ebook img

Mixed-Integer Representations in Control Design: Mathematical Foundations and Applications PDF

115 Pages·2016·2.992 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mixed-Integer Representations in Control Design: Mathematical Foundations and Applications

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING  CONTROL, AUTOMATION AND ROBOTICS Ionela Prodan Florin Stoican Sorin Olaru Silviu-Iulian Niculescu Mixed-Integer Representations in Control Design Mathematical Foundations and Applications 123 SpringerBriefs in Electrical and Computer Engineering Control, Automation and Robotics Series editors Tamer Başar Antonio Bicchi Miroslav Krstic More information about this series at http://www.springer.com/series/10198 Ionela Prodan Florin Stoican (cid:129) Sorin Olaru Silviu-Iulian Niculescu (cid:129) Mixed-Integer Representations in Control Design Mathematical Foundations and Applications 123 Ionela Prodan Sorin Olaru Laboratory of ConceptionandIntegration Laboratory of Signals andSystems ofSystems CentraleSupélec - CNRS- Université UniversitéGrenoble Alpes Paris-Sud, UniversitéParis-Saclay Valence Gif-sur-Yvette France France Florin Stoican Silviu-Iulian Niculescu Department ofAutomatic Control Laboratory of Signals andSystems andSystemsEngineering CNRS- CentraleSupélec- Université Politehnica University of Bucharest Paris-Sud, UniversitéParis-Saclay Bucharest Gif-sur-Yvette Romania France ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs inElectrical andComputer Engineering ISSN 2192-6786 ISSN 2192-6794 (electronic) SpringerBriefs in Control, Automation andRobotics ISBN978-3-319-26993-1 ISBN978-3-319-26995-5 (eBook) DOI 10.1007/978-3-319-26995-5 LibraryofCongressControlNumber:2015955893 ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface “Tobeornottobe?” (Hamlet,Shakespeare,1601) While the scope of a book is to present the problem discussed as esoterically as possible we also have to acknowledge its roots in “real life.” This is the case here with “control problems with contradictory conditions” which are readily found in everyday life. They may not be stated so, but each time we balance between mutually exclusive goals or have to choose a direction in the detriment of another weactuallysolve(optimallyornot)suchacontrolproblem.An“either/or”decision isalwaysdifficultforhumanbeings,thesamegoesforoptimizationalgorithmswith discretevariables.Wehavethusstrongreasonstopursuesolutionsforthisclassof problems.Asisusuallythecase,thesolutionisbetterorfasterifweunderstandthe problem’s underlying structure. Therefore, the scope of this book is to provide efficient constructions which are subsequently put under a mixed-integer form which can be solved by a computer in a “reasonable” time. Thisbookrepresentstheculminationofover5yearsofcollaborationworkofthe authors. The main contributions are the result of work started during the Ph.D. theses of the first two authors and by subsequent advancements in the following years. This book was inspired by our desire to bring to light the importance of the analysis and control of dynamical systems with conflicting objectives and the effectiveusageoftheassociatedmixed-integerformulations.Itisworthmentioning that the topic is not new and monographs exists covering mixed-integer opti- mization.However,mostofthemassumeaspecificbackgroundinmathematicsand optimization. The present book is dedicated to a generic class of constraints and their use in optimization problems and, in this respect, goes deeper into the details of their construction, representation and computational complexity. It is important to mention that the present manuscript is mainly dedicated to the problem description and not to the numerical optimization routines. It focuses on the mixed-integer aspectsoftheconstraints formulationandtheirrelationshipwith the optimization-based control design. To our knowledge, another textbook is not v vi Preface currently available that covers a compact treatment of the non-convex feasible set representation via mixed-integer representations, gathering the recent research advancements in the literature and illustrating the potential impact on optimization-based design, as for example in control design. One of the most important features of the book is that it provides all along the manuscript the tools for easy reconstruction of the illustrative examples. The applicationsencompassimportantissuesfromcontroltheory,rangingfrommotion planning with obstacle and collision avoidance and up to fault tolerant control schemes. The book will hopefully not only serve the purpose of disseminating research results but also of raising the awareness for these challenging, timely and relevant research topics on optimization and control design. Moreover, we hope that this book will find attention in the diverse control engineering, computational mathe- matics and optimization communities and thus will contribute to the development of mixed-integer representations as a well-defined research field. Valence Ionela Prodan Bucharest Florin Stoican Gif-sur-Yvette Sorin Olaru Gif-sur-Yvette Silviu-Iulian Niculescu September 2015 Acknowledgment The work of Florin Stoican is funded by the Sectorial Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement [grant number POSDRU/159/1.5/S/132395]. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Non-convex Region Description by Hyperplane Arrangements. . . . . 11 2.1 Hyperplane Arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Region Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Parametrized Hyperplane Arrangements . . . . . . . . . . . . . . 15 2.2 Polyhedral and Zonotopic Sets . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Polyhedral Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Zonotopic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Non-convex Region Description . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Cell Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Numerical Considerations. . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Notes and Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Mixed-Integer Representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 Classical Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Analysis of the Unallocated Tuples . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Geometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Algebraic Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 The Complement of a Union of Convex Sets . . . . . . . . . . . . . . . 44 3.4 Description of the Feasible Region as Union of Feasible Cells . . . 47 3.5 Description of the Feasible Region Directly Through the Arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6 Numerical Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.7 Notes and Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Control Problems Involving Mixed-Integer Decision Making . . . . . . 57 4.1 Multi-agent Collision Avoidance Problems . . . . . . . . . . . . . . . . . 58 4.2 Extensions for Multi-agent Motion Planning. . . . . . . . . . . . . . . . 64 vii viii Contents 4.2.1 Shadow Region Description . . . . . . . . . . . . . . . . . . . . . . 65 4.2.2 Mixed-Integer Representations . . . . . . . . . . . . . . . . . . . . 68 4.2.3 Coverage Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.4 Corner Cutting Problem. . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Reference Governor Mechanism for Guaranteed Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3.1 Output-Based Residual Case. . . . . . . . . . . . . . . . . . . . . . 79 4.3.2 Finite Window Residual Case. . . . . . . . . . . . . . . . . . . . . 82 4.4 Notes and Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Appendix: Numerical Data for Illustrative Examples . . . . . . . . . . . . . . 95 Series Editor’s Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Abbreviations FDI Fault Detection and Isolation FTC Fault Tolerant Control KKT Karas–Kuhn–Tucker LMI Linear Matrix Inequalities LP Linear Programming LQ Linear Quadratic LTI Linear Time Invariant MILCP Mixed-Integer Linear Constrained Programming MILP Mixed-Integer Linear Programming MINLP Mixed-Integer Non-Linear Programming MIP Mixed-Integer Programming MIQCP Mixed-Integer Quadratically Constrained Programming MIQP Mixed-Integer Quadratic Programming MPC Model Predictive Control NP-hard Non-deterministic Polynomial-time hard PWA Piecewise Affine QP Quadratic Programming RC Reconfiguration Control RPI Robust Positive Invariance UAV Unmanned Aerial Vehicle ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.