotonlyresultsinasimplercodebut icalconditionsinthelocalgas. also makes the convergence of the gastemperatures easier (Lucy The energy packets are created at the position of the ionis- 1999, 2001). Energy packets will be discussed in more detail in ingsource andtheyall carrythesameenergy ε ,asdiscussed in section 2.2. 0 the previous section. The frequency, ν, of each individual packet emittedisderived fromtheinput spectrum oftheionisingsource accordingtotheprobabilitydensityfunction 2.2 EnergyPackets F dν F dν p(ν)= ν = ν (3) Tsihstesmofalioncparlliyncsiipmleuloaftionugrthtreeaintmdievnidtuoaflaprpohcoetsosieosnoizfeidonniezbautiloancaonnd- RννmmianxFν′dν′ L∗/(4πR∗2) recombination. Theradiationfieldisthereforeexpressed interms whereFν isthestellarfluxandR∗isthestellarradius.Thisisthen ofenergypackets,ε(ν),whicharethecalculationquanta.ε(ν)isa theprobabilityofanenergypacketbeingemittedwithafrequency packetconsistingofnphotonsoffrequencyνsuchthat lyingintheinterval(ν,ν +dν).Theupperandlowerintegration limits,ν andν ,havetobechosenproperly,dependingon min max ε(ν)=nhν (1) the input spectrum, in order to ensure that the bulk of the radia- tionisincludedinthefrequencyrange.Asthesourceemitsenergy Inaddition,wetakeallpacketstohaveconstantenergyε .There 0 isotropically,thedirectionoftravelofeveryenergypacketemitted areseveralreasonsforchoosingtoworkwithmonochromatic,in- is chosen randomly. This is done by choosing two random num- divisiblepacketsofradiantenergyinsteadofphotons.Firstofall, bers,αandβ,intheinterval [0,1],andcalculatingthefollowing energypacketsaremorecomputationallyeconomicand,also,since quantities: theyallhavethesameenergy,thenthosepacketsemittedinthein- fraredwillcontainalargernumberofphotonswhich,asaconse- w = 2α−1 quence,willnothavetobefollowedindividually(Abbott&Lucy t = 1−w2 1985).Notethatallenergypacketsarefolloweduntiltheyescape p θ = π(2β−1) the nebula, including infrared energy packets. This is in order to allow the introduction of dust particles into the radiative transfer u = tcosθ treatmentofMocassin,whichisplannedforthenearfuture.Also, v = tsinθ (4) asthetotalstellarluminosity,L∗,isevenlysplitamongstthestellar TherandomunitvectorinCartesiancoordinatesisthen(u,v,w) energy packets, the energy carried by a single packet in the time (Harries&Howarth1997). interval∆t,whichrepresentsthedurationoftheMonteCarloex- periment,isgivenby L∗ = ε0 (2) 2.4 Trajectories N ∆t Once a stellar packet is created at the source and launched into where N is thenumber of energy packets used in the simulation thenebula,itstrajectorymustbecomputedasitundergoesabsorp- (Ochetal. 1998). Most importantly, the use of constant energy tionsfollowedbyre-emissionsduetobound-freeandfree-freepro- packetsisanaturalwayofimposingstrictenergyconservationat cesses.Thetrajectoryendswhenthepacketreachestheedgeofthe anypointinthenebula(Lucy1999).So,whenapacketofradiant nebula,whereitescapestoinfinityandcontributestotheemergent energyε(ν ) = ε isabsorbed,itisimmediatelyre-emittedwitha spectrum. a 0 frequencyν ,whichisdeterminedaccordingtoafrequencydistri- Therearetwomethodstotrackthepacketsanddeterminethe e butionsetbythegasemissivityofthecurrentcell.Thepacketemit- locationsoftheabsorptionevents.Considerapacketoffrequency ted,ε(ν ),willthenhavethesameenergyastheabsorbedpacket, ν ,emittedinthedirectionuˆ.Thefirstofthesemethodsconsists e p ε(ν ), meaning that only the number, n, of photons contained in ofcalculatingtherunofopticaldepth,τ ,attheenergypackets’ a νp thepacketischanged. frequency ν , fromthelocationat whichthepacket isemittedto p 4 Ercolanoet al. theedgeoftheionisedregionalongthedirectionoftravel,uˆ.The energypackets(i.e.thosepacketsre-emittedimmediatelyafteran probabilityofabsorptionalongthatpathisthengivenby absorptionevent)needstobedetermined.Sinceabsorptionandre- p(τνp)=e−τνp (5) etemdisissoiotnroapriecatlwlyoainnddeptheenrdeefonrteevtheneitrs,dtihreecdtiifofnusoefptarcakveetlsiasrecheomseitn- andthenormalisedcumulativeprobabilityfunctionisgivenby randomlyusingequations4 P(l) = R0τν0∞p(le)−eτ−ντpνdpτdντpνp 2.5 TheMeanIntensity = 1−R e−τνp(l) (6) The success of a Monte Carlo model often relies on the careful choiceof appropriateestimators. MonteCarloestimatorsprovide where τ (l) isthe optical depth to theabsorption event and l is νp the means to relate the quantities we observe during our Monte the path length. The position at which the energy packet will be Carloexperimenttothephysicalquantitieswewanttodetermine. absorbed will then be determined by choosing a random number In a photoionization model, a measure of the radiation field is in the interval [0,1] and comparing it against P(l). In reality, it needed,namelythemeanintensity,J . ismoreconvenient tousetheinverseapproach, wheretheoptical ν IntheworkofOchetal.