FERM ILAB-PUB-08-012-T ANL-HEP-PR-08-30 M issing energy look-alikeswith 100 pb(cid:0)1 atthe LH C Jay Hubisz(cid:3) High Energy PhysicsDivision,ArgonneNationalLaboratory,Argonne,IL 60439,USA Joseph Lykkeny FermiNationalAcceleratorLaboratory,P.O.Box 500,Batavia,IL 60510,USA M aurizio Pieriniz and M aria Spiropulux PhysicsDepartment,CERN,CH 1211 Geneva 23,Switzerland (Dated:April18,2013) A missingenergydiscoveryispossibleattheLHC withthe(cid:12)rst100pb(cid:0)1 ofunderstooddata.W e presentarealisticstrategytorapidlynarrow thelistofcandidatetheoriesat,orcloseto,themoment 8 ofdiscovery.Thestrategyisbasedonrobustratiosofinclusivecountsofsimplephysicsobjects.W e 0 studyspeci(cid:12)ccasesshowingdiscrimination oflook-alikemodelsin simulated datasetsthatareat 0 least10to100timessmallerthanusedinpreviousstudies.W ediscriminatesupersymmetrymodels 2 from non-supersymmetriclook-alikeswith only100pb(cid:0)1 ofsimulated data,usingcombinationsof l observablesthattracebacktodi(cid:11)erencesinspin. u J PACSnumbers:11.30.Pb,14.80.Ly,12.60.Jv 0 3 I. INTRODUCTION immediatefollow-upofanearlyLHC discovery. ] h W henN islarge,itisnotaviablestrategytodiscrim- p inatebetweenN alternativeexplanationsbyperforming A. Twenty questionsatthe LHC - N tests.However,asthegame\twentyquestions"illus- p trates,awell-designedseriesofsimpletestscan identify e M any well-motivated theoretical frameworks make h thecorrectalternativeinoforderlog(N )steps,proceed- dramatic predictionsforthe experimentsatthe Large [ ingalongadecisiontreesuchthat,ateachbranching,of Hadron Collider.Theseframeworksaregenerallybased orderhalfoftheremainingalternativesareeliminated. 2 upon assumptions about new symmetries, as is the AddressingtheLHC InverseProblem impliesdesigning v caseforsupersymmetry (SUSY)[1,2]and littleHiggs 8 and implementingthisseriesofsimpletestsin theLHC (LH)[3,4],orupon assumptionsaboutnew degreesof 9 experiments,so thatwith high con(cid:12)dencea signi(cid:12)cant 3 freedom such asextralarge[5]orwarped [6]spatialdi- fraction ofthe remaining theory space isruled outat 2 mensions. W ithin each successfulframework,one can eachstep.Theresultsofthe(cid:12)rstfew testswillshapethe . constructalargenumberofqualitativelydi(cid:11)erentmod- 5 requirementsforfuturetests,sotheimmediateneedisto elsconsistentwith allcurrentdata. Collectively these 0 developthestrategyfortheearlytests.Inthispaperwe 8 modelspopulatethe\theory space" ofpossiblephysics providethisstrategyforthecaseofanLHC discoveryin 0 beyond theStandard M odel. TheBSM theory spaceis theinclusivemissingenergysignature. : many dimensional,and the numberofdistinctmodels v i within itisformally in(cid:12)nite. Since the data willnot X provideadistinctionbetweenmodelsthatdi(cid:11)erbysu(cid:14)- B. M issing energy atthe LHC r cientlytinyorexperimentallyirrelevantdetails,in(cid:12)nity, a in practice,becomessomelarge(cid:12)nitenumberN . The Theexistenceofdarkmatterprovidesapowerfulmo- mappingoftheseN modelsintotheirexperimentalsig- tivationtoexploremissingenergysignaturesattheLHC, naturesatthe LHC,though stillincomplete,hasbeen undertheassumption thatasigni(cid:12)cantfraction ofdark exploredingreatdetail. mattermayconsistofweaklyinteractingthermalrelics. AssoonasdiscoveriesaremadeattheLHC,physicists M issingenergyattheLHC isexperimentallychallenging. willface the LHC Inverse Problem: given a (cid:12)nite set M ostoftheenergyof14TeV ppcollisionsiscarried o(cid:11) ofmeasurementswith (cid:12)nite resolutions,how doesone byundetectedremnantsoftheunderlyingevent,somiss- mapback[7]-[9]totheunderlyingtheoryresponsiblefor ingenergy searchesactually look formissingtransverse the new phenomena? So far,notenough progresshas energy(Emiss)ofthepartonicsubprocess.Emisssearches beenmadeonthisproblem,especiallyasitrelatestothe T T areplagued by instrumentaland spuriousbackgrounds, including cosmicrays,scattering o(cid:11) beam halo and jet mismeasurement. Standard M odelprocessescreatean irreducibleEmissbackgroundfrom processessuchasthe (cid:3)Electronicaddress:[email protected] Z boson decaTy to neutrinosand tt(cid:22)production followed yElectronicaddress:[email protected] zElectronicaddress:M [email protected] bysemileptonicdecaysofthetop. xElectronicaddress:[email protected] Inmanytheoreticalframeworkswithdarkmattercan- 2 didates,there are heavy strongly interacting particles btaggingin multijet(cid:12)nalstateswillbein development withthesameconservedchargeorparitythatmakesthe during the100 pb(cid:0)1 era. In many smalldata samples darkmatterparticlestable.Thesecoloredparticleswill peaksandedgesininvariantmassdistributionsmaynot bepair-producedattheLHC withcrosssectionsroughly bevisible,and mostobservablesrelated todetailed fea- intherange0.1to100pb.Theirsubsequentdecayswill turesoftheeventswillberatelimited.Theobservables produceStandard M odelparticlesalong with a pairof thatare availableto discriminatethelook-alikesin the undetected dark matterparticles.Thusthegenericex- veryearlyrunningwillbestronglycorrelatedbyphysics perimentalsignatureisboth simpleand inclusive:large and systematicsmaking itimprudentto combinethem Emissaccompaniedbymultipleenergeticjets.A detailed inamultivariateanalysis. T strategyforearlydiscoverywith theinclusiveEmisssig- T naturewaspresentedintheCM SPhysicsTechnicalDe- sign Report[10]-[12]and studied with fullsimulation of D. IsitSUSY? theCM Sdetector.Afteraseriesofcleanupandanalysis cutson a simulated Emiss triggersampletargeting the T Byfocusingonthediscriminationoflook-alikes,weare reduction oftheinstrumentaland physicsbackgrounds, pursuingastrategyofsimplebinarychoices:isM odelA thesignale(cid:14)ciencyremainedashighas25%.Thesere- a signi(cid:12)cantly betterexplanation ofthediscovery data sultsindicatethat,forsignalcrosssectionsaslow asa setthan M odelB? Each answercarrieswith ita few few pb,an Emiss discoverycould bemadewith the(cid:12)rst T bitsofimportantfundamentalinformationaboutthenew 100pb(cid:0)1 ofunderstoodLHC data1.Inourstudyweas- physicsprocessresponsibleformissingenergy.Obviously sumeasthestartingpointthatagreaterthan5(cid:27) excess wewillneed to makemany distinctlook-alikecompar- ofeventswillbeseen in a14TeV LHC datasampleof isonsbeforewecanhopetobuildupaclearpicturefrom 100pb(cid:0)1 with an inclusivemissingenergyanalysis.For theseindividualbits. invariability and comparability wee(cid:11)ectively adoptthe Considerhow thisstrategymightplayoutforanswer- fullanalysispathandrequirementsusedin[10]. ingthebasicquestion\isitSUSY?"Itmaynotbepos- sibletoanswerthisquestionconclusivelyduringthe100 pb(cid:0)1 era.Ourstrategywillconsistofaskingaseriesof moremodestquestions,someofthem oftheform:\does C. Look-alikesatthe m om entofdiscovery SUSY M odelA giveasigni(cid:12)cantlybetterexplanationof thediscoverydatasetthan non-SUSY M odelB?"None Atthemomentofdiscoveryalargenumberoftheory oftheseindividualbitsofinformationbyitselfisequiva- modelswillbe immediately ruled outbecause,within lenttoanswering\isitSUSY?"Howeverwedemonstrate conservativeerrors,theygivethewrongexcess.However thatwecan build up apicturefrom thedatathatcon- alargenumberofmodelswillremain asmissingenergy nectsbacktofeaturesoftheunderlyingtheory. look-alikes,de(cid:12)ned asmodelsthatpredictthesamein- Furthermore,wedemonstrateaconcretemethodtoob- clusivemissingenergyexcess,within sometolerance,in tainindirectinformationaboutthespinofthenew par- thesameanalysisin thesamedetector,fora given in- ticles.W eestablish how todiscriminatebetween anon- tegratedluminosity.Theimmediatechallengeisthen to SUSY modelanditsSUSY look-alikes.Eventhoughwe begindiscriminatingthelook-alikes. cannotmeasurethespinsoftheexoticparticlesdirectly, Thelook-alikeproblem wasstudied in [9]asitmight spin hassigni(cid:12)cante(cid:11)ectson production crosssections, apply toalatermaturephaseoftheLHC experiments. kinematic distributionsand signale(cid:14)ciencies. W e are Evenrestrictedtothesliceoftheoryspacepopulatedbya thusable to discriminate SUSY from non-SUSY using partialscanoftheM SSM ,ignoringSM backgroundsand combinationsofobservablesthattracebacktodi(cid:11)erences systematicerrors,and applying an uncorrelated (cid:31)2-like inspin.Ourstudyshowsthatinfavorablecasesthiscan statisticalanalysisto 1808 correlated observables,this beaccomplishedwithdatasetsassmallas100pb(cid:0)1. studyfoundthatalargenumberoflook-alikesremained unresolvedinasimulationequivalentto10fb(cid:0)1.A more recentanalysis[13]attemptstoresolvetheselook-alikes E. Outline inasimulationofafuturelinearcollider. Atthe momentofan early discovery the look-alike InsectionIIwereview indetailthemissingenergydis- problem willbequalitatively di(cid:11)erent. Thedata sam- covery path,including theexperimentalissuesand sys- pleswillbemuch smaller,with a limited paletteofro- tematicsthatlimitourabilitytofullyreconstructevents bustreconstructed physicsobjects. Forexample,(cid:28) or from thediscovery dataset. W eexplain how themiss- ing energy signalsaresimulated,and theuncertainties associatedwith thesesimulations.In section IIIwedis- cusstheproblem ofpopulating thepartsofthetheory 1 The(cid:12)rst100pb(cid:0)1 ofunderstoodLHC datawillnotbethe(cid:12)rst spacerelevantto a particularmissing energy discovery. 100pb(cid:0)1 ofdatawrittentotape.The10TeV datacollectedin InsectionIV weintroducetwogroupsoflook-alikemod- theearlyrunningwillbeusedforcalibrationsandunderstanding ofbenchmarkStandardM odelprocesses. elsrelativeto two di(cid:11)erentmissing energy signals. For 3 modelsdi(cid:11)eringonlybyspins,wediscusshow crosssec- and misreconstruction oftheprimaryvertex.Eliminat- tions,kinematicdistributionsande(cid:14)cienciescanbeused ingthesesourcesrequiresunbiased(cid:12)ltersbasedonclean to distinguish them,drawing from formulae developed de(cid:12)nitionsofeventquality. in theAppendix. In section V wede(cid:12)neallofthero- Todesign amissingenergyanalysis,weneed tohave bustobservablesthatweusetodiscriminateamongthe someideaofthesourceoftheEmiss in thesignal.The T look-alikes,and in section VIwedescribethelook-alike possibilitiesinclude: analysisitselfandhow wecomputethesigni(cid:12)canceofthe discriminations.SectionsVIIandVIIIgiveasummaryof (cid:15) TheETmiss isentirely from neutrinos. Thiscould ourresults,withdetailsrelegatedtofurtherAppendices. arisefrom thedirectdecayofnew heavyparticles FinallysectionIX describesthestepswearefollowingto to neutrinos,ordecaysofnew heavy particlesto improvethisanalysisforusewithrealdata. top,W ’s,Z’sor(cid:28)’s. One