FINAL DRAFT R- 700 MIT's ROLE IN PROJECT APOLLO FINAL REPORT ON CONTRACTS NAS 9-153 and NAS 9-4065 VOLUME V THE SOFTWARE EFFORT by Madeline S. Johnson with Donald R. Giller March 1971 CHARLES STARK DRAPER LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 FINAL DRAFT ACKNOWLED GMENTS This report was prepared under DSR Project 55-23890, sponsored by. the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065. . The authors express appreciation to their many colleagues, both within and without the Draper Laboratory, who gave of their time and contributed essential information to this Final Report. These personsare cited at the end of this Volume in a section entitled, ''A Note on Sources". We offer special thanks to Joseph A, Klawsnik, who, though with us only briefly, left considerable impact on the format and contents of Sections II and III herein, The publication of this document does not constitute approval by the National Aeronautics and Space Administration of the findings or conclusions contained herein, It is published for the exchange and stimulation of ideas, li REPORT R-700 MIT's ROLE IN PROJECT APOLLO Final Report on Contracts NAS 9-153 and NAS 9-4065 VOLUME V THE SOFTWARE EFFORT ) — 7 ABSTRACT Seventy-six days after the President of the United States committed the nation to a massive lunar-landing program, the Charles Stark Draper (formerly Instrumentation) Laboratory of the Massachusetts Institute of Technology received the first major contract of the Apollo program, This volume of the Final Report discusses theefforts of Laboratory personnel in developing the specialized software for the Guidance, Navigation and Control System. Section I presents the historical background of the software effort. Section II discusses the software architecture - developed for the Apollo Guidance Computer. Section III treats the methods of testing and verification of the flight program s, and the Laboratory's mission-support activities. Four appendices present functional descriptions of some major-program capabilities—coasting- flight navigation, targeting, powered-flight navigation and guidance, and the digital autopilots, ill PREFACE - Rarely has mankind been so united as in its awe at one man's step onto the lunar surface. When Neil Armstrong placed his left foot in the dust of the moon, engineers and scientists at the Massachusetts of Technology Instrumentation Labora- - tory felt a special pride for their significant contribution to this accomplishment in the design of the Primary Guidance, Navigation and Control System for the Apollo -gpacecrafts. | This report discusses the efforts of Instrumentation Laboratory personnel in _ developing the special software for the Guidance, Navigation and Control System. Although itis part of a multi-volume series documenting the total Project Apollo efforts of the Instrumentation Laboratory, this section may be read independently of the other volumes; the authors intend it to be meaningful to the general reader who may or may not have read the preceding volumes. In January 1970, this facility became the Charles Stark Draper Laboratory, | named in honor of its founder and current President. Throughout this report, "MIT" and "Draper Laboratory" are used interchangeably, in reference to the former Instrumentation Laboratory. iv CONTENTS AcknowledgmentS .....00eccorrcec ervccrrcereerecrerrerccrrere s Abstract ..ce.e e.ee e ee eee eee eee eee eee eee eee ees Meee eee Preface ..2c .eee .ee ee ces pe ee ee ee eee Lew ww wee we wee . List of Hlustrations ee eee cee nee ee eee eee eee teen eens I. HISTORY OF THE SOFTWARE EFFORT .........00-. ee 1.1 Introduction ..... - ct et tw ee cee et wee ce wr we eee tee wees 1.2 Software Program s for the Apollo Missions ....... sete eee | 1.2.1 Block I Rope Summary .....