(1998),theMonteCarloestimatorof depth from the energy packet source to the event can be derived J isconstructed by usingthe definitionof the specificintensity, fromtheinverseofequation5 ν I ,insphericalcoordinates,(r,θ),asastartingpoint: ν τ (l)=−ln(1−U ) (7) νp R ∆E =I (r,θ)∆A|cosθ|∆ν∆ω∆t (9) ν whereU isarandom number intheinterval [0,1]. Onceτ (l) R νp has been calculated then the path length can be directly derived where∆Aisthereferencesurfaceelement,θistheanglebetween (Harries&Howarth1997). thedirectionoflightpropagationandthenormaltothesurface∆A ThesecondmethodwassuggestedbyLucy(1999)anditcon- and∆ωisthesolidangle.Themeanintensitycanthenbeobtained sists of testing whether an absorption event occurs, on a cell by fromthisbycalculatingthezeroordermomentofIν,whichgives cell basis. Inother words, assume that, withineach uniform cell, therandompathofapacketbetweeneventsisgivenbyequation7, 4πJ (r)= I dω= ∆E Nk 1 1 1 (10) whichcorrespondstoaphysicaldisplacement,l,givenby ν ZΩ ν ∆t Xi=1 cosθi∆A∆ν τνp =κνρl (8) bycomparisonwithequation9.ThesumisoverallpacketsNkwith frequencylyingintheinterval(ν,ν+dν),crossing∆Aatanangle whereκ andρarethefrequencydependentabsorptioncoefficients ν θ.Asdiscussedabove,∆E/∆trepresentstheenergycarriedbya and the density of the current cell respectively. The method then singlepacketinthetimeinterval∆t,since∆E = ε ,whichis consists of checking whether the displacement l is large enough 0 givenbyequation2.Equation10thenprovidesarelationbetween to carry the packet out of its current cell. If this is the case, the the Monte Carlo observables (i.e. the number of energy packets packetismovedalongitsdirectionoftravel,uˆ,uptotheboundary withfrequencylyingintheinterval(ν,ν +dν),crossing∆Aat withtheadjacentcell,whereanewvalueforU iscast,givinga R angleθ andthemeanintensityoftheradiationfield,whichisthe newτ ,andanyfurthermovementofthepacketinthisnewcell νp requiredphysicalquantity. istobe followed. Alternatively, if the displacement l isnot large Theuseof Ochet al.’sestimatorsfor J ,however, becomes enough to carry the energy packet across the next boundary, the ν problematicinthenon-sphericallysymmetriccase,sincetherefer- packetwillbeabsorbedandthenre-emittedattheend-pointofthe encesurfaceforthevolumeelementsinanarbitrarytwo-orthree- displacement.Lucyalsoclarifiesinhispaperthattheselectionofa dimensionalcoordinatesystemmightnotbeuniqueorasobvious newvalueofτ atthecrossingofaboundarydoesnotintroduce νp as in the one-dimensional case. In our work, a more general ex- abiassinceaphotonalwayshasanexpectedpathlengthtoitsnext pressionfortheestimatorofJ issought,and,therefore,following eventcorrespondingtoτ = 1,regardlessofthedistanceitmight ν ν Lucy’sargument (Lucy1999), anestimator for J isconstructed alreadyhavetravelled. ν startingfromtheresultthattheenergydensityoftheradiationfield Inthisworkbothmethodswereimplementedinthecode,in inthefrequencyinterval(ν,ν +dν)is4πJ dν/c.Atanygiven turn,inordertotesttheirrespectiveperformances.Thefirstmethod ν time,apacketcontributesenergyε(ν)=ε tothevolumeelement provedtobemuchmorecomputationally expensive thenthesec- 0 whichcontainsit.Letlbeapacket’spathlengthbetweensucces- ond. Thisisdue tothefact that, inorder totrackdown theposi- siveevents,wherethecrossingofcellboundariesisalsoconsidered tionat whichanenergy packet isabsorbed, usingour knowledge anevent;thecontributiontothetimeaveragedenergycontentofa of τ (l), an array searching routine has to be used to locate the νp volumeelement,duetothelfragmentsoftrajectory,isε δt/∆t, indexofτ (l)withinthearrayofopticaldepthscalculatedfrom 0 νp whereδt = l/c.Fromthisargumentitfollowsthattheestimator thepacket’ssourcetotheedgeofthenebula.Althoughthesearch- forthevolumeelement’senergydensitycanbewrittenas ingprocedureemploysabisectiontechnique,whichmakesitquite efficient,thelargenumberofcallstoit,duetothelargenumberof 4πJ dν ε 1 l ν = 0 (11) energy packet interactions withinasimulation, means that nearly c ∆tV c X 60%oftheruntimeisspentcarryingoutthesesearches.Thesec- dν ondmethoddoesnotrequireanycallstothearraysearchingrou- whereV isthevolumeofthecurrentgridcellandthesummation tine, asthepackets arefollowed stepby stepthrough thenebula, isoverallthefragmentsoftrajectory,l,inV,forpacketswithfre- and this results in the run time being considerably reduced. The quencieslyingintheinterval(ν,ν+dν).Again,arelationbetween currentversionofMocassinthereforeusesLucy’sappoachtotrack MonteCarloobservables(i.e.theflightsegments,l)andthemean theenergypacketsthroughoutthenebula. intensity of the radiation field, J has been obtained. Moreover, ν Finally, the direction of travel of the newly emitted diffuse equation 11 is completely independent of the coordinate system Mocassin 5 used and, indeed, of the shapes of the volume elements, V. An- estimatedas a function of temperature using the data of Robbins otherimportantaspectofthisapproachisthatallpacketspassing (1968).Thecontributionsduetotheselinestothetotalenergydis- throughagivengridcellcontributetothelocalradiationfieldeven