appropriatediscovery strategyforthiscaseistolookforanomaliesinthe energetictailsofdatasetswith reconstructedtop, W ’sorZ’s. II. DISCOVERY ANALYSIS FOR M ISSING ENERGY (cid:15) TheEmissoriginatesfrom asingleweaklyinteract- T ing exoticparticlein the(cid:12)nalstate. An example ofthispossibilityisgravitonproductioninmodels M issingenergyhadroncolliderdatahasbeenusedpre- withlargeextradimensions[20].Ifstrongproduc- viously forsuccessfulmeasurementsofStandard M odel processeswith energeticneutrinos;theseincludetheZ0 tionoccurs,thesignalwillconsistpredominatelyof monojetsand largeEmiss. Successfulanalysesfor boson invisibledecayrates,thetop quarkcrosssection, T thiscasewerecarriedoutattheTevatron[21,22]. searchesfortheHiggsboson[14]andapreciseextraction Othersignalsthat(cid:12)tthiscasearisefrom unpar- oftheW massfrom thereconstruction oftheW trans- ticlemodels[23]and from modelswith s-channel versemass[15].Pioneeringsearchesfornew phenomena resonancesthathaveinvisibledecays. in missingenergydatasetsattheTevatron [16]-[19]led tothedevelopmentandunderstandingofthebasictech- (cid:15) The Emiss originatesfrom many weakly interact- niquesthatwillbeusedinmissingenergysearchesatthe T ingexoticparticles.Thiscanbethecaseinhidden LHC. valleymodels[24],wheretheweaklyinteractingex- Inanidealdetector,withhermetic4(cid:25) solidanglecov- oticsarelightpionsofthehiddensector.Thiscase erageand excellentcalorimeterresolution,themeasure- isexperimentallychallenging. mentofmissing energy isthemeasurementoftheneu- trinoenergyandtheenergyofanyotherneutralweakly (cid:15) TheEmiss originatesfrom two weakly interacting T interactingparticles.In arealdetectoritisalsoamea- exoticparticlesin the(cid:12)nalstate.Thisisthecase surementofthe energy thatescapes detection due to forsupersymmetry modelswith conserved R par- uninstrumented regionsand otherdetectore(cid:11)ectssuch ity,wheretheweaklyinteractingparticlesareneu- asimperfectcalorimeterresponse. M uonsare sources tralinoLSPs.Italsoappliesformoregenericmod- ofmissing energy sincea muon typically depositsonly elswithW IM P darkmattercandidates. ofordera few GeV ofitstotalenergy in thecalorime- ters2. QCD jetsproducerealEmiss from semileptonic W efocusonadiscoveryanalysisdevelopedforthelast T decaysofheavy (cid:13)avor,and fake Emiss from detector- case. Thusweareinterested in signaleventswith two T induced mismeasurements.ThustheEmiss distribution heavy W IM Ps in the (cid:12)nalstate. For early discovery T ofa pureQCD multijetsamplehasa long tailrelated attheLHC,thesignaleventsshould havestrong pro- to non-Gaussian tails in the detector response. This duction crosssections;wewillassumethateach W IM P givesrisetoanimportantbackgroundtomissingenergy arisesfrom thedecayofastronglyinteractingheavypar- searchesthatisdi(cid:14)culttoestimatepriortodata.Atthe entparticle.Themostgenericsignatureisthereforelarge Tevatronithasbeenshownthatthisbackgroundcanbe ETmissinassociationwithatleasttwohighET jets.There broughtundercontrolbyexploitingthefactthatthefake willbeadditionaljetsiftheW IM P isnotproducedina Emissfrom jetmismeasurementsishighlycorrelatedwith 2-bodydecayoftheparentparticle.Furthermore,there T theazimuthaldirectionsoftheleadingjets[16]. isasigni(cid:12)cantprobabilityofan extrajetfrom QCD ra- There are other important sourcesoffake Emiss at diation,dueto thelargephasespace. Thusitisonly hadroncolliders,includingbeam haloinducedEmiTss,cos- slightly lessgeneric to design an inclusive analysisfor T largeEmiss in association with threeormoreenergetic mic ray muons,noise in the data acquisition system, T jets.W ewillrefertothisastheinclusivemissingenergy signature3. 2 Theenergylossofmuonsismostlyduetoionizationuptomuon energiesof100GeV.Above100GeV bremsstrahlungandnuclear lossescan causeasingle\catastrophic"energy losscomparable 3 Therequirementofathirdenergeticjetgreatlyreducesthesize tothetotalmuonenergy. andcomplexityoftheStandardM odelbackgrounds.Thuswhile 4 In the basic 2 ! 2 hard scattering,the heavy par- missingtransverseenergyEmiss(cid:21) 200GeV and atleast T entparticlesofthesignalwillbeproducedback-to-back threejetswithE (cid:21) 30GeV withinpseudorapidityj(cid:17)j< T in the partonic subprocesscenter-of-massframe;typi- 3. These requirementsdirectly de(cid:12)ne the missing en- callytheywillhavep roughlycomparabletotheirmass ergy signalsignature. In addition theleading jetisre- T m .TheW IM Psofmassm resultingfrom theparent quired to bewithin thecentraltracker(cid:12)ducialvolume p dm particledecayswillfailtodepositenergy(cid:21) m in the i.e. j(cid:17)j< 1:7. Everywherein thispaper\jets" means dm calorimeters;iftheW IM PS havefairly largep ,a sig- uncorrected (raw)jetswith E > 30 GeV and j(cid:17)j< 3 T T ni(cid:12)cantfraction ofthisenergycontributestotheEmiss. asmeasured in thecalorimeters;thejetreconstruction T Thuseitherlargem orlargem leadstolargeEmiss. iswithasimpleiterativeconealgorithm witha0.5cone p dm T NotetheazimuthaldirectionsoftheW IM PS areanti- sizeinthe(cid:17)(cid:0)(cid:30)space.Themissingenergyisuncorrected correlated,afeatureinheritedfrom theirparents,sothe forthepresenceofmuonsintheevent. magnitudeofthetotalEmiss tendsto belessthan the The rest ofthe analysis path is designed based on T