--.--e-ees Sew ee wwe 1.2.2 Block II Rope Summary ....e6- ee 1.2.3. Overview of the Apollo Flights .. . ce ee we we oe ce ee ee 1.3 Control of the Software Effort .. 1... eee ee ee ee ee ee eee —1,3,1 Contbry oNAlSA ... ccc ee ee ee ee te wee te ee eee 1.3.1.1 G&N System Panel Meetings ct twee te ee tee 1.3.1.2 G&N System Implementation Meetings cee we ee 1.3.1.3 Data Priority Meetings .......2 e.ee. e2oe s 1.3.1.4 "Tiger" Teams .. 0.0 0ce ee e eee eee eee * 1.3.1.5 “Black Friday'' Meetings .......0eecceeceees 1.3.2. GSOP Concept and History .. cee ee eeees ee eee 1,3,3 Additional Software Control .... cece eee ee ee eee ees 1.4 Man and Machine Loading Requirements Pr 1,4,1 History of Man Loading ....20. 2c eee e eer cceese wee 1.4.1.1 Initial Philosophy. tee ee oo 8 o rrr . 1.4.1.2 Creative Use of Subcontractors see ee cee aces e 1 4, 1.3 - Review of Man Loading meee te were eee oo. 1.4.2 History of Digital Machine Loading eee wee eo ew Cees | 1.4.2.1 IBM 650 .......e-e secre beeen 1.4.2.2 Honeywell 800 .... wee eee oe te ee eee we ee 1.4.2.3 Honeywell 1800 ...... eee eee e eee eee . 1.4.2.4. IBM 360/75 .... eeeee we es Lee eens wee 1.4.2.5 Loading of the Digital- -Computing Facilities coe 26 1.5 Major Recurrent Problems oe 1,5,1 Difficulty in Estimating Time and Manpower Schedules ... 26 1,5.2 Control of Timely Spacecraft Data 29° Il. 32 AGC SOFTWARE ....... cece 33 2.1 Computer Capabilities ...... re 2.1.1 Storage and Manipulation of Computer Instructions .... . . 33 2.1.2 Timing and Control of the Computer 35 2.1.2.1 Interrupt System ...... 35 37 2.1.2.2 Software Executive System 39 2.1.2.3 Sequence Control .. eee ee e@ ¢@ @ 2.1.3 Computer Interfaces ........6.¢ 40 40 2.1.3.1 Counters and Channels ..... 2.1.3.2. Cockpit Displays and Controls 44 —=6©2.1.3.3 PINBALL and DSKY Displays oe | 46 2.1.3.4 Uplink and Downlink ..........°. 58 2.1.4 Error-Detection and Self-Check Features ... 60 2.1.4.1 Hardware Restarts ee eee 62 2.1.4.2 Software Restarts ...... 64 | 2.2 Major Mission Tasks Accomplished with the Computer Software «65 2.2.1 Early Approach to Navigation, Targeting, Guidance, and Control ...... ct oe 2.2.2 The G&N Mission Phases ........0c28 000. 6% 2,2,2.1 Launch to Earth Orbit ...... 69 12.2.2 Earth Orbit ......... oe ae wee 70. 2.2.2.3 Translunar Injection ... See eee ae 71 71 2.2.2.4 Translunar cee tte ee . ne 2.2.2.9 Lunar-Orbit Insertion ee - ° 73. 2.2.2.6 Lunar Orbit............00000- 73 2.2.2.7 Lunar Descent a 73 * 9.2.2.7,1 Braking Phase ......... 2.2,.2.7,2 Visibility Phase ........ 75 2.2.2.8 Lunar-Surface Operations , . ° 76 2.2.2.9 Lunar Ascent....... ct eee . 16 2.2.2.10 Lunar-Orbit Rendezvous ....... 70 2,2,2,11 Transearth Injection ..., . 17 v1 2.2.2.12 Transearth .....2..cccecevcccves 78 2.2.2.13 Reentry ....2.e ee eee ccc cee ewe ee oe 78 79° 2.2.3 Rope Design Philosophy and Problems Encountered ..... 