Minkowski sums and Hadamard products of algebraic varieties NetanelFriedenberg,AlessandroOneto,andRobertL.Williams 7 1 0 2 n a J AbstractWestudyMinkowskisumsandHadamardproductsofalgebraicvarieties. 2 Specifically we explore when these are varieties and examine their properties in 1 termsofthoseoftheoriginalvarieties.ThisprojectwasinspiredbyProblem5on ] Surfacesin[13]. G A . h 1 Introduction t a m Inalgebraicgeometrywehaveseveralconstructionstobuildnewalgebraicvarieties [ fromgivenones.Examplesofclassical,well-studiedconstructionsarejoins,secant 1 varieties,rationalnormalscrolls,andSegreproducts.Inthesecases,itisveryinter- v estingtounderstandgeometricproperties,e.g.,thedimensionandthedegree,ofthe 1 varietyconstructedintermsofthoseoftheoriginalvarieties.Inthischapterwefo- 9 cusontheMinkowskisumandtheHadamardproductofalgebraicvarieties.These 1 3 0 NetanelFriedenberg . 1 YaleUniversity, 0 10HillhouseAve-Ste442 7 POBox208283 1 NewHaven,CT06520-8283,UnitedStates : e-mail:[email protected] v i AlessandroOneto X INRIASophiaAntipolisMe´diterrane´e, r 2004RoutedeLucioles, a 06902SophiaAntipolis,France, e-mail:[email protected] RobertL.Williams TexasA&MUniversity,DepartmentofMathematics Mailstop3368 CollegeStation,TX77843-3368UnitedStates e-mail:[email protected] 1 2 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams areconstructedbyconsideringtheentry-wisesumandmultiplication,respectively, ofpointsonthevarieties.Duetothenatureoftheseoperations,thereisaremarkable differencebetweentheaffineandtheprojectivecase. The entry-wise sum is not well-defined over projective spaces. For this reason, weconsideronlyMinkowskisumsofaffinevarieties.However,inthecaseofaffine cones, the Minkowski sum corresponds to the classical join of the corresponding projectivevarieties.Conversely,wefocusonHadamardproductsofprojectivevari- etiesand,inparticular,ofvarietiesofmatriceswithfixedrank.Thisisbecausethese Hadamardproductsparametrizeinterestingproblemsrelatedtoalgebraicstatistics andquantuminformation. Ouroriginalmotivatingquestionwasthefollowing. Question1.1.Which properties do the Minkowski sum and the Hadamard product havewithrespecttothepropertiesoftheoriginalvarieties?Inparticular,whatare theirdimensionsanddegrees? Wenowintroducetheseconstructions.Weworkoveranalgebraicallyclosedfieldk. Wewilladdextraassumptionsonkwhenneeded.Weusethenotationk×:=k\{0}. Definition1.2.LetX,Y ⊂An beaffinevarieties.WedefinetheMinkowskisumof X and Y, denoted X+Y, as the Zariski closure of the image of X×Y under the entry-wisesummationmap φ : An×An → An, + ((a ,...,a ),(b ,...,b ))(cid:55)→(a +b ,...,a +b ) 1 n 1 n 1 1 n n Note that taking the Zariski closure of φ (X×Y) is necessary to construct an + algebraicvariety,asexplainedinExample3.1. As far as we know there is no literature about Minkowski sums of varieties. We