tribution,fromwhichtheprobabilitydensityfunctionsarederived, withoutbeingabsorbed;thismeansthatequation11returnsestima- areaddedintotherespectiveenergybins.Similarly,He II Lyman torsoftheradiationfieldevenintheextremelyopticallythincase linescanionizebothneutralhydrogenandneutralhelium,aswell when all packets pass through the nebula without any absorption assomeofthelowionsofheavierelements.Thereforetheemissiv- events.Fromthisargumentitfollowsthatthistechniqueallowsa itiesofHeIILymanlineswithupperlevelsfromn=2throughn=5 muchbetter samplingand, hence, ingeneral, muchlessnoisy re- (fits to Storey&Hummer 1995) are also estimated as a function sultscomparedtoothertechniquesbasedonestimatorsforwhich oftemperatureandtheircontributionstothetotalenergydistribu- onlypacketsabsorbedwithinagivenvolumeelementcount. tionaddedintotherespectivefrequencybin,asfortheHeIlines. Thismethodisbasedonthefactthatallemissionprofilesarecur- rentlytreatedasδ functionsandthelineopacityisassumedtobe 2.6 Gasemissivityandthediffusionofenergypackets zero;andtheabsorptionofenergypacketsisonlyduetothecontin- uumopacity.Finally,theemissivitiesofthecollisionallinesofthe Aswehavealreadydiscussedinprevioussections,afteranenergy heavierionsarecalculated.Thisisdonebyusingmatrixinversion packetisabsorbed,anewpacketisre-emittedfromthesameloca- procedures inorder tocalculatethelevel populations of theions. tioninarandomdirection.Thefrequencyofthere-emittedpacket Appendix1containsreferencesfortheatomicdatausedforeach iscalculated by sampling the spectral distribution of the total lo- calemissivity,jtot.Inordertosatisfythethermalbalanceimplied ion. ν The energy distribution is derived from the total emissivity, by the Monte Carlo model, all major emission processes have to summing over all the contributions in a particular frequency in- betakenintoaccount, includingthecompletenon-ionizing nebu- terval.Thenon-ionizinglineemissionistreatedseparately,since, larcontinuumandlineemission,sincetheyarepartoftheenergy wheneversuchlinepacketsarecreated,theyescapewithoutfurther budget. The non-ionizing radiation generated in the nebula isas- interaction1. sumedtoescapewithoutfurtherinteractionandconstitutestheob- Once the line and continuum emissivities have been calcu- servablespectrumwhichcanthenbecomparedwithobservations. lated, the probability that the absorption of an ionizing energy Thefollowingparagraphsareconcernedwiththedescriptionofthe packet willbefollowedbytheemissionof anon-ionizing packet individualcontributionstothetotalemissivity. isgivenby: ThecontinuumemissionduetoHI,HeI,HeIIandtoheavier ions is included. The H I continuum can be divided into the Ly- jl + νHjcdν man continuum, which iscapable of ionizing H, andthe Balmer, Pesc = jl + Pjil Xi+ R0jl ν+ νmaxjcdν (13) Paschen, etc. continua, whicharenotcapable ofionizingH.The i Xi HeI HeII 0 ν P P P R emissivity in the Lyman continuum is calculated directly from a whereν isthehigherlimitofthefrequencygrid;thejl arethe max Xi combinationoftheSahaandMilnerelations: emissivitiesofthenon-ionizingrecombinationlinesofallspecies jν = hcν23ωωi+i1(2πmh2kTe)3/2aν(Xi)e−h(ν−ν0)/kTeXi+1Ne(12) cjHolneIsidanerdedj;HljeIνcIiasrethethefrecqounetrnicbyutdioenpsenddueenttocotnhtoisneuurmecoemmbisinsiavtiitoyn; linesof He I and He II whicharecapableof ionizing neutral hy- whereω andω arethegroundstatestatisticalweightoftheions i i+1 drogenandneutralhelium.Thechoicebetweenthere-emissionof involved, Xi+1 isthe abundance of the recombining ion, aν(Xi) anionizing photon or anon-ionizing oneismade at thispoint in isthephotoionization crosssection and ν isthephotoionization 0 thecode. threshold.Theemissivityoftheotherseriescontinuaareobtained Ifanionizingenergypacketistobere-emitted,thenthenew by interpolation of published data (Ferland 1980). A similar ap- frequencywillbecalculatedaccordingtothenormalisedcumula- proach is used for the He I and the He II continua, where for tive probability density function for the ionizing radiation, given frequenciesgreaterthan1.8Rydand4.0Ryd,respectively, equa- by tion 12 is used, and the emissivities at lower frequencies are ob- t(ra1iei9ns7.e0Td)hbfeyocrinottnheteripnHoulueamtIiosenemroiiefssstihavenitddyabotayfphFueebarvlliaysnhedelde(m1b9ye8nB0ts)roifswoarnlst&hoecMaHlacetutIhlIaetsweeds- p(ν)= νRνHνmνHaxjνcj′νcd′νd′ν+′+PjHljeHlIe+I+PjHljeHlIeIII (14) R P P usingequation12.Inthehydrogeniccase(i.e.HIandHeII),the where,asusual, thecontributions duetotheHe I andHe II lines two-photoncontinuumiscalculatedusingtheformalismdescribed are added in the corresponding frequency bins. If a non-ionizing byNussbaumer&Schmutz(1984);thedataofDrakeetal.(1969) energypacketistobere-emitted,thenitsfrequencymustbedeter- areusedfor He I.Recombination linesbetweenlower levelsn=2 minedfromtheprobabilitydensityfunctionfornon-ionizingradia- through8andupperlevelsn=3through15,forHI,andlowerlev- tiveenergy,whichisanalogoustoequation14. elsn=2through16andupperlevelsn=3through30forHeII,are calculatedasafunctionoftemperatureaccordingtothecaseBdata 2.7 TheIterativeProcedure published by Storey&Hummer (1995). The He I recombination linesarecalculatedasafunctionoftemperatureusingthedataof Aninitialguessofthephysicalconditionsinthenebularcells,such Benjaminetal.(1999).Ingeneral,HeIsingletlinesfollowCaseB astheionizationstructure,electrontemperatureandelectronden- whereastripletlinesfollowCaseA(asthereisnon=1levelforthe triplets).Transitionstothe11SgroundstateofHeIproducelines 1 Resonancelineslongwardof912A˚ (e.g.CIVλλ1548,1550)may,infact, whicharecapableofionizingHandlowionizationstagesofhigher diffuseoutofthenebulaviaresonantscatteringandmayalsobeabsorbed elements. In particular, the emissivities of the He I Lyman lines bydustduringsuchdiffusion.Atreatmentofdustgrainswillbeincluded fromn=2throughn=5(Brocklehurst1972)andtheintercombina- infuturedevelopmentsoftheMocassincode,andsucheffectsmaythenbe tionlinescorrespondingtothetransitions23S-11Sand23P-11Sare accountedfor. 6 Ercolanoet al. sity,needstobespecifiedbeforethesimulationcanbegin.Proce- dances given by the final converged model solution to obtain the duresinMocassinhavebeenconstructedsuchthatonlyaninitial lineemissivitiesforeachgridcell.Theluminosityofthenebulain guessattheelectrontemperature(whichisinitiallysettoaconstant anygivenlinecanthenbecalculatedeasilybysummingtheemis- valuethroughoutthenebula)mustbeincludedintheinputfile.Mo- sivityoftherequiredlineoverthevolumeofthenebula. cassincanthenguessaninitialionizationstructureand,hence,the Acomparison oftheresultsobtainedusingthetwomethods electrondensity.However,iftheoutputofaonedimensionalmodel described above, provides an indication of the level of accuracy (oracombinationofmorethanoneofthem)isavailable,thereare achievedduringthesimulation,asthetwomethodswillgivecon- also procedures built into Mocassin to map these onto the three- sistentresultsonlyifenoughenergypacketshavebeenusedtoyield dimensionalCartesiangrid,byusingsimpleinterpolationroutines. good statisticsforevery line.Ingeneral, thesecond method (for- Aone-dimensionalmodeoptionwasimplementedinMocassinfor malsolution)yieldsthemostaccurateresults,particularlyforweak thispurpose.Severaltestshaveshownthatwhilethechoiceofthe lines,whichmayemit relativelyfewphotons. Forthebenchmark initialconditionshas,ofcourse,noinfluenceonthefinalresultof casespresentedhere,reasonableaccuracywasdeemedtohavebeen the simulation, it can, however, have an inpact on the number of achievedwhenthefluxesofthestrongesttransitionsobtainedusing iterationsrequiredtoreachconvergence. Itishardtoquantifythe thepureMonteCarlomethodwerewithin10%ofthoseobtained numberofiterationsrequiredforconvergencebyeachmethod,in using the formal solution. Bothmethods can also be used tocal- particular,itdependsstronglyontheinitialtemperatureinputused culate line of sight results and to simulate long-slit observations. inthefirstmethod,and,whenapplyingthesecondmethod,onthe However,justasforthecalculationoftheintegratedspectrum,the deviationof theactual three-dimensional geometry fromthesim- formalsolutionmethodistobepreferred,asityieldsthemostac- plifiedone-dimensional model used. However, withsufficient en- curateresults,particularlyfortheweakerlines. ergypackets,thebenchmarkmodelsdescribedhereshouldbefully Inadditiontotheintegratedemergentspectrum,otheruseful convergedinapproximatelyfifteentotwentyiterations.Astrategy comparisonswiththeobservationscanbecarriedout,e.g.projected tospeedupthesimulationsisdescribedinSection3.1. imagesofthefinalmodelnebulainagivenlineoratagivencon- Oncetheinitialconditionsarespecified,thefrequencydepen- tinuum frequency can be produced for arbitrary viewing angles. dent total emissivities are calculated in each grid cell in order to These can be compared directly with nebular images obtained in set up the probability density functions for re-emitted radiation, an appropriate filter. Mocassin computes and stores the physical whichareusedforthedeterminationofthefrequencydistribution properties of the nebula, as well as the emissivities of the gas at of the re-emitted energy-packets during the Monte Carlo simula- eachgridpoint;thesecanbefedintoIDLplottingroutinesinor- tion.Theenergy packets arethen firedthrough thegridand their dertoproducemaps(Morisset etal.,2000). Also,byassuminga trajectoriescomputed.Oncealltheenergypackettrajectorieshave velocityfield,linespectralprofilescanbeproduced,togetherwith been computed, the Monte Carlo estimators for the mean inten- position-velocitydiagrams.Thesecanbecomparedwithobserva- sityofthestellarandthediffuseradiationfieldscanbeobtained, tions,ifavailable,todeducespatio-kinematicinformationaboutthe as described in Section 2.5. The ionization fraction and the elec- objectbeingstudied.MoreinformationabouttheoriginalIDLrou- tron temperatures and densities must now be updated to be self- tinesisgivenbyMorissetetal.(2000)andMonteiroetal.(2000). consistent withthecurrentestimatesoftheradiationfieldateach DetailsoftheactualapplicationtoMocassin’sgridfilesareavail- gridpoint.Thismeanssolvingthelocalionizationbalanceandther- ableinacompanionpaperonthemodellingoftheplanetarynebula malequilibriumequationssimultaneously.Theentireprocedureis NGC3918(Ercolanoetal.2002,PaperII). repeateduntilconvergengeisachieved.Theconvergencecriterion At theend of each Monte Carloiterationthephysical quan- that is used in this work is based on the change of the local hy- titieswhichcharacterisethegridarewrittenouttodiscintothree drogenionizationstructurebetweensuccessiveiterations.Insome files,namelygrid1.out,grid2.outandgrid3.out.Thefirstfilecon- cases,however,thisisnotasuitableconvergencecriterion(e.g.in tainsthelocalelectrontemperatureanddensityaswellasthegas hydrogen-deficientenvironments),forthisreason,othercriteriaare densityateachgridcell,thesecondtheionizationstructureofthe alsoimplementedinthecode(e.g.basedonthechangeofthelo- nebulaandthethirdanumberofmodelparameters,includingthe calheliumionizationstructure,orofthelocalelectrontemperature numberofenergypacket tobeusedinthesimulation.Thesefiles betweensuccessiveiterations),andthesecanbeeasilyselectedby areusedinconjuctionwithawarmstartdriver,whichallowsanin- usingtheappropriateswitchesintheinputfile. terruptedsimulationtoberesumedfromtheendofthelastMonte Carlosimulation.Thismeansthatonceasimulationhasbeeninter- ruptedthenumberofenergypacketsused(andindeedothermodel 2.8 ComparisonoftheModelwithObservations parameters, if required) can be adjusted, before the simulation is Whenthemodelhasconvergedtoitsfinalsolution,theoutputspec- restarted,bymodifyingthefilegrid3.out.Thisfeaturecanbeused trumcanbecomputedandcomparedwiththeresultsobtainedfrom tospeedupthesimulationsbyusingthefollowingapproach.The other models or with observational data. The total luminosity of firstfewiterationsarerunusingalowernumberofenergypackets the nebula emitted in various emission lineslongward of the Ly- thanactuallyneeded;so,forexample,iftheoptimumnumberofen- manlimitcanbeobtainedbyusingtwomethods.Thefirstmethod, ergypacketsforagivenmodelis106,thenthefirstfewiterations whichisonlyavailabletoMonteCarlocodes,consistsofsumming canbecarriedoutusingonly105 packets,hencereducingtherun upthenumberofenergypacketsinthegivenline,N ,overthe timeforthesebyafactoroften.Thiswillresultinabout50%-60% line gridcells.Hence,thepoweremittedinthelineisgivenby of the grid cells converging; in general, the inner cells converge morequickly,duetothelargernumberofsamplingunitsavailable ε imaxjmaxkmax there(due mainlytogeometrical dilutionand tothe reprocessing L = 0 N (x ,y ,z ) (15) line ∆t line i j k ofenergypacketstonon-ionizingenergypackets).Atthispointthe X X X i=1 j=1 k=1 simulation isinterrupted and then resumed, after having adjusted where ε0 isgiven byequation 2.Thesecond methodconsistsof thenumberofenergypacketstothefinalrequiredvalue(i.e.106, ∆t usingthevaluesofthelocalelectrontemperatureandionicabun- inthepreviousexample).Finalconvergencewillthenbeachieved, Mocassin 7 inmostcases,withinfourorfivefurtheriterations.Theactualnum- Table1.Lexington2000benchmarkmodelinputparameters. berofiterationsrequireddependsonthenumberofenergypackets used: the larger the number of sampling quanta available at each Parameter HII40 HII20 PN150 PN75 cell,thequickerthecellswillconvergetoasolution.Thenumbers quotedabove,however,alsodependoneachparticularmodel’sge- L(BB)/1037(esregc) 308.2 600.5 3.607 1.913 ometryandopticalthickness. T(BB)/103K 40 20 150 75 Rin/1017cm 30 30 1 1.5 nH/cm−3 100 100 3000 500 He/H 0.10 0.10 0.10 0.10 2.9 GeneralArchitecture C/H×105 22. 22. 30. 20. TheMocassincodewaswrittenusingtheFortran90programming N/H×105 4. 4. 10. 6. language. The code was developed and run initially on a Com- O/H×105 33. 33. 60. 30. paq(Dec)XP1000witha500MHzCPUand1Gbofmemoryand Ne/H×105 5. 5. 15. 6. Mg/H×105 - - 3. 1. apreliminaryserialversionof thecodestillexists.Afullyparal- Si/H×105 - - 3. 1. lel version of the code has since been developed using Multiple S/H×105 0.9 0.9 1.5 1. ProcessesInterface (MPI) routines and itcurrently runs onaSil- iconGraphicsOrigin2000machinewith24processors and6Gb ofmemoryandaSUNMicrosystemsSunfireV880machinewith ElementalabundancesarebynumberwithrespecttoH. 16processorsand64Gbofmemory.MonteCarlosimulationsare, bytheirnature,veryparallelizableproblemsand,indeed,Mocassin canachievealinearspeed-up, i.e.aspeed-up thatisdirectlypro- codeandRubin’sNebula,treatthediffuseradiativetransferexactly. portionaltothenumberofprocessorsused.Adetaileddescription Theothersusesomeversionsoftheoutward-onlyapproximationof of all the Mocassin modules, input commands and output filesis varyingsophistication.Inthisapproximationalldiffuseradiationis givenbyErcolano(2002,PhDThesis).Acopyofthecodeisavail- assumedtobeemittedisotropicallyintotheoutwardhalfofspace. ablefromtheauthor([email protected])togetherwiththerelevant Thepredictedlinefluxesfromeachcodeforeachbenchmark thesischapters. casearelistedinTables4to7,togetherwiththevolume-averaged mean electron temperature, weighted by the proton and electron densities, N N , <T[N ,N ] >, the electron temperature at the p e p e inneredgeofthenebula,T ,andthemeanratiooffractional inner 3 APPLICATIONTOBENCHMARKCASES He+ to fractional H+, <He+>, which represents the fraction of <H+> Numerical simulationsofphotoionized nebulaeareverycomplex helium in the H+ region that is singly ionized. <T[NH+,Ne] > andanumberoffactors,suchasnumericalapproximationsandas- and <He+> are calculated according to the following equations sumptions, and thecomplexity of thecalculation itself,introduce <H+> (Ferlandetal.1995) a degree of uncertainty into the results. For this reason, it is im- portant for modelers to have certain standards of comparison, in NeNpTedV <T[N ,N ]>= (16) ordertoidentifyproblemsintheircodesandtoreachanadequate p e R N N dV e p degree of accuracy in their calculation. A series of meeting have R and beenheld,beginninginMeudon,France,in1985(Pe´quignot1986) aagnadininiLne2x0in0g0to(nP,e´Kqueingtnuoctkey,tfialr.st2i0n011)9,9i5n(oFredrelarntdoedteafil.n1e9a95s)etanodf <<HHe++>> = nn((HHe))R NNeNNHe+dVdV (17) benchmarkcaseswhichcouldbeusedbyallphotoionizationmod- e p R elers to test their codes against. The benchmarks which resulted whereN andN arethelocalelectronandprotondensities, e p fromthesemeetingsinclude H II regions,planetary nebulae, nar- respectively,NHe+ isthedensityofHe+,andn(H)andn(He)are rowlineregions(NLRs)ofAGNsandX-rayslabs.Mocassindoes thetotalhydrogenandheliumdensities. nothave,atpresent,thecapabilitytotreatNLRsandX-rayslabs, Table1liststheinputparametersforallthebenchmarkmodels assomerelevantphysicalprocesses,suchasComptonheatingand dicussedhere.AllthebenchmarkcaseslistedinTable1werecal- innershellionization,arenotyetincluded.Forthisreason,onlythe culatedusingboththethree-dimensionalandtheone-dimensional HIIregionandplanetarynebulabenchmarksareperformedinthis mode of Mocassin and both sets of results are included here for work.Theexpansionofthecodetoincludehighenergyprocesses comparison. It is clear from Tables 4 to 7 that the results of the isplannedinthefuture. three-dimensional and one-dimensional modes of Mocassin are Resultsfromseveralothercodesareavailableforcomparison; consistentwitheachother.Thesmalldifferencesthatdoexistcan theseareallone-dimensionalcodesand,apartfromdifferencesin be entirely attributed to the coarseness of the grids used for the the atomic data used by each of them, their main differences lie three-dimensional calculations. Theaimof thebenchmarking de- inthetreatment of thediffuseradiationfieldtransfer.Abrief de- scribed in this work is toassess the reliabilityof Mocassin in its scriptionof each of these codesisgiven by Ferlandetal. (1995). fullythree-dimensionalmode,forthisreasontheone-dimensional Althoughthemajorityofthesecodeshaveevolvedsomewhatsince mode results will not be included in the following performance the1995Lexingtonmeeting,mostlyviatheupdatingoftheatomic analysis; moreover theinclusion of twosetsof resultsfromwhat data sets and the inclusion of more and specialised physical pro- is,essentially,thesamecodewouldintroduceabiasinthemedian cesses,theirbasicstructureshavestayedthesame.Thesevencodes andisolationfactorscalculationsdescribedbelow.Finally,toavoid includedforcomparisonareG.Ferland’sCloudy(GF),J.PHarring- anyconfusion,anymentionofMocassinthroughouttherestofthis ton’s code (PH), D. Pe´quignot’s Nebu (DP), T. Kallman’s XStar paperreferstothefullythree-dimensionalversionofthecode,un- (TK), H. Netzer’s Ion (HN), R. Sutherland’s Mappings (RS) and lessotherwisestated. R.Rubin’sNebula(RR).Onlytwoofthesecodes,theHarrington Figures1 and 2 show theelectron temperatures (toppanels) 8 Ercolanoet al. andthefractionalionicabundancesofoxygen(middlepanels)and Table2.Summaryofthenumberofenergypacketsneededfor>50%and carbon(bottompanels)forthefourbenchmarkcasesanalysed.The >95%convergence (seetextforexplanation) foreachofthebenchmark ionic abundances in every cell in the ionized region are plotted cases againstradialdistancefromthestar.Theseplotsareinterestingnot onlybecausetheyprovideaclearpictureoftheoveralltemperature andionizationstructureofeachmodel,butalsobecausefromthe Case τedge nx×ny×nz Npackets scatterofthedatapointsonecanestimatetheaccuracyofthefinal H0 He0 He+ >50% >95% results.(Notethatsuchplotsareonlymeaningfulinthespherically HII40 4.79 1.15 177.8 13×13×13 5·105 5·106 symmetriccase.) HII20 2.95 1.13 91.2 13×13×13 5·106 5·107 Fourbenchmarkmodelnebulaewerecomputed,twoHIIre- PN150 34.0 6.87 57.9 13×13×13 3·105 3·106 gionsandtwoplanetarynebulae.Thesebenchmarksweredesigned PN75 1.16 0.24 31.5 13×13×13 4·105 4·106 tobeuncomplicated yet totest differentaspectsof themodelling (seeFerlandetal.1995).Thenebulaearehomogeneousindensity and, for simplicity, blackbodies are used as the ionizing sources Table3.DeviationoftheMonteCarlomethodfromtheformalsolutionfor insteadofmodelstellaratmopheres. thepredictionofsomesignificantlinefluxesinthebenchmarkmodels. Following the analysis of Pe´quignot (see Pe´quignotetal. 2001), isolation factors, if’s, were computed for each predicted quantity in each case study. These are defined as the ratio of the Line HII40 HII20 PN150 PN75 largesttothepenultimatelargestvalueofagiven output quantity ortheratioofthepenultimatesmallestvaluetothesmallestvalue. Hβ 2.7% 9.5% 5.8% 2.8% These ratios are computed with the intention to identify aberrant HeI5876A˚ 5.2% 6.3% 0.96% 4.5% values.Alargeif canbeattributedtoanumberoffactors,butof- [NII]6584A˚ 7.6% 4.9% 8.5% 4.8% tenthesecanbeattributedtoadifferenceintheatomicdataused [OII]5007A˚ 3.1% 12.0% 4.0% 1.1% by each modeler. A list of the number of if’s larger than 1.01, [SIII]9532A˚ 5.8% 5.0% 2.0% 2.0% 1.03,1.10,1.30and2.00isgiveninTable8,foreachbenchmark. Afteranalysing thebenchmark resultsobtained byallthemodel- ers who participated in the Lexington workshop, Pe´quignotetal. requiredtoachieveagivendegreeofconvergence.Thereasonfor (2001)suggestedthatanisolationfactorlargerthan1.30isindica- thiseffectisthatinasofterradiationfieldcasethenumberofen- tiveofasignificantdepartureandapossibleproblem.Alargenum- ergypacketsemittedatwavelengthsshorterthantheLymanlimit berofoccurencesofif′s > 1.30shouldeitherhaveanacceptable will be less than in the case of a harder radiation field. A larger explanationorleadtocorrectionstothecode. total number of energy packets then needs to be used in order to Thenumberofresultsnotpredictedbyanygivencodeislisted obtainanumber ofionizingphotonsadequatetoproperlysample intheNopredrowofTable8.Pe´quignotetal.(2001)alsonoted,in thenebula.TheaimofTable2ismerelytoprovidesomegeneral theproceedingsoftheNovember2000Lexingtonmeeting,thatthe guidelinesforselectingtheappropriatenumberofenergypackets lackofapredictionforaparticularobservablemaysimplyreflecta foraparticularsimulation;however,asstatedbefore,theoptimum lackofinterestbythemodellerinit;ontheotherhand,afrequent numbershouldbedeterminedforeachgivenmodel,particularlyin occurenceofNopredmayalsoindicatelimitationsinthepredictive non-sphericallysymmetriccases. powerofagivencode. AsarguedbyPe´quignotetal.(2001),alargeerrorcanbein- troducedwhentheaverageoverasmallsamplecontaininganum- 3.2 BenchmarkResults berofaberrantvaluesistaken.Inordertominimisethiserror,me- The Lexington/Meudon Standard H II region model (HII40) was dianvaluesarecalculatedinsteadofaveragesandthesearegiven the first benchmark to be run and some very preliminary results foreachobservablelistedinTables4to7,inthecolumnlabelled have already been presented, at the November 2000 Lexington Med.ThemediansarecalculatedtotheprecisionshowninTables4 meeting (Ercolano 2001; Pe´quignotetal. 2001). However, those to7.Table9liststhenumberofmedianvaluesscoredbyeachcode resultswereproducedwhenMocassinwasstillunderdevelopment foreachbenchmark,i.e.thenumberoftimesthecodewastheclos- andshouldthereforeonlybeconsideredasasnapshotofthecode esttothemedianvalue.Whenamedianvalueissharedbytwoor at that particular stage. The code has evolved considerably since morecodesthescoreisgiventoeachone,thereforethesumofthe theNovember 2000 Lexington meeting and thenewer resultsare medianvaluesscoredbyallthecodesishigherthanthenumberof presentedinthissection(seeTable4). observables(thecolumnlabelledTotalinTable9). Table 3 shows the results of a comparison between the line fluxesobtainedbyMocassinusingtheformalsolutionmethodand thoseobtainedusingtheMonteCarlomethod(seeSection2.8)for 3.1 SamplingRequirements someofthemoresignificantlinesinthebenchmarkcases.Itisclear Table2liststheopticaldepthsattheionizationthresholdfrequen- thattheresultsshownagreewell;however,asexpected,largerdis- ciesforH0,He0andHe+,attheouteredgeofthegrids,forthefour crepancieswerefoundfortheweakerlines,whoselowernumbers benchmarkmodelsanalyzedhere.Foreachmodel,thenumberof ofenergypacketsyieldloweraccuracystatistics. gridpointsisalsogiven(column 5),together withthenumber of energy packets used, N , according to the two-step stategy packets described above, first toachieve convergence in50%-60% of the 3.2.1 TheHII40benchmark totalnumberofgridcells(> 50%,column6)andthentoachieve totalconvergence(>95%,column7).Table2showsthatthesofter Mocassinscoredeightif’s>1.01fortheHII40benchmarkmodel theionizingradiationfield,thelargerthenumberofenergypackets (Table 8); only three of these, however, had values greater than Mocassin 9 Table4.Lexington2000StandardHIIregion(HII40)benchmarkcasereults. Line Median GF HN DP TK PH RS RR BE 3-D 1-D Hβ/1037erg/s 2.05 2.06 2.02 2.02 2.10 2.05 2.07 2.05 2.02 2.10 Hβ4861 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 HeI5876 0.116 0.119 0.112 0.113 0.116 0.118 0.116 - 0.114 0.112 CII]2325+ 0.144 0.157 0.141 0.139 0.110 0.166 0.096 0.178 0.148 0.126 CII1335 0.082 0.100 0.078 0.094 0.004 0.085 0.010 - 0.082 0.084 CIII]1907+1909 0.070 0.071 0.076 0.069 0.091 0.060 0.066 0.074 0.041 0.041 [NII]122.µm 0.034 0.027 0.037 0.034 - 0.032 0.035 0.030 0.036 0.034 [NII]6584+6548 0.730 0.669 0.817 0.725 0.69 0.736 0.723 0.807 0.852 0.786 [NII]5755 .0054 .0050 .0054 .0050 - .0064 .0050 .0068 .0061 .0054 [NIII]57.3µm 0.292 0.306 0.261 0.311 - 0.292 0.273 0.301 0.223 0.229 [OI]6300+6363 .0086 .0094 .0086 .0088 .012 .0059 .0070 - .0065 .0080 [OII]7320+7330 0.029 0.029 0.030 0.031 0.023 0.032 0.024 0.036 0.025 0.022 [OII]3726+3729 2.03 1.94 2.17 2.12 1.6 2.19 1.88 2.26 1.92 1.75 [OIII]51.8µm 1.06 1.23 1.04 1.03 0.99 1.09 1.06 1.08 1.06 1.09 [OIII]88.3µm 1.22 1.12 1.06 1.23 1.18 1.25 1.23 1.25 1.22 1.26 [OIII]5007+4959 2.18 2.21 2.38 2.20 3.27 1.93 2.17 2.08 1.64 1.70 [OIII]4363 .0037 .0035 .0046 .0041 .0070 .0032 .0040 .0035 .0022 .0023 [OIV]25.9µm .0010 .0010 .0010 .0010 .0013 .0013 .0010 - .0010 .0010 [NeII]12.8µm 0.195 0.177 0.195 0.192 - 0.181 0.217 0.196 0.212 0.209 [NeIII]15.5µm 0.322 0.294 0.264 0.270 0.35 0.429 0.350 0.417 0.267 0.269 [NeIII]3869+3968 0.085 0.084 0.087 0.071 0.092 0.087 0.083 0.086 0.053 0.055 [SII]6716+6731 0.147 0.137 0.166 0.153 0.315 0.155 0.133 0.130 0.141 0.138 [SII]4068+4076 .0080 .0093 .0090 .0100 .026 .0070 .005 .0060 .0060 .0057 [SIII]18.7µm 0.577 0.627 0.750 0.726 0.535 0.556 0.567 0.580 0.574 0.569 [SIII]33.6µm 0.937 1.24 1.43 1.36 0.86 0.892 0.910 0.936 0.938 0.932 [SIII]9532+9069 1.22 1.13 1.19 1.16 1.25 1.23 1.25 1.28 1.21 1.19 [SIV]10.5µm 0.359 0.176 0.152 0.185 0.56 0.416 0.388 0.330 0.533 0.539 103×∆(BC3645)/A˚ 5.00 4.88 - 4.95 - 5.00 5.70 - 5.47 5.45 Tinner/K 7653 7719 7668 7663 8318 7440 7644 7399 7370 7480 <T[NpNe]>/K 8026 7940 7936 8082 8199 8030 8022 8060 7720 7722 Rout/1019cm 1.46 1.46 1.46 1.46 1.45 1.46 1.47 1.46 1.46 1.49 <He+>/<H+> 0.767 0.787 0.727 0.754 0.77 0.764 0.804 0.829 0.715 0.686 GF:G.Ferland’sCloudy;PH:J.PHarringtoncode;DP:D.Pe´quignot’sNebu;TK:T.Kallman’sXStar;HN:H.Netzer’s Ion;RS:R.Sutherland’sMappings;RR:R.Rubin’sNebula;BE:B.Ercolano’sMocassin. 1.3. Amongst these, if’s > 1.10 are obtained for the [O III] 3.2.3 ThePN150benchmark 5007+4959 (if = 1.18) and for [O III] 4363 (if = 1.45); the ra- tio of these lines is often used as a temperature diagnostic (see, The optically thick high-excitation planetary nebula (PN150) is forexample,Osterbrock1989,pages119-125).Mocassinpredicts the most demanding of the benchmark cases in terms of physi- jλ4959+jλ5007 =745.4,thisvalueishigherthanthevalueobtained jλ4363 cal processes and atomicdata required. Mocassin’s score for this by theother codes, infact median value obtained for theratioof modelwasverygood(Table8),obtainingonlysixif’s,withnone theselinefluxesbytheothercodesisequalto589.2.Thisisfully of those being higher than 1.3 and only one slightly higher than consistent with Mocassin predicting a slightly lower temperature 1.1 (C II λ1335, if = 1.13). As has already been discussed by (if=1.027)forthisbenchmarkthandotheothercodes. Pe´quignotetal.(2001),thereseemstobeadichotomybetweenthe Finally,thenumberofmedianvaluesobtainedforthisbench- GF,HNandDPmodels(and,now,alsotheBEmodel)ontheone markcaseisten,whichcomparesverywellwiththeothercodes’ hand, and the TK, PH and RS models on the other. The former medianscores,rangingfromthreetoten(seeTable9). groupobtainedveryfewif’slargestthan1.1,indicativeofatighter agreement.Thiscoherencecanprobablybeattributedtoamorere- cent updating of atomic dataand amore careful treatment of the 3.2.2 TheHII20benchmark diffuse radiation field transfer. These four codes also obtained a largerHβ fluxfor thismodel, whichcan probably beascribed to Mocassin scored seven if’s for the low excitation H II region secondaryphotonsfromheavyions.PHistheonlyclassicalcode (HII20) benchmark model. None of these, however, has a value herewithafullyiterativesphericallysymmetricradiativetransfer greater than 1.3. As in the HII40 nechmark case, the mean tem- treatment(sinceRRonly computed H II regions); thiscould also perature,weightedbyNpNe,predictedbyMocassinforthismodel bethereasonfortherelativelylargernumberofif’sscoredbythe isalsoslightlylower(if=1.034)thantheothermodels’predictions. PHcodeforthismodel. FivemedianvalueswereobtainedbyMocassinforthisbench- markcase,whiletheothercodesscoredbetweenthreeandeleven The score for median values obtained by Mocassin for the (seeTable9). PN150opticallythickplanetarynebulaisextremelygood,obtain- 10 Ercolanoet al. Figure1.Electrontemperature(toppanels)andthefractionalionicabundancesofoxygen(middlepanels)andcarbon(bottompanels),asafunctionofnebular radius,fortheHIIregionbenchmarkcasesHII40(left-handpanels)andHII20(right-handpanels).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.