MixedWeylsemimetalsanddissipationlessmagnetizationcontrolininsulators Jan-Philipp Hanke,∗ Frank Freimuth, Chengwang Niu, Stefan Blu¨gel, and Yuriy Mokrousov Peter Gru¨nberg Institut and Institute for Advanced Simulation, Forschungszentrum Ju¨lich and JARA, 52425 Ju¨lich, Germany (Dated:January27,2017) Wepredictthatthestrengthofspin-orbittorquesandtheDzyaloshinskii-Moriyainteractionintopologically non-trivialmagneticinsulatorscan exceedsignificantlythatofconventionalmetallicmagnets. Inanalogyto thequantumanomalousHalleffect,weexplainthisextraordinaryresponseinabsenceoflongitudinalcurrents asahallmarkofmagneticmonopolesintheelectronicstructureofsystemsthatareinterpretedmostnaturally within the framework of mixed Weyl semimetals. Remarkably, the magnetization switching by anti-damping 7 torques in mixed Weyl semimetals can induce topological phase transitions due to the non-trivial interplay 1 betweenmagnetizationdirectionandmomentum-spacetopology.Theconceptspresentedheremaybeexploited 0 tounderstandandutilizemagnetoelectriccouplingphenomenaininsulatingferromagnetsandantiferromagnets. 2 n Progressincontrolandmanipulationofthemagnetization composite(k,mˆ)phasespacecombiningcrystalmomentum a J in magnetic materials is pivotal for the innovative design of andmagnetizationdirection[18,19]. Bandcrossings,alsore- 7 futurenon-volatile,high-speed,lowpower,andscalablespin- ferredtoasmagneticmonopolesink-space,areknowntoact 2 tronicdevices. Theeffectofspin-orbittorque(SOT)provides asimportantsourcesorsinksofΩkk [20]. Whentransferring anefficientmeansofmagnetizationcontrolbyelectricalcur- thisconcepttocurrent-inducedtorques,crossingpointsinthe ] i rents in systems that combine broken spatial inversion sym- compositephasespacecanbeanticipatedtogiverisetoalarge c metryandspin-orbitinteraction[1–5]. Thesecurrent-induced mixed Berry curvature Ωmˆk, which in turn yields the domi- s - torques are believed to play a key role in the practical im- nant microscopic contribution to torkance and spiralization. l r plementationofvariousspintronicsconcepts,sincetheywere Thus,materialsprovidingsuchmonopolescanbeexpectedto t m demonstrated to mediate the switching of single ferromag- exhibitnotablystrongSOTsandDMI. netic layers [6, 7] and antiferromagnets [8] via the exchange . t ofspinangularmomentumbetweenthecrystallatticeandthe a m (staggered)collinearmagnetization. Amongthetwodifferent (a) =0 Z6 =0 contributionstoSOTs,theso-calledanti-dampingtorquesare Z - d ofutterimportanceowingtotherobustnessoftheirproperties k1 n x o withrespecttodetailsofdisorder[5]. kx2 c In a clean sample, the anti-damping SOT T acting on the y kx3 g [ magnetizationinlinearresponsetotheelectricfieldE isme- r ne diated by the so-called torkance tensor τ, i.e., T = τE [9]. E 1 v The Berry phase nature of the anti-damping SOT manifests 0 inthefactthatthetensorelementsτ areproportionaltothe 05 omfixaelldoBcceurrpyiecdursvtaatteusre[9Ω,1miˆj0k],=wheˆiic·h2iInmijco(cid:80)rponoccra(cid:104)∂temˆsduekrniv|∂atkijvueksno(cid:105)f Magn. direction 08 lattice-periodicwavefunctionsuknwithrespecttobothcrys- (b) Momentumky (c) 1. tdaelnmotoemstehnetuitmhCkaratnedsiamnaugnniettvizeacttioorn. Idnitriemcatitoenlymrˆel.atHederteo,theˆei ) 0.2 90� V) 0.2 45� 70 anti-damping SOT is the Dzyaloshinskii-Moriya interaction gy(t 0 60� y(e 0 30� :1 (wDaMllsI)an[1d1c,h1ir2a]l,sckryurcmiailofnosr[t1h3e–1e6m]e,rwgehnicchecoafncbheiraqluadnotmifiaeidn Ener�0.2 30� nerg 0.2 15� v bytheso-calledspiralizationtensorDreflectingthechangeof 0.4 0� E� 0� i � 0.2 0.3 0.4 0.2 0.4 0.6 X thefreeenergyF duetochiralperturbations∂jmˆ according kx kx (cid:80) r toF = D eˆ ·(mˆ ×∂ mˆ)[9]. a ij ij i j Optimizing the efficiency of magnetization switching in Figure1.