computethedimensionanddegreeofMinkowskisumsofgenericaffinevarieties. Theorem3.9.Let X,Y ⊂An be varieties. Then, for X andY in general position, dim(X+Y)=min{dim(X)+dim(Y),n}. Corollary3.12.Supposekhascharacteristicotherthan2.LetX,Y ⊂An bevari- eties whose projective closures X,Y ⊂Pn are contained in complementary linear subspaces; equivalently, X,Y are contained in disjoint affine subspaces which are notparallel.Thenforgenericα ∈k×,deg(αX+Y)=deg(X)deg(Y). AcrucialobservationinourcomputationsisthattheMinkowskisumofaffineva- rietiesdisjointatinfinitycanbedescribedintermsofthejoinoftheirprojectiviza- tions, see Proposition 3.5 and Remark 3.6. This is a construction inspired by the combinatorialCayleytrickusedtoconstructMinkowskisumsofpolytopes. Definition1.3.LetX,Y ⊂Pnbeprojectivevarieties.WedefinetheHadamardprod- uctofX andY,denotedbyX(cid:63)Y,astheZariskiclosureoftheimageofX×Y under themap MinkowskisumsandHadamardproductsofalgebraicvarieties 3 φ : Pn×Pn (cid:57)(cid:57)(cid:75) Pn, (cid:63) ([a :...:a ],[b :...:b ])(cid:55)→[a b :a b :...:a b ]. 0 n 0 n 0 0 1 1 n n Let {x ,...,x } be the homogeneous coordinates over Pn. The map φ is not de- 0 n (cid:63) fined over the union of coordinate spaces HI×HIc, where I ⊂{0,...,n}, Ic is its complement,andH isthelinearspacedefinedby{x =0|i∈I}. I i Thus,theHadamardproductofprojectivevarietiesX,Y ⊂Pnis X(cid:63)Y :={p(cid:63)q : p∈X, q∈Y, p(cid:63)qisdefined}⊂Pn, where p(cid:63)q:=[p q :...: p q ]isthepointobtainedbyentry-wisemultiplication 0 0 n n of the points p=[p :...: p ] and q=[q :...:q ]. Also in this construction the 0 n 0 n operationofclosureiscrucial,asweshowinExample4.1. In [1], the authors studied the geometry of Hadamard products, with a particular focusonthecaseoflinearspaces.Thisworkhasbeencontinuedin[2]. Inparticular,weareinterestedinstudyingHadamardproductsofvarietiesofma- trices.TheHadamardproductofmatricesisaclassicaloperationinmatrixanalysis [7].Itsmostrelevantpropertyisthatitisclosedonpositivematrices.TheHadamard productoftensorsappearedmorerecentlyinquantuminformation[8]andinstatis- tics[4,11].Inthelatter,theauthorsstudiedrestrictedBoltzmannmachineswhich are statistical models for binary random variables where some are hidden. From a geometric point of view, this reduces to studying Hadamard powers of the first secantvarietyofSegreproductsofcopiesofP1.Aninterestingquestionistounder- standhowtoexpressmatricesasHadamardproductsofsmallrankmatrices.Wecall theseexpressionsHadamarddecomposition.WedefineHadamardranksofmatri- cesbyusingamultiplicativeversionoftheusualdefinitionsusedforadditivetensor decompositions.ThestudyofHadamardranksisrelatedtothestudyofHadamard powersofsecantvarietiesofSegreproductsofprojectivespaces. InSection4,wefocusinparticularonthedimensionoftheseHadamardpowers. We define the expected dimension and, consequently, we define the expected r- th Hadamard generic rank, i.e., the expected number of rank r matrices needed to decomposethegenericmatrixofsizem×nastheirHadamardproduct.Itis (cid:24)dimP(Mat )−dim(X )(cid:25) (cid:24) mn−(m+n−1) (cid:25) exp.Hrk◦(m,n)= m,n 1 = . r dim(X )−dim(X ) r(m+n−r)−m−n+1 r 1 WeconfirmthisiscorrectforsquarematricesofsmallsizeusingMacaulay2. Thepaperisstructuredasfollows.InSection2,wepresentsomeexplicitcom- putationsofthesevarieties.WeusebothMacaulay2[5]andSage[12].Thesecom- putations allowed us to conjecture some geometric properties of Minkowski sums andHadamardproductsofalgebraicvarieties.InSection3,weanalyzeMinkowski sums of affine varieties. In particular, we prove that, under genericity conditions, thedimensionoftheMinkowskisumisthesumofthedimensionsandweinvesti- gatethedegreeoftheMinkowskisum.InSection4,westudyHadamardproducts 4 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams and Hadamard powers of projective varieties. In particular, we focus on the case of Hadamard powers of projective varieties of matrices of given rank. We intro- ducethenotionofHadamarddecompositionandHadamardrankofamatrix.These conceptsmaybeviewedasthemultiplicativeversionsofthewell-studiedadditive decompositionoftensorsandtensorranks. 2 Experiments Problem5onSurfacesin[13]askedthefollowing: ComputetheMinkowskisumandtheHadamardproduct oftworandomcirclesinR3.Tryothercurves. InordertocomputeMinkowskisumsandHadamardproductsofcirclesandother curves,weusedthealgebrasoftwaresMacaulay2andSagetoobtainequationsand nice graphics. These also aided our general understanding of the geometric prop- ertiesoftheseconstructions.Viaeliminationtheory,wecancomputetheidealsof MinkowskisumsandHadamardproducts.ThisisthescriptinMacaulay2todoso. R = QQ[z_1..z_n, x_1..x_n,y_1..y_n]; I = ideal( ... ); -- ideal of X in variables x_i; J = ideal( ... ); -- ideal of Y in variables y_i; ---- construct the ideals of graphs of the maps ---- phi_+ and phi_star S = I + J + ideal(z_1-x_1-y_1,...,z_n-x_n-y_n); P = I + J + ideal(z_1-x_1*y_1,...,z_n-x_n*y_n); Msum = eliminate(toList{x_1..x_n | y_1..y_n}, S); Hprod = eliminate(toList{x_1..x_n | y_1..y_n}, P); With Sage, we produced graphics of the real parts of Minkowski sums and HadamardproductsofcurvesinA3.Thisisthescriptweused. A.<x1,x2,x3,y1,y2,y3,z1,z2,z3>=QQ[] I=( ... )*A # ideal of X in the variables x; J=( ... )*A # ideal of Y in the variables y; # construct the ideals defining the graphs of the maps # phi_+ and phi_star S = I + J + (z1-(x1+y1),z2-(x2+y2),z3-(x3+y3))*A P = I + J + (z1-(x1*y1),z2-(x2*y2),z3-(x3*y3))*A MSum = S.elimination_ideal([x1,x2,x3,y1,y2,y3]) HProd = P.elimination_ideal([x1,x2,x3,y1,y2,y3]) # Assuming we get a surface, take the one generator of # each ideal. MSumGen=MSum.gens()[0] HProdGen=HProd.gens()[0] MinkowskisumsandHadamardproductsofalgebraicvarieties 5 # We plot these surfaces. # Because MSumGen and HProdGen are considered as elements of A, # which has 9 variables, they take 9 arguments. var(’z1,z2,z3’) implicit_plot3d(MSumGen(0,0,0,0,0,0,z1,z2,z3)==0, (z1, -3, 3), (z2, -3,3), (z3, -3,3)) implicit_plot3d(HProdGen(0,0,0,0,0,0,z1,z2,z3)==0, (z1, -3, 3), (z2, -3,3), (z3, -3,3)) In Figures 1, 2, 3 and 4 are some of the pictures we obtained. These experiments gaveusafirstideaaboutthepropertiesofMinkowskisumsandHadamardproducts. Note2.1.ThefactthatX+Y andX(cid:63)Y aretheclosuresofimagesofX×Y under themapsφ andφ immediatelygivesusthat + (cid:63) dim(X+Y),dim(X(cid:63)Y)≤dim(X)+dim(Y) andthatifX andY areirreducible,soareX+Y andX(cid:63)Y. Also,thefactthatX+Y andX(cid:63)Y arelinearprojectionsofX×Y ⊂An×AnandX× Y ⊂Pn×Pn ⊂Pn2+2n, respectively, leads us to expect other geometric properties ofX+Y andX(cid:63)Y.BecausetheprojectionofavarietyZ⊂PN ingenericposition fromalinearspaceLwithdim(Z)+dim(L)<N−1isgenericallyone-to-one,we na¨ıvelyexpectthat,forX andY ingeneralposition,withdim(X)+dim(Y)<n, dim(X+Y),dim(X(cid:63)Y)=dim(X)+dim(Y), deg(X+Y)=deg(X×Y)=deg(X)deg(Y), (X×Y ⊂An) deg(X(cid:63)Y)=deg(X×Y)=(cid:0)dim(X)+dim(Y)(cid:1)deg(X)deg(Y), (X×Y ⊂Pn2+2n). dim(X) Theseexpectations,however,donotfollowdirectlyfromtheprojectionsofthevari- etiesingeneralpositionbecause,evenforX andY ingeneralposition,X×Y isnot ingeneralposition.Hence,weneedfurtheranalysisasinthefollowingsections. Fig.1 Minkowskisumofacircleofradius1inthex,y-planeandacircleofradius2inthex,z- plane.Thisisadegreefoursurface. 6 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams Fig.2 Minkowskisumofthetwoparabolasx=y2 inthex,y-planeandy=z2 inthey,z-plane. Thisisadegreefoursurface. Fig.3 Minkowskisumofthetwistedcubicwiththeunitcircleinthex,y-plane,y,z-plane,and x,z-planefromlefttoright,respectively.Eachoftheseareadegreesixsurface. Fig.4 TherealpartoftheHadamardproductof(left)theunitcircleinthez=1planeandthe unitcircleinthey=1planeand(right)thecirclesx2+(y+z)2=1,z−y=1andx2+(z−y)2= 1,y+z=1.Thesurfaceontheleftisofdegreefour,andthesurfaceontherightisofdegreetwo. 3 Minkowskisumofaffinevarieties Recall the definition of the Minkowski sum of two affine varieties X andY as the closureoftheimageofX×Y underthemap φ : An×An → An, + ((a ,...,a ),(b ,...,b ))(cid:55)→(a +b ,...,a +b ) 1 n 1 n 1 1 n n MinkowskisumsandHadamardproductsofalgebraicvarieties 7 Theoperationofclosureisneededinordertogetanalgebraicvariety.Indeed,we can give an example where X+ Y :=φ (X×Y)={p+q| p∈X,q∈Y}, the set + setwiseMinkowskisumofX andY,isnotclosed. Example3.1.In the affine plane A2 with coordinates {x,y}, consider the plane curves X ={xy=1} andY ={xy=−1}. We claim that φ (X×Y) contains the + torus(k×)2,soX+Y =A2.Forif(α,β)∈(k×)2and(p,q)∈X×Y thenφ (p,q)= + (α,β) if and only if we can write p and q in the forms p = (α+a, 1 ) and α+a q=(−a,1)forsomescalara(cid:54)=0,−α suchthatβ = 1 +1.Clearingdenomina- a α+a a torsinthislastexpression,wefindtherequirementisthatβa(α+a)=a+(α+a), i.e.aisazeroofthequadraticpolynomial f (t)=βt2+(βα−2)t−α.Notethat α,β f (0)=−α and f (−α)=βα2−βα2+2α−α =α.Soifweletabeazero α,β α,β of f thenwith pandqasabovewehaveφ (p,q)=(α,β). α,β + OntheotherhandX+ Y isnotallofA2.Ifthecharacteristicofthebasefieldis set not2,thenX+ Ydoesnotcontaintheorigin(thoughitdoescontainthepunctured set axes). In characteristic 2 we find that X+ Y contains no point of the punctured set axes{x=0}\{(0,0)}and{y=0}\{(0,0)}. OneofourmaintoolsforprovingresultsabouttheMinkowskisumisanalter- nativedescriptionofitintermsofthejoinofthetwovarieties. ForX,Y subvarietiesofAn orPn,weletJ (X,Y)bethesetwisejoinofX and set Y,i.e.,theunionofthelinesconnectingdistinctpointsx∈X andy∈Y.Thisspace isusuallynotclosedanditsZariskiclosureJ(X,Y)istheclassicaljoinofX andY. Our analysis of the Minkowski sum of affine algebraic sets X andY via a join willinvolvehyperplanespositionedasinLemma3.2below.Foranintuitivesense ofthestatementofthelemma,onemayconsiderthecasewhereL,M, andNarethe projectivizationsofparallelaffinehyperplanes. Lemma3.2.Let L,M,N be three distinct hyperplanes in Pn with E :=L∩M = L∩N =M∩N. Say X ⊂M and Y ⊂N are nonempty disjoint subvarieties. Let Xa=X\E,Ya=Y\E,∂X =X∩E,and∂Y =Y∩E.Then: (i)J(X,Y)=J (X,Y), set (ii)J(X,Y)∩L=(J (Xa,Ya)∩L)∪J (∂X,∂Y)∪∂X∪∂Y,and set set (iii)J(X,Y)∩L\E=J (Xa,Ya)∩L. set Inparticular,ifX andY havepositivedimensionthen J(X,Y)∩L=(J (Xa,Ya)∩L)∪J (∂X,∂Y). set set Proof. (i) Because X and Y are disjoint, we have J (X,Y) is Zariski closed, so set J(X,Y)=J (X,Y)[seeExample6.17onp.70of[6]]. set (ii)Fromthefirstpart,wehave J(X,Y)=J (Xa,Ya)∪J (Xa,∂Y)∪J (∂X,Ya)∪J (∂X,∂Y). set set set set SotogettheclaimedexpressionforJ(X,Y)∩Litsufficestoshow 8 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams (a) J (Xa,∂Y)∩L,J (∂X,Ya)∩L⊂∂X∪∂Y and set set (b) J (∂X,∂Y)∪∂X∪∂Y ⊂L. set (a) BysymmetryitisenoughtoshowthatJ (Xa,∂Y)∩L⊂∂Y. set Say x∈Xa and y∈∂Y. So y∈L but x∈/ L. Thus, the line between x and y intersectsLinexactly{y}⊂∂Y. (b) WeshowthatJ (∂X,∂Y)∪∂X∪∂Y ⊂E. set Bydefinition,∂X,∂Y ⊂E.So,becauseE isalinearspace,foranyx∈∂X and y∈∂Y,thelinebetweenxandyiscontainedinE. (iii)First,notethatbecauseJ (∂X,∂Y)∪∂X∪∂Y ⊂E,wehave set (J(X,Y)∩L)\E⊂(J (Xa,Ya)∩L)\E. set Hence,wejustneedtoshowthatJ (Xa,Ya)∩LisdisjointfromE. set Considering any x∈Xa and y∈Ya, it suffices to show that the line (cid:96) between xandydoesnotmeetE.Ifweassume,towardsacontradiction,thatthereissome z∈(cid:96)∩E,thenzandx wouldbedistinctpointsonthehyperplaneM,sotheline(cid:96) betweenthemwouldbecontainedinM.Buty∈Ya⊂N\E =N\M,so(cid:96)cannot becontainedinM. Finally,ifX andY