magnitudeofthelargestsinglecontribution. elimination ofthemajorbackgrounds.TheQCD back- At the LHC,the most important Standard M odel ground from mismeasured jets isreduced by rejecting sourcesoflargerealEmiss willbett(cid:22),singletop,W and eventswheretheEmissistoocloselycorrelatedwiththe T T Z plusjetsassociated production,dibosonsand heavy azimuthaldirectionsofthejets.Toreducethelargeback- (cid:13)avordecays. M ostoftheseprocessesproducea hard ground from W (! ‘(cid:23))+jets,Z(! ‘‘)+jetsand tt(cid:22)pro- lepton in association with theEmiss from an energetic ductionanindirectlepton veto(ILV)schemeisdesigned T neutrino. Theexception isZ ! (cid:23)(cid:23)(cid:22). Even with a per- thatusesthetrackerand thecalorimeters.TheILV re- fectdetector,Z ! (cid:23)(cid:23)(cid:22) plusjetsisan irreduciblephysics tainsalargesignale(cid:14)ciencywhileachievingafactorof background. two rejection ofthe remaining W and tt(cid:22)backgrounds. Theveto isindirectbecausewedon’tidentify leptons{ insteadeventsarerejectediftheelectromagneticfraction ofoneofthetwoleadingjetsistoolarge,orifthehighest A. Analysispath p trackoftheeventisisolated.Thesignalsweareinter- T ested in arecharacterized by highlyenergeticjetswhile In therealdata thissearch willbeperformed start- leptonsinthesignaloriginatefrom cascadedecaysofthe ingfrom aprimary datasetthatincludesrequirements parentsorsemileptonicB decaysin thejets;thuseven ofmissingenergy,jetsand generalcalorimetricactivity when a signaleventhasleptonsitisrelatively unlikely atthetriggerpath;thetriggere(cid:14)ciencyshouldbemea- toberejected by theILV.Forthemodelsin ourstudy, suredinotherdatasamples. approximately85% ofallsignaleventsand70% ofsignal For the o(cid:15)ine analysis,we willadoptthe inclusive eventswithmuonsortauspasstheILV cut. missingenergybenchmarkanalysisstudiedwith thefull The (cid:12)nalselectionsrequire thatthe leading jethas detectorsimulation fortheCM S PhysicsTechnicalDe- E > 180GeV,and thatthesecond jethasE > 110 signReport[10,11]. T T GeV.W ealsorequireH > 500GeV,where The (cid:12)rstphase isa preselection based on the event T quality.Thepurposeofthisprimarycleanupistodiscard eventswith fakeEmiss from sourcessuch asbeam halo, X4 T H = Ei + Emiss; (1) dataacquisition noiseand cosmicraymuons.Toelimi- T T T natethesetypesofbackgroundsthebenchmarkanalysis i=2 usesjetvariables,averagesthem overtheeventto de- where the E issummed overthe second,third and (cid:12)necorrespondingeventvariables,andusesthesetodis- T fourth (ifpresent)leading jets. These cuts selectfor criminaterealEmiss+ multijeteventsfrom spuriousback- T highlyenergeticevents,greatlyfavoringeventswithnew grounds.Theeventelectromagneticfraction(EEM F)is heavyparticlesovertheStandardM odelbackgrounds. de(cid:12)ned tobetheE weighted jetelectromagneticfrac- T TableIsummarizesthebenchmarkanalysispath.The tion. W e de(cid:12)ne an eventcharged fraction (ECHF)as tableliststhecumulativee(cid:14)cienciesaftereachselection theeventaverageofthejetchargedfraction (de(cid:12)ned as P fora benchmark signalmodeland theStandard M odel theratioofthe p ofthetracksassociatedwithajet T backgrounds. ThesignalmodelistheCM S supersym- overthetotalcalorimetricjetE ).Thepreselectionalso T metry benchmark modelLM 1,which hasagluinowith hasaqualityrequirementforthereconstructedprimary mass611GeV andsquarkswithmassesaround560GeV. vertex. Thelastlineofthetableshowstheexpected numberof Eventsthatareaccepted by thepreselection require- eventsthatsurvivetheselectioninadatasetcorrespond- mentsproceed through the analysispath ifthey have ingto1000pb(cid:0)1 ofintegratedluminosity.FortheQCD backgroundandthesingletopbackground,whicharenot shown in thetable,theestimated numberofremaining eventsis107 and 3,respectively. Thusthe totalesti- matureLHC analyseswillexplorethefullyinclusiveEmisssig- T matedStandardM odelbackgroundafterallselectionsis nature,weassumeherethatanearlydiscoverywillbebasedon amultijet+ Emiss datasample. 245eventsper1000pb(cid:0)1. T 5 TABLE I:Cumulativeselection e(cid:14)ciencyaftereach requirementin theE miss+ multijetsanalysispath foralow massSUSY T signalandthemajorStandardM odelbackgrounds(EW K referstoW =Z,W W =ZZ=ZW ),see[10,11]). Cut/Sample Signal tt(cid:22)Z(! (cid:23)(cid:23)(cid:22))+ jetsEW K + jets All(%) 100 100 100 100 Trigger 92 40 99 57 Emiss> 200GeV 54 0.57 54 0.9 T PV 53.8 0.56 53 0.9 N (cid:21)3 39 0.36 4 0.1 j j(cid:17)j1j(cid:21) 1:7 34 0.30 3 0.07 d EEM F (cid:21) 0.175 34 0.30 3 0.07 ECHF (cid:21) 0.1 33.5 0.29 3 0.06 QCD angular 26 0.17 2.5 0.04 Isoleadtrk = 0 23 0.09 2.3 0.02 EM F(j1); EM F(j2)(cid:21) 0:9 22 0.086 2.2 0.02 ET;1 > 180GeV, ET;2 > 110GeV 14 0.015 0.5 0.003 H > 500GeV 13 0.01 0.4 0.002 T eventsremainingper1000pb(cid:0)1 6319 54 48 33 B. Triggersand \boxes" (cid:15) The M uon20 trigger requires an energetic muon thatisnotnecessarilyisolated.Thetriggeris88% e(cid:14)cientformuonswithp = 20GeV/c,asymptot- Havingestablishedabenchmarkanalysispath,wealso T ingto95% asseeninFigure4. need to de(cid:12)nebenchmark data samples. W ith thereal LHC datathesewillcorrespondtodatastreamsanddata Afterapplying theselection requirements,thesefour pathsfrom varioustriggers. Forthe inclusive missing triggersde(cid:12)nefourpotentialdiscoverydatasets.In