(Coloronline)(a)Schematicevolutionoftwoenergybands inthecomplexphasespaceofcrystalmomentumandmagnetization spintronic devices by current-induced SOTs relies crucially direction,wherethecolorsofthebandsindicatedifferentk . Ifk on the knowledge of the microscopic origin of most promi- x y istuned,theelectronicstructuredisplaysamonopole,whichiscor- nent contributions to the electric-field response. To promote relatedwithachangeinthemixedChernnumberZ. Suchcrossing the understanding, it is rewarding to draw an analogy be- pointsareobservedin(b)themodelofmagneticallydopedgraphene tween the anti-damping SOT as given by Ωmˆk and the in- withhoppingt,and(c)thefunctionalizedbismuthfilm,wherecol- ij trinsicanomalousHalleffectasdeterminedbytheBerrycur- orsindicatethemagnetizationdirectionmˆ = (sinθ,0,cosθ). The ΩvamtˆukreaΩrekijkco=mp2oImne(cid:80)ntsoncocf(cid:104)∂akigueknner|∂alkjcuukrvna(cid:105)tu[1re7]t.eBnsootrhΩΩkiknatnhde s(bh)o,wanndmθo=nop4o3l◦esanadriske=at(θ0.=489,00◦.1a9n)dinkin=ter(n0a.l2u9na2iπxts,f0o.r41(ca2)πy.)for 2 Inthefieldoftopologicalcondensedmatter[21,22],there- (a) � l ) 0 cent advances in the realization of quantum anomalous Hall, /h K (c) or, Cherninsulatorshavebeenstriking[23,24]. Thesemag- tso,�nl t 2(e�1 netic materials are characterized by a quantized value of the y a x 2 -30 0 anomalousHallconductivityandanintegernon-zerovalueof �� theChernnumberink-space,C =1/(2π)(cid:82) Ωkxykdkxdky. On (b) � K0 K � ) (d) theotherhand,topologicalsemimetalshaverecentlyattracted ea0.1 K 1 ( great attention due to their exceptional properties stemming x from monopoles in momentum space. Among these lat- t) 0 ⌧y 0 12 ( 0 ter systems, magnetic Weyl semimetals host gapless low- rgy�1 uc) 10 (e) energy excitations with linear dispersion in the vicinity of ne0.4 a/ 5 K non-degenerate band crossings at generic k-points [25–28], E 0 mt 0 which are sources of Ωkk. Their conventional description 0 ( in terms of the Weyl Hamiltonian can be formally extended �0.4 -2 Dyx�5 -300 0 0 0.1 0.2 0.8 0.4 0.0 0.4 to the case of what we call the mixed Weyl semimetal as de- k (2⇡/a ) � E�nergy (t) y y scribedbyH =v k σ +v k σ +v θσ ,whereθisthe W x x x y y y θ z anglethatthemagnetizationmˆ =(sinθ,0,cosθ)makeswith Figure 2. (Color online) (a) Sketch of the tight-binding model. the z-axis. As illustrated in Fig. 1a, mixed Weyl semimet- (b) Top: Band structure of magnetically doped graphene with out- alsfeaturemonopolesinthecompositephasespaceofkand of-plane magnetization and t = 0.3t, λ = 0.1t, λ = 0.4t. so nl θ, which are sources of the general curvature Ω. In anal- Bottom: Top of valence band (red circles) and bottom of conduc- tion band (blue squares) in the (k ,θ)-space. The bold integers ogy to conventional Weyl semimetals [25], we can charac- x denote the mixed Chern number Z in the insulating regions, and terize the topology and detect magnetic monopoles by mon- a =3a/2. (c)–(e)EnergydependenceoftheanomalousHallcon- itoring the flux of the mixed Berry curvature through planes duyctivity σ = Ce2/h = e2/(2πh)(cid:82) Ωkkdk dk , the torkance xy xy x y oZf c=ons1t/a(n2tπk)y(cid:82)aΩsmygˆxikvdenθdbkyx,thFeigi.nt1eag.erAmisxigednifiCchaenrtnenluecmtrbice-r nτyexti,zaantidonth.eInsspeirtsalsihzoatwiotnheDcyoxr,rerespspoencdtiinvgelmy,ofmoreanntuomut--sopfa-cpeladniestmribaug-- field response near monopoles in mixed Weyl semimetals tionssummedoveralloccupiedstatesinthevicinityoftheK-point. would be invaluable in paving the road towards dissipation- lessmagnetizationcontrolbySOTs[29]. to these effects. We point out intriguing perspectives for the In this Letter, using model arguments and first-principles electric-field control of magnetization in absence of longitu- calculations [30–35], we investigate the origin and size of dinalchargecurrentsinthesesystems,whichmayultimately anti-damping SOTs and DMI in representative topologi- lead to an ultralow power consumption of future spintronic cally non-trivial magnetic insulators: (i) magnetically doped devicesexploitingSOTs. graphene,and(ii)afunctionalizedbismuthfilm. Wedemon- Magnetically doped graphene.— We begin with a tight- strate that these systems can be naturally interpreted as re- bindingmodelofmagneticallydopedgraphene[30,36]: alizations of mixed Weyl semimetals in the composite phase space of k and mˆ. To characterize the anti-damping SOTs, (cid:88) (cid:88) H =−t c† c +it eˆ ·(σ×d )c† c weevaluatewithinlinearreponsethetorkance[9] iα jα so z ij iα jβ (cid:104)ij(cid:105)α (cid:104)ij(cid:105)αβ (3) occ (cid:88) (cid:88) 2e (cid:88)(cid:2) (cid:3) +λ (mˆ ·σ)c† c −λ (mˆ ·σ)c† c , τij = N eˆi· mˆ ×Im(cid:104)∂mˆukn|∂kjukn(cid:105) , (1) iα iβ nl iα jβ k iαβ (cid:104)ij(cid:105)αβ kn where N is the number of k-points, and e > 0 denotes the whichissketchedinFig.2a. Here,c† (c )denotesthecre- k iα iα elementarypositivecharge. Similarly, thespiralization[9]is ation(annihilation)ofanelectronwithspinαatsitei,(cid:104)...(cid:105)re- obtainedas strictsthesumstonearestneighbors,theunitvectord points ij fromj toi,andσisthevectorofPaulimatrices. Besidesthe occ D = eˆi ·(cid:88)(cid:2)mˆ ×Im(cid:104)∂ u |h |∂ u (cid:105)(cid:3) , (2) usual hopping with amplitude t, the first line in Eq. (3) con- ij N V mˆ kn kn kj kn tainstheRashbaspin-orbitcouplingofstrengtht originating k kn so inthesurfacepotentialgradientofthesubstrate. Theremain- where h = H + E − 2E , H is the lattice-periodic ingtermsinEq.(3)aretheexchangeenergyduetothelocal kn k kn F k Hamiltonian with eigenenergies E , E is the Fermi level, (λ)andnon-local(λ )exchangeinteractionbetweenspinand kn F nl and V is the unit cell volume. Remarkably, we find that the magnetization. Dependingonmˆ,thenon-localexchangede- magnitude of SOTs and DMI in the considered family of in- scribesahoppingprocessduringwhichthespincanflip. sulators can reach gigantic values exceeding by far that of First,bymonitoringtheevolutionofthemixedChernnum- conventional metallic ferromagnets. We show that emergent ber Z we demonstrate that the above model hosts a mixed magnetic monopoles as sources of a large mixed Berry cur- Weylsemimetalstate. Indeed,asshowninFig.2b,thetopo- vatureinthecompositephasespacearepivotalingivingrise logicalindexZ changesfrom−2to0atacertainvalueofk , y 3 (f) H 2 (a) h) 1 (c) K Bi h) K0 (h) C 2e/ 0 2e/ 1 K ( 1 ( Ir �xy �2 -1000 0 �xy 0 0 100 � (g) � K0 M K � 0 ea)0 0.2 (d) K 1 ea)0 1 (i) K0 (b) ( ) ( K ergy(eV)��21 Va/uc)⌧0yx 01.010 (e) 0 K8 Energy(eV�0.210 ⌧Va/uc)yx01098.050 K0 0 10(j) En 3 (me 10 0 500 0 -1 0 -1 (me 0 K � � KM � Dyx� 2.7 2.6 2.5 �0.20 0.5 1 Dyx�90 00.410000.2 0.0 0.2 � E�nergy (e�V) ky (2⇡/a) � E�nergy (eV) Figure3.(Coloronline)(a)CrystalstructureofgraphenedecoratedbyIradatomsin2×2geometry.(b)First-principlesbandstructureofthe systemforanout-of-planemagnetization.Thetopologicallynon-trivialgapabout2.6eVbelowtheFermilevelishighlighted.(c)–(e)Energy dependenceofanomalousHallconductivityσ ,torkanceτ ,andspiralizationD ,respectively,foranout-of-planemagnetization.Vertical xy yx yx linesindicatetheenergyuptowhichstatesaresummedupforthemicroscopicdistributionsinmomentumspaceneartheK-point, shown in the insets. (f) Crystal structure of the semihydrogenated Bi(111) bilayer. (g) Top: First-principles band structure of the system for an out-of-planemagnetization,wheretheregionofthetopologicallynon-trivialbandgapishighlighted. Bottom: Evolutionoftopofvalence band(redcircles)andbottomofconductionband(bluesquares)inthe(k ,θ)-space.BoldintegersdenotethemixedChernnumberZ,anda x isthein-planelatticeconstant.(h)–(j)Energydependenceofσ ,τ ,andD formˆ outoftheplane. xy yx yx indicating thus the presence of a band crossing in compos- haviorofthespiralizationD withinthegap,changingfrom yx ite phase space that carries a topological charge of +2. One 8mta/ucto−6mta/ucasshowninFig.2e,where“uc”refers of these monopoles appears near the K-point off any high- tothein-planeunitcellcontainingtwoatoms. Wefurtherex- symmetrylineifthemagnetizationisorientedin-planealong plicitly confirm the origin of the large SOT and DMI in the the x-direction (see Fig. 1b). The emergence of the quan- monopoles by removing the Weyl points from the electronic tumanomalousHalleffect[36],Fig.2c,overawiderangeof structure via, e.g., including an intrinsic spin-orbit coupling magnetization directions can be understood as a direct con- term in Eq. (3), in which case the electric-field response in sequenceofthemagneticmonopolesactingassourcesofthe termsoftorkanceandspiralizationisstronglysuppressed. curvatureΩkk. Correspondingly,formˆ outoftheplane,the Toprovidearealisticmanifestationofthemodelconsider- system is a quantum anomalous Hall insulator. Moreover, ationsabove,westudyfromabinitiothesystemofgraphene large values of the mixed curvature Ωmˆk in the vicinity of decorated by 5d transition-metal adatoms. This system is themonopolearevisibleinthemomentum-spacedistributions known to realize the quantum anomalous Hall effect due to oftorkanceandspiralizationintheinsetsofFigs.2dand2e, thespin-orbitmediatedcomplexhybridizationofgraphenep respectively. For an out-of-plane magnetization, the primary stateswithdstatesofthetransitionmetal[39]. Inthecaseof microscopiccontributiontotheeffectsarisesfromanavoided Iradatomsdepositedongraphene(cf.Fig.3a),aglobalband crossing along ΓK – a residue of the Weyl point in (k,θ)- gap of 85meV opens about 2.6eV below the Fermi level if space. Sincetheexpressions(1)and(2)differentiatethewave themagnetizationisorientedout-of-plane,Fig.3b. Asvisible function only with respect to one of the momentum coordi- inFig.3c,thesystematthisenergyisaCherninsulatorwith nates,thesymmetrybetweenkxandky inthedistributionsof C = −2, where the main contribution to the Chern number torkanceandspiralizationisbrokennaturally. comesfromanavoidedbandcrossingalongKM. Themag- As a consequence of the monopole-driven momentum- nitude of the torkance in the gap amounts to τ = 0.1ea yx 0 spacedistribution,theenergydependenceofthetorkanceτ , (with a being Bohr’s radius), Fig. 3d, and the spiralization yx 0 Fig.2d,displaysadecentmagnitudeof0.1eaintheinsulating D ranges from −1meVa /uc to −10meVa /uc, Fig. 3e, yx 0 0 region(withabeingtheinteratomicdistance),andstayscon- values that are the same order of magnitude as those ob- stantthroughoutthebandgap. IncontrasttotheChernnum- tained in metallic magnetic heterostructures [5, 9] and non- bersC andZ,thetorkanceτ is,however,notguaranteedto centrosymmetric bulk magnets [16]. Since the details of the yx bequantizedtoarobustvalue,i.e.,theheightofthetorkance electronicstructurecaninfluencethevalueofthetorkancein plateau in Fig. 2d is sensitive to fine details of the electronic the gap, e.g., upon replacing Ir with other 5d transition met- structure such as magnetization direction and model param- als such as W, the magnitude of the SOT and DMI can be eters. Because of their intimate relation in the Berry phase enhanced drastically in the gapped regions of corresponding theory[9,37,38],theplateauintorkanceimpliesalinearbe- materials,accordingtoourcalculations. 4 Functionalized bismuth film.— While the SOT and DMI for example, by doping or applying strain. Such versatility in magnetically doped graphene are comparable in magni- could be particularly valuable for the stabilization of chiral tudetothoseinconventionalmetallicmagnets,nowwefocus magneticstructuressuchasskyrmionsininsulatingferromag- on a semihydrogenated Bi(111) bilayer with an out-of-plane nets. Inthelattercase,verylargevaluesoftheanti-damping magnetization,Fig.3f,anothermixedWeylsemimetalbutfor SOT arising in these systems would open exciting perspec- whichgiganticeffectscanberealized. Thesystemisavalley- tives in manipulation and dynamical properties of chiral ob- polarizedquantumanomalousHallinsulator[40]withasize- jectsassociatedwithminimalenergyconsumptionbymagne- able magnetic moment of 1.0µ per unit cell, and exhibits toelectric coupling effects. Generally, we would like to re- B a large band gap of 0.18eV at the Fermi energy as well as a markthatmagneticmonopolesinthecompositephasespace, distinctasymmetrybetweenthevalleysK andK(cid:48),Fig.3g. which we discuss here, do not only govern the electric-field AnalyzingtheevolutionofthemixedChernnumberZ asa response in insulating magnets but are also relevant in met- functionofk inFig.3g,wedetecttwomagneticmonopoles als, where they appear on the background of metallic bands. y ofoppositechargethatemergeatthetransitionpointsbetween Ultimately,inanalogyto(non-quantized)anomalousHallef- thetopologicallydistinctphaseswithZ =−1andZ =0.Al- fect in metals, this makes the analysis of SOT and DMI in ternatively,thesecrossingpointsandthemonopolechargesin metallicsystemsverycomplexowingtocompetingcontribu- thecompositephasespacecouldbeidentifiedbymonitoring tionstotheseeffectsfromvariousbandspresentattheFermi the variation of the momentum-space Chern number C with energy. Inaddition,theelectric-fieldstrengthinmetalsistyp- magnetizationdirection. Thesemonopoles,actingassources icallymuchsmaller,limitingthusthereachablemagnitudeof of the general curvature Ω, occur at generic points near the responsephenomenaascomparedtoinsulators. valley K for θ = 43◦ (see Fig. 1c) and in the vicinity of At the end, we comment on the relevance of the physics theK(cid:48)-pointforθ = 137◦,respectively. Foranout-of-plane discussed here for antiferromagnets (AFMs) that satisfy the magnetization,thecomplexnatureoftheelectronicstructure combined symmetry of time reversal and spatial inversion. in momentum space manifests in the quantization of C to SOTsinsuchantiferromagnetsareintimatelylinkedwiththe +1, Fig. 3h, which is primarily due to the pronounced pos- physics of Dirac fermions, which are doubly-degenerate ele- itivecontributionsnearK. Calculationsoftheenergydepen- mentary excitations with linear dispersion [43, 44]. In these dence of the torkance and spiralization in the system, shown systems, the reliable switching of the staggered magnetiza- inFigs.3iand3j,revealtheextraordinarymagnitudesofthese tion by means of current-induced torques has been demon- phenomena of the order of 1.1ea for τ and 50meVa /uc 0 yx 0 stratedveryrecently[8]. Inanalogytotheconceptofmixed forD ,exceedingbyfarthetypicalmagnitudesoftheseef- yx Weyl semimetals presented here, we expect that the notion fectsinmagneticmetallicmaterials[5,9,16]. Asinthecase of mixed Dirac semimetals in a combined phase space of of graphene, the SOT and DMI in this material are strongly crystal momentum and direction of the staggered magneti- suppressediftheFermienergyissettoliewithinthetopolog- zation vector will prove fruitful in understanding the micro- icallytrivialgapsthatdonotexhibitthemixedWeylpoints. scopicoriginofSOTsininsulatingantiferromagnets. Follow- Remarkably,themagnetizationswitchingviaanti-damping ing the very same interpretation that we formulated here for torques in mixed Weyl semimetals can be utilized to induce ferromagnets,monopolesintheelectronicstructureofAFMs topologicalphasetransitionsfromaCherninsulatortoatriv- can be anticipated to constitute prominent sources or sinks ialmagneticinsulatormediatedbythecomplexinterplaybe- of the corresponding general non-Abelian Berry curvature, tween magnetization direction and momentum-space topol- whose mixed band-diagonal components correspond to the ogy in these systems. In the case of the functionalized bis- sublattice-dependentanti-dampingSOT,inanalogytothespin muth film, for instance, the material is a trivial magnetic in- Berry curvature for quantum spin Hall insulators and Dirac sulator with a band gap of 0.25eV if the magnetization is semimetals [45–47]. Correspondingly, exploiting the princi- oriented parallel to the film plane. Nevertheless, the result- ples of electronic-structure engineering for topological prop- ing anti-damping torkance τyx = 0.5ea0 is still very large, ertiesdependingonthestaggeredmagnetizationcouldresult and also the DMI varies from Dyx = 105meVa0/uc to in an advanced understanding and utilization of pronounced −60meVa0/uc within the gap [30]. Overall, combining an magnetoelectricresponseininsulatingAFMs. exceptionalelectric-fieldresponsewithalargebandgap, the We gratefully acknowledge computing time on the super- H-functionalizedbismuthfilmservesasadistinctrepresenta- computers JUQUEEN and JURECA at Ju¨lich Supercomput- tiveofaclassofmixedWeylsemimetalmaterials,whichlay ing Center as well as at the JARA-HPC cluster of RWTH outextremelypromisingvistasinroom-temperatureapplica- Aachen, and funding under the HGF-YIG programme VH- tionsofmagnetoelectriccouplingphenomenafordissipation- NG-513andSPP1538ofDFG. lessmagnetizationcontrol–asubjectwhichiscurrentlyunder extensivescrutiny(see,e.g.,Refs.[29,41,42]). Intheexamplesthatweconsideredhere,theDMIchanges overawiderangeofvaluesthroughoutthebulkbandgap,im- plyingthatproperelectronic-structureengineeringenablesus ∗ [email protected] totailorbothstrengthandsignoftheDMIinagivensystem, [1] A.Chernyshov,M.Overby,X.Liu,J.K.Furdyna,Y.Lyanda- 5 Geller,andL.P.Rokhinson,Nat.Phys.5,656(2009). Z.Fang,Science329,61(2010). [2] I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, [24] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, S. Pizzini, J. Vogel, and P. Gambardella, Nat. Mater. 9, 230 K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, (2010). X.Chen,J.Jia,X.Dai,Z.Fang,S.-C.Zhang,K.He,Y.Wang, [3] I.M.Miron,T.Moore,H.Szambolics,L.D.Buda-Prejbeanu, L.Lu,X.-C.Ma,andQ.-K.Xue,Science340,167(2013). S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, [25] G.Xu,H.Weng,Z.Wang,X.Dai,andZ.Fang,Phys.Rev.Lett. A.Schuhl,etal.,Nat.Mater.10,419(2011). 107,186806(2011). [4] K.Garello,I.M.Miron,C.O.Avci,F.Freimuth,Y.Mokrousov, [26] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, S. Blu¨gel, S. Auffret, O. Boulle, G. Gaudin, and P. Gam- C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. bardella,NatureNanotech.8,587(2013). Huang, H.Zheng, J.Ma, D.S.Sanchez, B.Wang, A.Bansil, [5] F. Freimuth, S. Blu¨gel, and Y. Mokrousov, Phys. Rev. B 90, F.Chou, P.P.Shibayev, H.Lin, S.Jia,andM.Z.Hasan,Sci- 174423(2014). ence349,613(2015). [6] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. [27] B.Q.Lv,H.M.Weng,B.B.Fu,X.P.Wang,H.Miao,J.Ma, Costache,S.Auffret,S.Bandiera,B.Rodmacq,A.Schuhl,and P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, P.Gambardella,Nature476,189(2011). X.Dai,T.Qian,andH.Ding,Phys.Rev.X5,031013(2015). [7] L. Liu, O. Lee, T. Gudmundsen, D. Ralph, and R. Buhrman, [28] D.Gosa´lbez-Mart´ınez,I.Souza,andD.Vanderbilt,Phys.Rev. Phys.Rev.Lett.109,096602(2012). B92,085138(2015). [8] P. Wadley, B. Howells, J. Zˇelezny´, C. Andrews, V. Hills, [29] C.O.Avci,A.Quindeau,C.-F.Pai,M.Mann,L.Caretta,A.S. R. P. Campion, V. Nova´k, K. Olejn´ık, F. Maccherozzi, S. S. Tang, M. C. Onbasli, C. A. Ross, and G. S. D. Beach, Nat. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Mater. (2016),10.1038/nmat4812. Y. Mokrousov, J. Kunesˇ, J. S. Chauhan, M. J. Grzybowski, [30] SeeSupplementalMaterialforcomputationaldetailsandmag- A.W.Rushforth,K.W.Edmonds,B.L.Gallagher,andT.Jung- netizationdependenceinthefunctionalizedbismuthfilm. wirth,Science351,587(2016). [31] J.-P. Hanke, F. Freimuth, S. Blu¨gel, and Y. Mokrousov, Phys. [9] F.Freimuth,S.Blu¨gel,andY.Mokrousov,J.Phys.: Condens. Rev.B91,184413(2015). Matter26,104202(2014). [32] A.A.Mostofi,J.R.Yates,G.Pizzi,Y.-S.Lee,I.Souza,D.Van- [10] H.Kurebayashi, J.Sinova, D.Fang, A.C.Irvine, T.D.Skin- derbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 ner,J.Wunderlich,V.Nova´k,R.P.Campion,B.L.Gallagher, (2014). E.K.Vehstedt, L.P.Zaˆrbo, K.Vy´borny´, A.J.Ferguson,and [33] X.Wang,J.R.Yates,I.Souza,andD.Vanderbilt,Phys.Rev.B T.Jungwirth,NatureNanotech.9,211 (2014). 74,195118(2006). [11] I.Dzyaloshinsky,J.Phys.Chem.Solids4,241(1958). [34] J.R.Yates,X.Wang,D.Vanderbilt,andI.Souza,Phys.Rev.B [12] T.Moriya,Phys.Rev.120,91(1960). 75,195121(2007). [13] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. [35] Seehttp://www.flapw.de. Niklowitz,andP.Bo¨ni,Phys.Rev.Lett.102,186602(2009). [36] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, [14] N.Kanazawa,Y.Onose,T.Arima,D.Okuyama,K.Ohoyama, J.Wang,andQ.Niu,Phys.Rev.B82,161414(R)(2010). S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. [37] T.Thonhauser,Int.J.Mod.Phys.B25,1429(2011). Rev.Lett.106,156603(2011). [38] J.-P.Hanke,F.Freimuth,A.K.Nandy,H.Zhang,S.Blu¨gel,and [15] C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, Y.Mokrousov,Phys.Rev.B94,121114(R)(2016). C. Duvinage, T. Adams, S. Blu¨gel, A. Rosch, Y. Mokrousov, [39] H. Zhang, C. Lazo, S. Blu¨gel, S. Heinze, and Y. Mokrousov, andC.Pfleiderer,Phys.Rev.Lett.112,186601(2014). Phys.Rev.Lett.108,056802(2012). [16] J. Gayles, F. Freimuth, T. Schena, G. Lani, P. Mavropoulos, [40] C.Niu,G.Bihlmayer,H.Zhang,D.Wortmann,S.Blu¨gel,and R. A. Duine, S. Blu¨gel, J. Sinova, and Y. Mokrousov, Phys. Y.Mokrousov,Phys.Rev.B91,041303(2015). Rev.Lett.115,036602(2015). [41] Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. [17] N.Nagaosa,J.Sinova,S.Onoda,A.H.MacDonald,andN.P. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, Ong,Rev.Mod.Phys.82,1539(2010). P.-L.Yang, A.Fraile-Rodriguez, A.Scholl, S.X.Wang, and [18] D.Xiao,J.Shi,andQ.Niu,Phys.Rev.Lett.95,137204(2005). R.Ramesh,Nat.Mater.7,478(2008). [19] F. Freimuth, R. Bamler, Y. Mokrousov, and A. Rosch, Phys. [42] D.Chiba,M.Sawicki,Y.Nishitani,Y.Nakatani,F.Matsukura, Rev.B88,214409(2013). andH.Ohno,Nature455,515(2008). [20] Z.Fang,N.Nagaosa,K.S.Takahashi,A.Asamitsu,R.Math- [43] P.Tang,Q.Zhou,G.Xu,andS.-C.Zhang,Nat.Phys.12,1100 ieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and (2016). K.Terakura,Science302,92(2003). [44] L. Sˇmejkal, J. Zˇelezny`, J. Sinova, and T. Jungwirth, [21] M.Z.HasanandC.L.Kane,Rev.Mod.Phys.82,3045(2010). arXiv:1610.08107 (2016). [22] X.-L.QiandS.-C.Zhang,Rev.Mod.Phys.83,1057(2011). [45] S.Murakami,NewJ.Phys.9,356(2007). [23] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and [46] S.MurakamiandS.-i.Kuga,Phys.Rev.B78,165313(2008). [47] B.-J.YangandN.Nagaosa,Nat.Commun.5,4898(2014). 1 Supplementalmaterialsfor “MixedWeylsemimetalsanddissipationlessmagnetizationcontrolininsulators” METHODS representationoftheHamiltonian(3)onthebipartitelatticeof graphene by introducing four orthonormal basis states |Nα(cid:105) First-principles calculations.— Using the full-potential thatdescribeelectronswithspinα = {↑,↓}onthesublattice linearized augmented plane-wave code FLEUR [35], we per- N ={A,B}. UsingFouriertransformations,wetransformed formed self-consistent density functional theory calculations this matrix to a representation H(k) in momentum space, of the electronic structure of (i) graphene decorated with whichwassubsequentlydiagonalizedateveryk-pointtoac- Ir adatoms in 2 × 2-geometry, and (ii) a semihydrogenated cess the electronic and topological properties of the system. Bi(111)bilayer. Thestructuralandcomputationalparameters The model parameters tso = 0.3t, λ = 0.1t, and λnl = 0.4t of Refs. [39] and [40] were assumed in the respective cases. wereemployedinthiswork. Wechosethemagnetizationdi- Starting from the converged charge density, the Kohn-Sham rection as mˆ = (cosθ,0,sinθ) for a direct comparison be- equationsweresolvedonanequidistantmeshof8×8k-points tweenthemodelandthefirst-principlescalculations. for8differentmagnetizationdirectionsmˆ =(sinθ,0,cosθ), where the angle θ covers the unit circle once. Based on the SEMIHYDROGENATEDBISMUTHFILM:ANISOTROPY resulting wave-function information in the composite phase WITHMAGNETIZATIONDIRECTION space,weconstructedasinglesetofhigher-dimensionalWan- nierfunctions(HDWFs)[31]foreachofthesystemsbyem- In Fig. S1, we show the dependence of anomalous Hall ploying our extension of the WANNIER90 code [32]. In case conductivity, torkance, and spiralization on the magnetiza- (i), we generated 82 HDWFs out of 120 energy bands with tion direction mˆ = (sinθ,0,cosθ) in the semihydrogenated the frozen window up to 3.3eV above the Fermi level, and bismuth film. For general magnetization directions, both inthecase(ii),weextractedfrom28bands14HDWFsfora torkance and spiralization display also small non-zero com- frozenwindowthatextendsto2.1eVabovetheFermienergy. ponents τ and D , respectively, since the shape of these We used the Wannier interpolation [33, 34] that we gen- yy yy responsetensorsisdictatedbythecrystalsymmetriesandnot eralized to treat crystal momentum and magnetization direc- due to Onsager’s reciprocity relations. When the Weyl point tion on an equal footing [31] in order to evaluate the Berry curvatures Ωkk and Ωmˆk. Taking into account the above emerges in the electronic structure at θ = 43◦, the system undergoes a topological phase transition from a Chern insu- parametrizationofthemagnetizationdirectionbyθ,wewere latortoatrivialmagneticinsulator,whichisaccompaniedby thusabletoaccessefficientlytheanomalousHallconductivity a jump in σ and a similar drop of τ . As apparent from σ ,thetorkanceτ ,andthespiralizationD : xy ij ij yj yj Fig.S1,thetorkanceτ isstillremarkablyprominentinthe yx σij = eh221π (cid:90) 2Im(cid:88)occ (cid:28)∂∂ukkn(cid:12)(cid:12)(cid:12)(cid:12)∂∂ukkn(cid:29)dkxdky, (S1) regimeofthetrivialinsulator,i.e.,forθ >43◦. i j n σ (e2/h) τ (ea ) D (meVa /uc) τyj =e(cid:90) 2Im(cid:88)occ (cid:28)∂∂uθkn(cid:12)(cid:12)(cid:12)(cid:12)∂∂ukkn(cid:29)dkxdky, (S2) 0◦ 0xy 1 0 ij0.5 0 1 −5i0j 0 0 50 j n Dyj = V1 (cid:90) Im(cid:88)oncc (cid:28)∂∂uθkn(cid:12)(cid:12)(cid:12)(cid:12)hkn(cid:12)(cid:12)(cid:12)(cid:12)∂∂ukkjn(cid:29)dkxdky, (S3) ctionθ 30◦ τyx Dyx e r di with the same definitions as in the main text. Convergence n. 60◦ ofthesequantitieswasachievedusing1024×1024k-points ag τyy in the Brillouin zone. We obtained the mixed Chern number M D yy Z(k ) = 1/(2π)(cid:82) 2Im(cid:80)occ(cid:104)∂ u |∂ u (cid:105)dθdk by inte- y n θ kn kx kn x 90◦ gratingthemixedBerrycurvatureonauniformmeshof1024 kx-valuesand512anglesθin[0,2π). FigureS1. TheanomalousHallconductivityσxy,thetorkanceτij, Tight-binding model.— To arrive at the Hamiltonian (3) andthespiralizationD attheactualFermilevelinthesemihydro- ij ofthemaintext,themodelinRef.[36]hasbeengeneralized genated bismuth film as a function of the magnetization direction to account for arbitrary magnetization directions mˆ and the mˆ = (sinθ,0,cosθ). The Weyl point in the electronic structure non-local exchange interaction. We obtained a 4×4-matrix emergesatθ=43◦.