arepositivedimensionalthen∂X =X∩Land∂Y =Y∩Lare nonempty,so∂X,∂Y ⊂J (∂X,∂Y). (cid:116)(cid:117) set Our alternative description of the Minkowski sum will give us cases in which X+ Y is already closed. Recall from Example 3.1 that for the two plane curves set X ={xy=1}andY ={xy=−1},X+ Y isnotZariskiclosed.Notethatinthis set example,X andY haveacommonasymptote,orequivalently,thattheirprojective closuresmeetatthelineatinfinity.Wewillseethatwhenthecharacteristicofthe basefieldisnot2,allcaseswhereX+ Y isnotclosedshareananalogousproperty. set Definition3.3.Let X,Y ⊂An be varieties and denote the projective closures of X andY inPn byX andY,respectively.LetH ={[x :···:x ]∈Pn|x =0}bethe 0 0 n 0 hyperplaneat∞.WesaythatX andY aredisjointatinfinityifX∩Y∩H =0/. 0 Remark3.4.If X andY are disjoint at infinity then dim(X∩Y)<1, thus dimX+ dimY ≤n. Proposition3.5.Assumethatthecharacteristicofkisnot2.SupposeX,Y ⊂Anare varietiesthataredisjointatinfinity.Letz ,z bedistinctscalarsandletX˜,Y˜ ⊂Pn+1 0 1 betheprojectiveclosuresofX×{z }andY×{z },respectively.Letx ,x ,...,x ,z 0 1 0 1 n bethecoordinatesonPn+1. IfweidentifyS={z= z0+z1x }⊂Pn+1withPnandS\H withAn,then: 2 0 0 (i)J (X˜,Y˜)=J(X˜,Y˜); set (ii) 1(X+Y)=J(X˜,Y˜)∩S\H ; 2 0 (iii)X+ Y =X+Y,namely,X+ Y isZariskiclosed. set set MinkowskisumsandHadamardproductsofalgebraicvarieties 9 Proof. (i)LetE={x =0}⊂Pn+1bethehyperplaneat∞inPn+1.Notethat 0 (cid:26) (cid:27) z +z E∩{z=z x }=E∩ z= 0 1x =E∩{z=z x }={z=0,x =0}, 0 0 0 1 0 0 2 which is identified with H . Therefore the statement that X and Y are disjoint at 0 infinityisequivalentto X˜∩Y˜∩E=0/. On the other hand, X˜ \E =X×{z } and Y˜ \E =Y ×{z }, and so we see that 0 1 X˜∩Y˜ =0/. So, by Lemma 3.2 applied to S={z= z0+z1x }, X˜ ⊂{z=z x }, and 2 0 0 0 Y˜ ⊂{z=z x },wefindthat 1 0 J (X˜,Y˜)=J(X˜,Y˜) and J(X˜,Y˜)∩S\H =J (X×{z },Y×{z })∩S. set 0 set 0 1 (ii)&(iii)Foranyx∈X andy∈Y,thelinebetweenthepoints(x,z )∈X×{z } 0 0 and (y,z )∈Y×{z } meets the affine hyperplane S\E ={z= z0+z1} in exactly 1 1 2 the point (x+y,z0+z1). So, we have shown that J(X˜,Y˜)∩S\H = 1(X+ Y). In 2 2 0 2 set particular,becauseJ(X˜,Y˜)isclosed,thistellsusthatX+ Y isaclosedsubsetof set S\H ∼=An.Hence, 1(X+Y)= 1(X+ Y)=J(X˜,Y˜)∩S\H . (cid:116)(cid:117) 0 2 2 set 0 Remark3.6.Wecalltheconstruction 1(X+Y)=J(X˜,Y˜)∩S\H theCayleytrick, 2 0 astheunderlyingideaisexactlythesameasthatoftheCayleytrickusedtoconstruct Minkowskisumsofpolytopes. Asaconsequenceofthefollowinglemma,ifwerestricttothecaseswithdimX+ dimY ≤n, then the hypothesis that X andY are disjoint at infinity is a genericity condition. Lemma3.7.LetX,Y ⊂PnbevarietieswithdimX+dimY <n.Then,wehavethat theset{g∈GL |gX∩Y =0/}isanonemptyopensubsetofGL .Thatis,for n+1 n+1 genericg∈GL ,gX andY donotintersect. n+1 Proof. First,notethatforanypoint p∈Pn thestabilizerof pinGL hasdimen- n+1 