our energy signaturerelevanttriggersaretheEmiss and jet T simulationtheDiJet,TriJet,andM uon20datasets,after triggers.A singlelepton triggerisalsoofinterest,since theinclusivemissingenergyanalysispathisapplied,are many models produce energetic leptons in association allsubsetsoftheM ET sample,apartfrom oneortwo with largeEmiss. Forourstudy wehavechosen simple T eventsper1000pb(cid:0)1 5. ThustheM ET isthelargest, butreasonable[25,26]parametrizationsofthe trigger mostinclusivesample.W eperform onecompleteanaly- e(cid:14)cienciesde(cid:12)ningourfourbenchmarktriggers 4 : sisbased on theM ET trigger.Theotherthreetriggers arethentreatedasde(cid:12)ningthreemoreboxes,i.e.experi- (cid:15) TheM ET triggerisapureinclusiveEmisstrigger. T mentallywell-de(cid:12)nedsubsetsoftheM ET discoverydata Itis50% e(cid:14)cientforE miss> 80 GeV,asseen in T set. Thesimplestphysicsobservablesarethecountsof Figure1. eventsineachbox. (cid:15) TheDiJettriggerrequirestwoveryhighE jets.It T is50% e(cid:14)cientforuncorrected jetE > 340GeV, T C. Backgroundsand system atics asseeninFigure2. IntheCM SstudythetotalnumberofStandardM odel (cid:15) TheTriJettriggerrequiresthreehigh E jets. It T background eventsremaining afterallselectionsis245 is50% e(cid:14)cientforuncorrected jetE > 210GeV, T per1000 pb(cid:0)1 foran Emiss triggersample. Theerror asseeninFigure3. T on thisestimateisdominated by i)theuncertainty in how wellthedetectorsimulation softwaresimulatesthe 4 Thesearemade-up triggersforthepurposesofourstudy.The guidanceon ourparametrizationsisfrom thepublished trigger andphysicsreportsoftheCM Sexperiment.W eexpectthatthe 5 A perfectlydesignedtriggertablewillgiverisetooverlapsamong triggertablesoftheLHC experimentswillincludecorresponding datasetsfrom di(cid:11)erenttriggerpathsdue to both physicsand triggerpaths,richerandbetterintermsofthephysicscapture. slow/non-sharptriggere(cid:14)ciencyturn-ons(resolution). 6 y y nc 1 nc 1 e e ci ci effi effi r r e 0.8 e 0.8 g g g g ri ri T T 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 50 100 150 200 250 300 100 150 200 250 300 350 Emiss (GeV) E (GeV) T T FIG.1:TheEmisstriggere(cid:14)ciency. FIG.3:TheTriJettriggere(cid:14)ciency. T y y 1 nc 1 nc e e ci ci r effi r effi 0.8 e 0.8 e g g g g ri ri T T 0.6 0.6 0.4 0.4 0.2 0.2 0 0 300 310 320 330 340 350 360 370 380 390 400 0 10 20 30 40 50 60 E (GeV) p (GeV/c) T T FIG.2:TheDiJettriggere(cid:14)ciency. FIG.4:TheM uon20triggere(cid:14)ciency. responseoftheactualCM S detector,and ii)theuncer- overallsystematicerror.Thelook-alikeanalysiswillbe taintyonhow welltheStandardM odeleventgenerators degraded,however,intheeventthattheStandardM odel emulateQCD,top production,and W =Z plusjetspro- backgroundsturn outto be much largerthan current duction. Detailed studiesoftherealLHC data willbe estimates. required in orderto producereliableestimatesofthese Priortodata,itisalsodi(cid:14)culttomakeareliableesti- uncertainties. mateofthemainsystematicuncertaintiesthatwilla(cid:11)ect Priortodataweassignconservativeerrorbarsonthese theinclusivemissingenergyanalysis.Systematicuncer- backgroundprojections.W ehavecheckedthat100pb(cid:0)1 taintieswilldecreaseovertime,asthedetectorsarebet- ofdatain theM ET triggersampleissu(cid:14)cientfora5(cid:27) terunderstood,calibration studiesare performed,and discovery fortheeightmodelsin ourstudy,even ifwe StandardM odelphysicsisanalyzedwiththeLHC data. triplethebackgroundsquoted aboveand includea15% Forourstudy wehaveassumed that,atthemomentof 7 discovery,thedominantsystematicerrorsinthefulldis- W eperformed apreliminarystudy by comparingPGS coverydatasetwillcomefrom threesources: results to the fullsimulation results reported for the SUSY benchmark modelLM 1 [10,11]. W efound that (cid:15) Luminosity uncertainty:ita(cid:11)ectsthecountingof PGS jetsare nota good approximation ofuncorrected events.Thissystematicuncertainty isprocessin- jetsin thefullsimulation,even forthemostbasicprop- dependent. ertiessuchastheE spectrum.Varyingtheparameters T andaddingsimpleimprovements,suchastakingintoac- (cid:15) Detectorsimulation uncertainty:itmainly a(cid:11)ects countthe4Tesla(cid:12)eldinthebarrel,didnotchangethis calorimetry-related variablesin ourstudy,in par- conclusion. PGS jetshavea behavior,notsurprisingly, ticularjetcounting and themissing energy. This thatisintermediatebetweengeneratorleveljetsandun- systematicispartiallyprocessdependent. correctedfullsimulationjets. (cid:15) QCD uncertainty: it includes the uncertainties W e developed a modi(cid:12)ed simulation called PGSCMS from thepartondistributionfunctions,higherorder with the geometry and approximate magnetic (cid:12)eld of matrixelements,andlargelogarithms.Thisuncer- the CM S detector. The PGS Gaussian smearing and taintya(cid:11)ectseventcounting,jetcountingand the uninstrumentede(cid:11)ectsinthecalorimetersareturnedo(cid:11). shapesofkinematic distributions. Itispartially Electrons,muonsandphotonsareextractedatgenerator processdependent. level,andPGStaureconstructionisnotused.Trackinfor- mationisextractedasinthestandardPGS.Thecalorime- Note that,since weuse uncorrected jets,we do not teroutputimprovesonageneratorlevelanalysisinthat have a systematic from the jet energy scale. This is weincludeapproximationstothee(cid:11)ectsofsegmentation traded fora portion ofthe detectorsimulation uncer- and the4Tesla(cid:12)eld,aswellasan (cid:17) correction derived tainty,i.e. how wellwecan map signaleventsintoun- from thezvalueoftheprimaryvertex.W eparameterized correctedjetsaswouldbemeasuredintherealdetector. thedetectorresponsein a limited setoflook-up tables asafunctionofthegenerator-levelquantities. Attheanalysislevelweapply parameterized correc- D. Sim ulation ofthe signals tionsandreconstructione(cid:14)cienciesinspiredbythepub- lished CM S detectorperformance[29].Forthejets,we A realistic study oflook-alikesrequiresfulldetector applyanE and(cid:17)dependentrescalingoftheirE ,tuned T T simulation.Fortheinitialphaseofthisworkagenera- toreproducethefullsimulation LM 1resultsin [10,11]. torlevelanalysisisattractive,beingcomputationallyless Thisrescalingmakesthejetssofter(i.e. takesinto ac- intensiveandprovidingaclearlinkbetweenobservables countthedetectorreconstruction):a50GeV generator andtheunderlyingtheorymodels6. leveljetbecomesanapproximately30GeV raw jetinour Inageneratorlevelanalysis,jetsarereconstructedby analysis. applying a standard algorithm to particlesratherthan The Emiss reconstructed from PGSCMS is essentially to calorimetertowers. Thisobviously doesnotcapture T identical,modulosmallcalorimetersegmentatione(cid:11)ects, thee(cid:11)ectsofarealisticcalorimeterresponse,calorimeter toaageneratorlevelanalysis,i.e.ourEmissisvirtually segmentation,and energy lossesdueto materialin the T indistinguishablefrom theM onteCarlotruth Emiss ob- trackeraswellasmagnetic(cid:12)elde(cid:11)ects. T tainedfrom minusthevectorsum oftheE ofneutrinos, A compromisebetweenthefullsimulationandagener- T muonsand theotherweakly interactingparticles(such atorlevelanalysisisaparameterizeddetectorsimulation. astheLSP).W edid notattemptto rescaletheEmiss; FortheLHC thepubliclyavailablesoftwarepackagesin- T thisisa complicated task since Emiss isa vectorand cludeAcerDET[27],and PGS[28].In such asimulation, T in generalenergy losses,calorimeterresponseand mis- electrons,muonsand photonscan bereconstructed us- measurementstend todecreasethereallargeEmisstails ing parameterized e(cid:14)cienciesand resolutionsbased on T whileincreasingtheEmisstailsinthedistributionofnon- abstractbuteducated rules-of-thumb formodern mul- T realEmiss events. Instead ofattempting to rescalethe tipurposedetectors. Jetsarereconstructed in a virtual T Emiss eventby event,we raised the Emiss cut in our calorimeter,from particleenergiesdepositedincellsthat T T benchmarkanalysisto220GeV7. roughly mimic the segmentation ofa realcalorimeter. Becauseofthelimitationsofourfastsimulation,we Calorimeterresponseisapproximated by performing a Gaussiansmearingontheseenergydeposits.TheEmissis alsosimpli(cid:12)edpartsofthebenchmarkanalysis.The(cid:12)rst T phaseprimary cleanup isdropped sinceitisrelated to reconstructedfrom thesmearedenergiesinthesevirtual supressionofspuriousprocessesthatwedonotsimulate, towers. anditisnearly100% e(cid:14)cientforthesignal.W ealsodrop thejetelectromagneticfractioncutsoftheILV,because 6 ThefullGEANT4-basedsimulationistooslow toadequatelysam- ple the entire theory space. Having completed the (cid:12)rst ex- ploratory phaseofthiswork,wearerepeating theanalysisto 7 Inarealisticfullsimulationstudywiththe(cid:12)rstjetdatainhand, validatetheseresultswiththefullexperimentalsimulation. ourEmissanalysiswillavoidsuchcompromises. T 8 theyarenearly100% e(cid:14)cientforthesignal. A. SUSY Theresulting performanceofourparameterized fast simulationfortheSUSY benchmarkmodelLM 1isshown In a largeclassofsupersymmetry modelswith con- inTableII.Theagreementwiththefullsimulationstudy servedR parity,notnecessarilyrestrictedtotheM SSM , isvery good. Thelargestsinglecutdiscrepancy is2%; theLSP iseitherthelightestneutralinooraright-handed thisoccursfortheQCD angularcuts,re(cid:13)ectingtheex- sneutrino8. pected factthatourfastsimulation doesnotaccurately In addition, if the NLSP is a neutralino or sneu- reproduce jetmismeasuremente(cid:11)ects. Since the (cid:12)nal trino and the LSP isa gravitino,the Emiss signature T e(cid:14)cienciesagreetowithin 7%,itisplausiblethatlook- isthesame.M odelsbased on gravity-mediated,gauge- alikesde(cid:12)ned in ourfastsimulation study willremain mediated oranomaly-mediated SUSY breaking allpro- look-alikesinourupcomingfullsimulationstudy. videmanycandidatemodels. Itisimportantto notethatthisfastsimulation does BecausethisrelevantportionofSUSY theoryspaceis notreproducetheStandard M odelbackground e(cid:14)cien- alreadysovast,thereisatemptationtoreducethescope ciesshown in TableI. In factthediscrepanciesin the oftheLHC InverseProblem by making explicitorim- totale(cid:14)cienciescan approach an orderofmagnitude. plicittheoreticalassumptions.Totakean extreme,one Thisisto be expected. W e are cutting very hard on couldapproachanearlyLHC discoveryintheEmisschan- T theStandardM odelevents,thustheeventsthatpassare nelhavingalreadymadetheassumptionsthat(i)thesig- very atypical. Thisisin contrastto thesignalevents, nalisSUSY,(ii)ithasaminimalHiggssector(M SSM ), wherethefraction thatpassarestillfairly generic,and (iii)ithasgravity-mediated SUSY breaking(SUGRA), theirET andETmissspectranearthecutsarelesssteeply (iv)thebreakingisminimal(mSUGRA)and (v)100% falling than thoseofthe background. Since SM back- ofdarkmatteristhermalrelicLSPswith anabundance groundscannotbeestimated from aPGS levelanalysis, given by extrapolatingstandard cosmology back to the wetakeourbackgroundsfrom thestate-of-the-artanaly- decouplingepoch.W edon’twanttomakeanysuch as- sisin[10];thisapproachonlyworksbecausewehavealso sumptions;ratherwewanttotesttheoreticalhypotheses matchedtheanalysispathusedin[10]. intheLHC discoverydatasetcombinedwithothermea- Thefullsoftwarechainsweusein ourstudyaresum- surements. marized in TableIII.Allofthesimulated datasetsin- ForSUSY wehavethebene(cid:12)tofmorethanonespec- cludean averageof5 pileup eventsadded to each sig- trum calculatorthatcan handle generalmodels,more nalevent,correspondingtolow luminosityLHC running thanonematrixelementcalculatorandeventgeneration ((cid:24) 1033 cm(cid:0)2s(cid:0)1). scheme,and astandardized interfaceviatheSUSY Les HouchesAccord(SLHA)[32].Therearestillafew bugs in thisgrandedi(cid:12)ce,buttheexistingfunctionalitycom- bined with theability to perform multiplecross-checks III. POPULATING THE THEORY SPACE putsuswithin sightofwhereweneed to bewhen the dataarrives. In Section IIwegavea partialclassi(cid:12)cation ofBSM modelsaccording to how many new weakly interacting particlesappearinatypical(cid:12)nalstate.Ourbenchmark B. Little Higgs Emiss analysisis optimized for the case oftwo heavy T weaklyinteractingparticlesperevent,asappliestoSUSY LittleHiggsmodelsareapromisingalternativetoweak modelswithconservedR parity,littleHiggsmodelswith scalesupersymmetry[33]-[37].InlittleHiggsmodels,the conservedT parityandUniversalExtraDimensionsmod- Higgsisan approximateGoldstoneboson,with global elswith conserved K K parity.Thisstudy isa (cid:12)rstat- symmetriesprotectingitsmass(whichoriginatesfrom a temptatconstructinggroupsoflook-alikemodelsdrawn quantum levelbreakingofthesesymmetries)from large from thisratherlargefractionoftheBSM theoryspace, radiativecorrections.M anyoftheseLH modelsrequire and developing strategiesto discriminate them shortly anapproximateT paritydiscretesymmetrytoreconcile afteraninitialdiscovery. LH with electroweak precision data. Thissymmetry is Onecaveatisthatmodelsfrom othercornersofthe similartoR parity in SUSY models.Thenew LH par- theoryspacemayalsobelook-alikesoftheonesconsid- ticlesthatwouldbeproducedattheLHC wouldbeodd eredhere.Forexample,modelswithstrongproductionof underthissymmetry,enforcingthestabilityofthelight- heavyparticlesthatdecaytoboostedtopquarkscanpro- estparticlethatisoddunderT parity.Thisnew particle ducehigherET jetsandlargerETmissfrom neutrinosthan isweaklyinteractingandwouldmanifestitselfasmissing doesStandard M odeltop production. Such look-alike possibilitiesalsorequirestudy,buttheyarenotamajor worrysinceourresultsshow thatwehavesomeabilityto discriminateheavyW IM PSfrom neutrinoseveninsmall 8 Recentanalyses[30,31]haveargued forthephenomenological datasets. viabilityofsneutrinodarkmatter. 9 TABLE II:Comparison ofcut-by-cutselection e(cid:14)cienciesforourE missanalysisappliedtotheSUSY benchmarkmodelLM 1. T \Full"referstothefullsimulationstudy[10,11];\Fast"iswhatweobtainfrom ourparameterized fastsimulation. Cut/Software Full Fast Triggerand Emiss> 200GeV 53.9% 54.5% T N (cid:21)3 72.1% 71.6% j j(cid:17)j1j(cid:21) 1:7 88.1% 90.0% d QCD angular 75.6% 77.6% Isoleadtrk = 0 85.3% 85.5% ET;1 > 180GeV, ET;2 > 110GeV 63.0% 63.0% H > 500GeV 92.8% 93.9% T Totale(cid:14)ciency 12.9% 13.8% TABLE III:Summaryofsoftwarechainsused in thisstudy.ThelittleHiggsspectrum isbased on [38].PGSCMSisavariation ofPGS v4[28]. Software/M odels Group1models Group2models Spectrum generator Isajet v7.69[39]or privatelittleHiggs orSUSY-HIT v1.1[40]orSuSpect v2.34[41] M atrixelementcalculator Pythia v6.4[42] MadGraph v4[43] Eventgenerator Pythia v6.4 MadEvent v4[44] withBRIDGE[45] Showeringandhadronization Pythia v6.4 Pythia v6.4 Detectorsimulation PGSCMS v1.2.5 PGSCMS v1.2.5 plusparameterized plusparameterized corrections corrections energyattheLHC9. assinglets.ThelightestT oddparticleinthismodelwe Justasin SUSY,new colored particlesarethedom- labelAH .Itisaheavygaugebosonthatisanadmixture inantproduction modes. These particlessubsequently ofa heavy copy ofthehyperchargegaugeboson and a generate high multiplicity (cid:12)nal states through decay heavyW 3 boson. chainsthatend with thelightestT odd particle.In LH Foreventgeneration,weuseaprivateimplementation models,thestronglycoupledparticlesareT odd quarks ofthelittlestHiggsmodelwithin MadGraph.Thereisa (TOQ’s),analogoustothesquarksofSUSY.Theweakly needtogeneralizethistoawiderclassofmodels. coupledanaloguesofthegauginosareT oddspinonevec- torbosons(TOV’s). In themodelsconsidered to date, thereisnoanalogofthegluino:thisisanimportantcon- C. Universalextra dim ensions sideration in constructingsupersymmetriclook-alikesof LH models. Universalextradimensionsmodelsarebased on orb- Inthisstudy,weworkwithaminimalimplementation ifolds ofone or two TeV(cid:0)1 size extra spatialdimen- ofalittleHiggsmodelwithT paritythatisknownasthe sions[49]-[56]. The(cid:12)ve-dimensionalversion ofUED is littlestHiggsmodelwith T parity.Thismodelisbased the simplest. Atthe (cid:12)rstlevelofKaluza-Klein (K K ) onaSU(5)=SO(5)patternofglobalsymmetrybreaking. excitations,each Standard M odelboson hasan associ- EachSM particleexceptthegluonhasanassociatedLH atedpartnerparticle,andeachStandardM odelfermion partnerodd underT parity.Thereisalsoan extrapair hastwo associated partnerparticles(i.e. a vector-like oftoppartners,oneT oddandtheotherT even,aswell pair).TheseK K partnersareodd underaK K parity, theremnantofthebrokentranslationalinvariancealong the(cid:12)fth dimension.Thisparityisassumedtobeanex- actsymmetry.Aftertakingintoaccountmasssplittings 9 Thissymmetry may beinexact,orviolated by anomalies[46]. dueto Standard M odelradiativecorrections,one(cid:12)nds Suchpossibilitiesaremodeldependent[47,48]. thatthelightestK K oddpartnerisnaturallytheweakly 10 interacting partnerofthehyperchargegaugeboson. A benchmarkmodelLM 2;LM 2phasaslightlylargervalue widevarietyofspectrafortheK K oddpartnerscanbe ofm (360versus350GeV)thanLM 2,whichmakesit 1=2 obtained byintroducingadditionalinteractionsthatare moreofalook-alikeoftheotherGroup1models. localized attheorbifold (cid:12)xed points;thesechoicesdis- tinguish genericUED from theoriginalminimalmodel TABLE IV: Input parameters for the mSUGRA models of[49].ThesemodelsresembleSUSY. LM 2p,LM 5and LM 8.Thenotation comformsto[39].The A publiceventgeneration codebased on a modi(cid:12)ca- massparametersand trilinearA0 parameterhave unitsof tionofPythiaisavailableforgeneric5-dimensionalUED GeV. models[57].Thereisaneedtogeneralizethistoawider LM 2p LM 5 LM 8 classofmodels,e.g. 6-dimensionalUED.In ourstudy wehavenotusedanyUED examples,butwewillinclude m0 185 230 500 them inthefuture. m1=2 360 360 300 A0 0 0 -300 tan(cid:12) 35 10 10 IV. DESCRIPTION OF THE M ODELS sign((cid:22)) + + + A. Group 1 The(cid:12)velook-alikemodelsofGroup 1 areallM SSM TABLE V:InputparametersfortheM SSM modelsCS4dand models.Twoofthem (LM 5 and LM 8)areCM S SUSY CS6.Thenotationconformsto[40,41].Themassparameters benchmarkmodels,whileanother(LM 2p)isaslightvari- andtrilinearA parametershaveunitsofGeV. ationofaCM S benchmark.Itisasoberingcoincidence CS4d CS6 thatthesearelook-alikesoftheEmissanalysis,sincethe T benchmarksweredevelopedbyCM Stocoverdi(cid:11)erentex- M 1 620 400 perimentalsignatures,notproducelook-alikes.Toround M 2 930 600 outGroup1wefoundtwootherM SSM look-alikeswhose M 3 310 200 spectraanddecaychainsareasdi(cid:11)erentfrom eachother A ;A ;A ;A ;A ;A -400 -300 (cid:28) t b e u d and from thethreeCM S benchmarksaswecould make M ;M ;M 340 2000 them. QL tR bR M ;M ;M 340 2000 Themodelsareconsistentwithallcurrentexperimen- qu uR dR M ;M ;M ;M 340 340 talconstraints,butdo notallgive the \correct" relic (cid:28)L (cid:28)R eL eR density ofdark matter. Any comparison ofrelicdensi- M h2u;M h2d 115600 115600 tiestotheso-calledW M AP constraintsassumesatleast tan(cid:12) 10 10 threefactsnotyetinevidence:(i)thatdarkmatterisa sign((cid:22)) + + thermalrelic,(ii)thatthereisonlyonesigni(cid:12)cantspecies ofdarkmatterand(iii)thatcosmologicalevolutionwas entirelyradiation-dominatedfrom thetimeofdarkmat- TheGroup 1modelsCS4d and CS6arenotminimal terdecouplinguntilthetimeofBigBangnucleosynthe- supergravity;they are more generalhigh scale M SSM sis.A missingenergydiscoveryattheLHC willhelp us modelsbasedon thecompressedsupersymmetryideaof testwhethertheseassumptionshaveany validity. For M artin [63,64]. The high scale inputparametersare example,modelLM 8 producesa relicdensity an order shown in Table V. W e have used m = 175 GeV top ofmagnitudelargerthantheW M AP upperbound;thus andthespectrum generatorcombinationSuSpect v2.34 discriminating LM 8 asa morelikely explanation ofan with SUSY-HIT v1.1 [40,41]. M odelCS4d isin fact early missing energy discovery would callinto question partofthecompressedSUSY modellinede(cid:12)nedin[63]. [58,59]assumptions(i)and(iii),orcouldbeahintthat M odelCS6isamodi(cid:12)cationofcompressedSUSY where thelightestneutralinoisnotabsolutelystable. allofthesquarkshavebeenmadeveryheavy,>(cid:24) 2TeV. LM 2p,LM 5and LM 8areminimalsupergravitymod- ThesuperpartnermassspectraoftheGroup1models els[60]-[62]. They arespeci(cid:12)ed by theusualhigh scale aredisplayedinFigure5.Onenotesimmediatelythatall mSUGRA inputparametersasshown in TableIV;be- ofthemSUGRA modelsaremoresimilartoeach other causetheresultingsuperpartnerspectradependstrongly thantheyaretoeitherofthemoregeneralM SSM mod- onRGE runningfrom thehighscale,acompletespeci(cid:12)- elsCS4dandCS6;thisshowsthelimitationsoftheusual cation ofthemodelsalso requires(cid:12)xing thetop quark SUSY analysesthat do notgo beyond mSUGRA.As mass and the particular spectrum generator program theirnameimplies,thecompressed SUSY modelsCS4d used. W ehaveused m = 175 GeV and theISAJET andCS6haveacompressedgauginospectrum relativeto top v7.69generator[39],inordertomaintaincompatibility mSUGRA;thisproduceseitheralightgluino(asinCS6) withtheCM SPhysicsTDR [10].M odelsLM 5andLM 8 oraheavyLSP (asinCS4d). arethenidenticaltothemSUGRA benchmarkmodelsof The relative frequency ofvariousLHC superpartner theCM SPhysicsTDR,whileLM 2pisalmostidenticalto productionprocessesissummarizedinTableVI,forthe
Description: