MOBILITY MODELS FOR NEXT GENERATION WIRELESS NETWORKS WILEYSERIESINCOMMUNICATIONS NETWORKING&DISTRIBUTED SYSTEMS SeriesEditors:DavidHutchison,LancasterUniversity,Lancaster,UK SergeFdida,Universite´PierreetMarieCurie,Paris,France JoeSventek,UniversityofGlasgow,Glasgow,UK The‘WileySeriesinCommunicationsNetworking&DistributedSystems’isaseriesofexpert- level,technicallydetailedbookscoveringcutting-edgeresearch,andbrandnewdevelopments as well as tutorial-style treatments in networking, middleware and software technologies for communicationsanddistributedsystems.Thebookswillprovidetimelyandreliableinforma- tionaboutthestate-of-the-arttoresearchers,advancedstudentsanddevelopmentengineersin theTelecommunicationsandtheComputingsectors. Othertitlesintheseries: Wright:VoiceoverPacketNetworks 0-471-49516-6(February2001) Jepsen:JavaforTelecommunications 0-471-49826-2(July2001) Sutton:SecureCommunications 0-471-49904-8(December2001) Stajano:SecurityforUbiquitousComputing 0-470-84493-0(February2002) Martin-Flatin:Web-BasedManagementofIPNetworksandSystems0-471-48702-3(September 2002) Berman,Fox,Hey:GridComputing.MakingtheGlobalInfrastructureaReality0-470-85319-0 (March2003) Turner: ServiceProvision.TechnologiesforNextGenerationCommunications 0-470-85066-3 (April2004) Welzl:NetworkCongestionControl:ManagingInternetTraffic 0-470-02528-X(July2005) Raz:FastandEfficientContext-AwareServices 0-470-01668-X(April2006) Heckmann:TheCompetitiveInternetServiceProvider 0-470-01293-5(April2006) Dressler:Self-OrganizationinSensorandActorNetworks 0-470-02820-3(November2007) Berndt:Towards4GTechnologies:ServiceswithInitiative 0-470-01031-2(March2008) Jacquenet:ServiceAutomationandDynamicProvisioningTechniquesinIP/MPLSEnvironments 0-470-01829-1(March2008) Gurtov:HostIdentityProtocol(HIP):TowardstheSecureMobileInternet 0-470-99790-7(June 2008) Boucadair:Inter-AsteriskExchange(IAX):DeploymentScenariosinSIP-enabledNetworks 0- 470-77072-4(January2009) Fitzek:MobilePeertoPeer(P2P):ATutorialGuide0-470-69992-2(June2009) Shelby:6LoWPAN:TheWirelessEmbeddedInternet 0-470-74799-4(November2009) Stavdas:CoreandMetroNetworks 0-470-51274-1(February2010) Go´mezHerrero,NetworkMergersandMigrations:Junos DesignandImplementation 0-470- 74237-2(March2010) Jacobsson,PersonalNetworks:WirelessNetworkingforPersonalDevices0-470-68173-X(June 2010) Barrieros,QOS-EnabledNetworks,90-470-68697-3,(December2010) Minei:MPLS-EnabledApplications:EmergingDevelopmentsandNewTechnologies,ThirdEdi- tion,0-470-66545-9(January2011) MOBILITY MODELS FOR NEXT GENERATION WIRELESS NETWORKS AD HOC, VEHICULAR AND MESH NETWORKS Paolo Santi IstitutodiInformaticaeTelematicadelCNR,Italy A John Wiley & Sons, Ltd., Publication Thiseditionfirstpublished2012 2012JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowto applyforpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteat www.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withtheCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthe priorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.All brandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproduct orvendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateand authoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorother expertassistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Santi,Paolo. Mobilitymodelsfornextgenerationwirelessnetworks:adhoc,vehicularandmeshnetworks/ PaoloSanti. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-119-99201-1(cloth) 1.Wirelesscommunicationsystems.I.Title. TK5103.2.S25772012 004.6--dc23 2012002026 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:9781119992011 Typesetin10.5/13ptTimesbyLaserwordsPrivateLimited,Chennai,India To my wife Elena, my daughters Bianca and Marta, and our baby who is on the way To my families Contents List of Figures xv List of Tables xxiii About the Author xxv Preface xxvii Acknowledgments xxxiii List of Abbreviations xxxv Part I INTRODUCTION 1 Next Generation Wireless Networks 3 1.1 WLAN and Mesh Networks 5 1.2 Ad Hoc Networks 8 1.3 Vehicular Networks 10 1.4 Wireless Sensor Networks 13 1.5 Opportunistic Networks 14 References 16 2 Modeling Next Generation Wireless Networks 19 2.1 Radio Channel Models 20 2.2 The Communication Graph 26 2.3 The Energy Model 31 References 32 3 Mobility Models for Next Generation Wireless Networks 33 3.1 Motivation 33 3.2 Cellular vs. Next Generation Wireless Network Mobility Models 35 3.3 A Taxonomy of Existing Mobility Models 38 viii Contents 3.3.1 Spatial Scope 39 3.3.2 Application Scenario 40 3.3.3 Nature 41 3.3.4 Correlation 41 3.3.5 Geography 42 3.3.6 Trajectory 42 3.4 Mobility Models and Real-World Traces: The CRAWDAD Resource 43 3.5 Basic Definitions 45 References 47 Part II “GENERAL-PURPOSE” MOBILITY MODELS 4 Random Walk Models 51 4.1 Discrete Random Walks 52 4.1.1 Random Walks on Grids 53 4.1.2 Random Walks on Graphs 54 4.2 Continuous Random Walks 55 4.2.1 Brownian Motion 55 4.2.2 Le´vy flight 56 4.3 Other Random Walk Models 57 4.4 Theoretical Properties of Random Walk Models 58 4.4.1 Stationary Node Spatial Distribution 58 4.4.2 The Level-Crossing Phenomenon 59 4.4.3 Hitting Time, Return Time, and Cover Time 60 References 60 5 The Random Waypoint Model 61 5.1 The RWP Model 62 5.2 The Node Spatial Distribution of the RWP Model 64 5.3 The Average Nodal Speed of the RWP Model 69 5.4 Variants of the RWP Model 73 References 74 6 Group Mobility and Other Synthetic Mobility Models 75 6.1 The RPGM Model 76 6.1.1 RPGM with RWP Group Mobility 79 6.1.2 In-Place Mobility Model 79 6.1.3 Convention Mobility Model 80 6.1.4 RPGM and Other Group Mobility Models 82 6.2 Other Synthetic Mobility Models 83 6.2.1 The Smooth Random Mobility Model 83 Contents ix 6.2.2 Gauss–Markov Mobility Model 86 References 87 7 Random Trip Models 89 7.1 The Class of Random Trip Models 89 7.1.1 Conditions on Phase and Path 91 7.1.2 Conditions on Trip Duration 92 7.2 Stationarity of Random Trip Models 93 7.3 Examples of Random Trip Models 94 7.3.1 Random Waypoint Model 94 7.3.2 RWP Variants 96 7.3.3 Other Random Trip Mobility Models 97 References 98 Part III MOBILITY MODELS FOR WLAN AND MESH NETWORKS 8 WLAN and Mesh Networks 101 8.1 WLAN and Mesh Networks: State of the Art 101 8.1.1 Network Architecture 102 8.1.2 The IEEE 802.11 Standard 104 8.2 WLAN and Mesh Networks: User Scenarios 107 8.2.1 Home WLAN 107 8.2.2 Campus/Corporate WLAN 107 8.2.3 Public Area Hotspots 108 8.2.4 Community Mesh Network 109 8.3 WLAN and Mesh Networks: Perspectives 109 8.4 Further Reading 111 References 111 9 Real-World WLAN Mobility 113 9.1 Real-World WLAN Traces 113 9.2 Features of WLAN Mobility 116 References 119 10 WLAN Mobility Models 121 10.1 The LH Mobility Model 122 10.1.1 Estimating the Transition and Steady-State Probabilities 123 10.1.2 Finding Temporal Correlation in User/AP Association Patterns 124 10.1.3 Timed Location Prediction with the LH Model 127 x Contents 10.2 The KKK Mobility Model 129 10.2.1 Extracting Physical Movement Trajectories from WLAN Traces 129 10.2.2 Extracting Pause Time 132 10.2.3 Dealing with Stationary Sub-Traces 133 10.2.4 Finding Hotspot Locations 133 10.2.5 Mobility Modeling 135 10.3 Final Considerations and Further Reading 137 References 138 Part IV MOBILITY MODELS FOR VEHICULAR NETWORKS 11 Vehicular Networks 141 11.1 Vehicular Networks: State of the Art 141 11.1.1 Motivation 143 11.1.2 Standardization Activities 144 11.2 Vehicular Networks: User Scenarios 146 11.2.1 Active Safety Applications 147 11.2.2 Cooperative Traffic Efficiency Applications 149 11.2.3 Cooperative Local Services 150 11.2.4 Global Internet Services 150 11.3 Vehicular Networks: Perspectives 150 11.4 Further Reading 151 References 152 12 Vehicular Networks: Macroscopic and Microscopic Mobility Models 153 12.1 Vehicular Mobility Models: The Macroscopic View 154 12.2 Vehicular Mobility Models: The Microscopic View 156 12.3 Further Reading 157 References 158 13 Microscopic Vehicular Mobility Models 159 13.1 Simple Microscopic Mobility Models 159 13.1.1 The Graph-Based Mobility Model 159 13.1.2 The Freeway Mobility Model 160 13.1.3 The Manhattan Mobility Model 163 13.2 The SUMO Mobility Model 164 13.2.1 Building the Road Network 166 13.2.2 Building the Traffic Demand 167 Contents xi 13.2.3 Route Computation 167 13.2.4 Running the Simulation and Generating Output 168 13.3 Integrating Vehicular Mobility and Wireless Network Simulation 168 13.3.1 The TraCI Interface for Coupled Vehicular Network Simulation 170 References 172 Part V MOBILITY MODELS FOR WIRELESS SENSOR NETWORKS 14 Wireless Sensor Networks 175 14.1 Wireless Sensor Networks: State of the Art 175 14.1.1 Hardware and Software Platforms 177 14.1.2 Standardization Activities 177 14.2 Wireless Sensor Networks: User Scenarios 180 14.2.1 Environmental Monitoring 180 14.2.2 Industrial Monitoring 181 14.2.3 Health and Well-Being Monitoring 181 14.2.4 Precision Agriculture 181 14.2.5 Seismic, Structural, and Building Monitoring 182 14.2.6 Intrusion Detection 182 14.2.7 Tracking of Objects, People, and Animals 183 14.3 WSNs: Perspectives 183 14.4 Further Reading 184 References 184 15 Wireless Sensor Networks: Passive Mobility Models 185 15.1 Passive Mobility in WSNs 186 15.2 Mobility Models for Wildlife Tracking Applications 187 15.2.1 The ZebraNet Mobility Model 187 15.2.2 The Whale Mobility Model 190 15.3 Modeling Movement Caused by External Forces 191 References 194 16 Wireless Sensor Networks: Active Mobility Models 197 16.1 Active Mobility of Sensor Nodes 198 16.1.1 Active Mobility and Sensing Coverage 198 16.1.2 Motion Control for Sensing Coverage 201 16.1.3 Motion Control for Event Tracking 206