sionn2+n+1.ThisisbecauseanytwopointstabilizersinGL areconjugateand n+1 thestabilizerof[1:0:0:···:0]∈Pn isthesetofallg∈GL withfirstcolumn n+1 (cid:2) (cid:3)T oftheform ∗00··· 0 ,whichhasdimension(n+1)n+1. LetZ={(g,x,y)∈GL ×X×Y |gx=y}whichisasubvarietyofGL × n+1 n+1 X×Y.Letπ :Z→GL andπ :Z→X×Y betherestrictionsofthecanonical 1 n+1 2 projectionsfromGL ×X×Y.Notethatπ issurjective,becauseforanyx,y∈Pn n+1 2 thereexistssomeg∈GL takingxtoy.Further,thefiberoveranypoint(x,y)∈ n+1 X×Y isaleftcosetofapointstabilizerinGL andsohasdimensionn2+n+1. n+1 Thus,dimZ=n2+n+1+dimX+dimY <n2+2n+1=dimGL . n+1 BecauseX×Y isprojective,theprojectionGL ×X×Y →GL isaclosed n+1 n+1 map,soπ (Z)isaclosedsubsetofGL .Sincedimπ (Z)≤dimZ<dimGL , 1 n+1 1 n+1 π (Z)isaproperclosedsubsetofGL .So, 1 n+1 {g∈GL |gX∩Y =0/}=GL \π (Z) n+1 n+1 1 10 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams isanonemptyopensubsetofGL . (cid:116)(cid:117) n+1 Now,weclaimthatifX,Y ⊂AnarevarietieswithdimX+dimY ≤n,then forgeneralg∈GL ,gX andY aredisjointatinfinity. n Toseethis,notethat,consideringH ={x =0}, 0 0 dim(X∩H )+dim(Y∩H )≤dimX−1+dimY−1<dimX+dimY−1≤n−1. 0 0 TheactionofGL onAnextendstoanactiononPn,andtheidentificationH ∼=Pn−1 n 0 isGL -equivariant.Sowehave n gX∩Y∩H =(gX∩H )∩(Y∩H )=g(X∩H )∩(Y∩H ). 0 0 0 0 0 ByLemma3.7,forgeneralg∈GL thisisempty. n Remark3.8.We could have used the group of affine transformations Aff =An(cid:111) n GL . Indeed, shifting an affine variety does not change the part at infinity of its n projectiveclosure. When a result holds under the same conditions as Lemma 3.7, i.e., if we fix X andY thenitholdsforgX andY,forgeneralg∈Aff ,weshallsaythattheresult n holdsforX andY ingeneralposition. WearenowreadytocomputethedimensionofMinkowskisums.Basedonthe examples in Section 2, it seems that for dimX+dimY ≤n, we get dim(X+Y)= dimX+dimY.Thisdoeshappengenerically. Theorem3.9.Let X,Y ⊂An be varieties. Then for X and Y in general position, dim(X+Y)=min{dimX+dimY,n}. Proof. AsobservedinNote2.1,wehavethat,foranyX,Y ⊂An, dim(X+Y)≤min{dim(X)+dim(Y),n}. So,weneedtoprovetheconverseforX,Y ingeneralposition. Letk=dim(X)andl=dim(Y). Notethatbecause(X+v)+Y =(X+Y)+vforanyvectorv,itsufficestoshow that for general g∈GL , dim(gX+Y)≥min{dim(X)+dim(Y),n}. We consider n thecasedim(X)+dim(Y)≤n,thecasedim(X)+dim(Y)≥nbeinganalogous. Notethatbyjustlookingatfull-dimensionalirreduciblecomponentsofX andY, wemayassumewithoutlossofgeneralitythatX andY areirreducible. WedenotebyT (X)thetangentspacetothevarietyX atthepoint p. p Fornowfixg∈GL .If(p,q)∈An×Anthen n (dφ ) :T An×T An→T An + (p,q) p q p+q issimplytheadditionmapφ ,andsoweseethatifp∈gX andq∈Y thenT (gX)+ + p TY ⊆T (gX+Y).Sotoconcludethatdim(gX+Y)≥dim(X)+dim(Y)itsuf- q p+q ficestoshowthatthereisadensesubsetΞ ofgX+Y suchthatforeachξ ∈Ξ there exist p∈gX andq∈Y withξ =p+qandT (gX)∩TY =0,forthen p q