82 II, TESTING, VERIFICATION, AND MISSION SUPPORT ........ oe ee 3.1 Testing and Verification ... oe ee ww ee et ee tes 82 82 3.1.1 Testing Philosophy ......... cece tee eee ewe tees —38.1,2 Levels of Testing See eee ee eee ween eee eens 84 3.1.3 Testing Tools...... Lee eee Leccecce eeee we es 86 3.1.3.1 All-Digital Simulator . 2... ee eee ee ee econ 86 89 3.1.3.2 Hybrid Simulator ..... eee eee we ee wee eee 91 3.1.3.3 Engineering Simulator ..........05 0 ewes 91 3.1.3.4 Systems Test Laboratory . re 99 3.2 Software Specification Controls ... 0... ee ee eee 3.2.1 The Guidance System Operations Plan (GSOP) ..... 93 3.2.2 Change Control Procedures oe ee ce cee ee 94 3.2.3 Software Control Meetings ce ec eee 95| 3.3 Documentation Generation and Review ae eee 96 3.4 Mission Support .........+.. Lee eee 99° 3.4.1 Crew Support ...ce.ce e.e e.ee ee 99 101 3.4.2 Flight Support se cee . ; cee Appendix A MAJOR PROGRAM CAPABILITIES— . Coasting-Flight Navigation re 104 105 A,1' Cislunar Navigation oc ee owe ew ee 117 A,2 Rendezvous Navigation ee3seeee ° eoeee6#8 eee 8 © @ @ : e °@ A,3 Orbital Navigation .. 4 | 127. Appendix B MAJOR PROGRAM CAPABILITIES— 133 Targeting ...ccc. ee. eec es 134 B.1 Targeting Computations, ........000e eee cee eee B.2 Ground-Targeted Maneuvers .......cccccces ec ee 135 136 B.3 Rendezvous Maneuvers ...... 00 cece eee eee ecees .B.3,1 Coelliptic Sequence Initiation (CSI) and Constant 139 _ Differential Height (CDH) we cee we eee cee cc ee B.3.2 Transfer Phase Initiation (TPI) and Transfer Phase Midcourse (TPM) 141 “vil B.4 Return to Earth (RTE)... ' 143 143 B.4.1. Options ...... ee ee 147°" B.4.2 Two- Body Problem cc ee te eee ° 148 B.4.3 Precision Solution .......cee-8 148 B.4.4 General Considerations ......e.e.ceecccce . Appendix C MAJOR PROGRAM CAPABILITIES— Powered-Flight-Navigation and Guidance ... 150 C.1 Fundamentals of Powered-Flight Navigation and Guid- 150 ance oeeeee#@t¢eee8¢e@ ®@ eeeeee@e¢.@e@6metmhmUHUCUOUCUCOHUCUCOUCUCOUmUCOUmUCOHmUCOHOUC OU OUCUCOUCUOUUCUCOU C.1.1 Powered-Flight Navigation ........e. 0000. 150 | . Cll Gravity Computation ..... 151 C.1.2 Powered-Flight Guidance Using Cross- Product 152 steering oeoee@%8#e @ e e eoeeeg028fe#ee#@8# @®# e# e e® @® @® @® @ @® @ . e °@ 153 C.1.2.1 Cross-Product Steéring C.1.2.2 Comparison of Explicit and Im plicit Guid- 157 ance Policies ....e..cee C.1.2.3 .§ Lambert Powered- Flight Guidance ee 161 C.1,2.4 Lambert ASTEER Guidance 162 - C.1.2.5 External AV Powered- Flight Guidance . 163 165— C.1.2.6 Thrust-Cutoff sequencing.. 167 C2 Thrust Monitor Program ..........6. 167 C.3 Earth-Orbit Insertion Monitor Program cc eee 169 | C.4 Entry Guidance and Mission Control Programs 170 — - C,4,1 Entry Guidance cheeee ete te s 175 'C.4,2 Entry Mission Control Programs . 175 C.4.2.1 -Entry Preparation, P6l .......... C.4,2.2 CM/SM Separation and Pre-entry Ma-_ 177 neuver, P62 .,....6.4. C.4,.2.3 Entry Initialization, P63 177 C.4.2.4 Post-0.05g, P64 ...... 177 . 178 4 C.4,2.5 Upcontrol, P65 .. . - oe C.4,.2.6 Ballistic, P66 ......... 178 § C.4,2.7 Final Phase, P67...... 179 179 C.9. Lunar~Landing Guidance and Navigation ... C.5.1 Guidance System Description ...... 180 C,5,2 Navigation System Description ,.. 186 — vill C6 Lunar Ascent and Abort Guidance te wc ww cee ceca. . . 191 C.7. FINDCDUW—A Guidance/ Autopilot Interface Routine ... 194 Appendix D MAJOR PROGRAM CAPABILITIES— 196 Digital Autopilots e e e @ e oe @ e e e e [ e @ e e e e e e e Se oe e e e @ e e 196 D.1 Developmental History of the Digital Autopilots ........ 197 D.1.1 CSM DAPS .... 2... ce eee eee ere e reece vee 199 D.1.2 LMDAP .. 2... ewe wc ee ee cr ree we wre econ 200 CSM Reaction Control System (RCS) Autopilot ........ 201 D.2.1 Moodf Oepersati on ... 1. eee cc wee ee eee wee 201 D.2.1.1 Free Mode oeee#e#eeee%8#ee8 ¢ 0e ®°e06¢80¢ ¢@ 6 @ . 301 D.2,.1,2 Hold Mode ee @ eo © @ @ : e ° @®e0e«©esee808f 80 0@ @ @ -@ D.2.1.3 Auto Mode ....ce.ce .cec.e c.ece 202 202 D.2,2 Crew Control of the RCS DAP Configuration ....'. 202 D.2,2.1 DSKY Operation ..... cee we wee eee 202 D.2,2,1,1 Data Loading............. D.2.2.1,.2 Other DSKY Operations ...... 203 203 D.2.2.2 Attitude-Error Displays ...........-. D.2.3 RCS DAP Implementation ....... cc ewe wee ee 204 204 D.2.3.1 Attitude Hold and Stabilization ........ 206 D.2.3.2 Automatic Maneuvering ....... ec eee D,2.3.3 Manual Attitude-Rate Control ........ 206 D.2.3.4 Manual Rotational Minimum Impulse Control ..... aea er 209 — 209 D.2.4 Restart Behavior of the RCSDAP...... ec eee CSM Thrust Vector Control (TVC) Autopilot ...... cee 209 D.3.1 Summary Description .......0 eee cece eee 209 D.3.1.1 TVC Pitch and Yaw Control....... Lae 209 D.3.1.2 TVC Roll Control ........0.. we eee 214 D.3.2. Design Requirements of the TVC DAP ......... 914 D.3.2.1 General Design Considerations ....... 214 D.3.2.2 Initial Conditions and Time-Varying 215 Thrust Misalignment .......ecc0cc8. 216 D.3.2.3 Vehicle Characteristics ....-..ccceccee D.3.2.4 Design Approach .......0000eceees 217 217 D.3.3 TVC DAP Implementation .........ccccccce08 1x 917 ~~ D,.3.3.1 Compensation Filters... . D.3.3,1.2 Switchover from High Band- 217... width to Low Bandwidth 218 D.3.3.2 TVC DAP Variable Gains , 218 D.3.3.3 Trim Estimation te ewer. oeeee#e¢e¢ @ @ @ 219 D.3.3.4 Restart Protection. ......2ecceeees D.3.3.5 Computer Storage and Time Require- 219 , mentS ....-2ceee oe eee D.3.3.6 Selection of Sampling Frequencies 219 D.3.3.7 Effects of Computational Time Delays... 221 D.3.4 TVC DAP Operation .......eeeee0-. 221 «| oee#ee#%#e@e @ D.3.4.1 Pre-burn Initialization ... 221 eoeoe#ee#e# ® D.3.4.2 Start-up Sequence ...... wn 222 oeoe#eeoee@ D.3.4.3 Shutdown Sequence....... 223 CM Entry Autopilot. ........0ceeee. 223 D.4,1 Exoatmospheric and Atmospheric Entry DAPs .. 223 D.4.2 PhasLogiec. -....P- elee aeee neeee eee es 227 — D.4.2.1 ShortLeogisc t..-...P.2a.ctcchce s 235 | D.4.2.2 Buffer Zoneand Deadzone of the Roll- 235, Attitude Phase Plane, sew cee ewer cco. 238 D.4.3 Entry DAP Displays ........e+-- D.4.4 Manual Override. ewww twee eee. 238 939° AGC Takeover of Saturn Steering eee eee ~D.5.1 Generation of Guidance Commands . 239 D.§ 240 LM Autopilot... 6... ee ee eee eens D.6,1 Integrated Design..... Denes 240 D.6,1,1- Design Approach and Structure of the 244 Autopilot... 2. ec ee ee rece roe ese D.6.2 Manual Modes of the LMDAP .... 248 D.6,2.1 Rate-Command/Attitude-Hold Mode .... 250 251 D.6.2.1.1 ‘Reduction of Drift -D.6.2.1.2 Precise Rate Control 251 252 D.6.2.1.3 Return to Attitude-Hold Mode.. D.6.2.1.4 Availability for CSM-Docked © | Configuration .....e..e.e0-. 253 D.6,2,.1.5: Reduction of +X-Thruster On-Ticmee eee.e c.en.ce 203 | ~pD,6.2.1.6 RHC Scaling .......cccvce 293
Description: