ebook img

Minkowski sums and Hadamard products of algebraic varieties PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Minkowski sums and Hadamard products of algebraic varieties

Minkowski sums and Hadamard products of algebraic varieties NetanelFriedenberg,AlessandroOneto,andRobertL.Williams 7 1 0 2 n a J AbstractWestudyMinkowskisumsandHadamardproductsofalgebraicvarieties. 2 Specifically we explore when these are varieties and examine their properties in 1 termsofthoseoftheoriginalvarieties.ThisprojectwasinspiredbyProblem5on ] Surfacesin[13]. G A . h 1 Introduction t a m Inalgebraicgeometrywehaveseveralconstructionstobuildnewalgebraicvarieties [ fromgivenones.Examplesofclassical,well-studiedconstructionsarejoins,secant 1 varieties,rationalnormalscrolls,andSegreproducts.Inthesecases,itisveryinter- v estingtounderstandgeometricproperties,e.g.,thedimensionandthedegree,ofthe 1 varietyconstructedintermsofthoseoftheoriginalvarieties.Inthischapterwefo- 9 cusontheMinkowskisumandtheHadamardproductofalgebraicvarieties.These 1 3 0 NetanelFriedenberg . 1 YaleUniversity, 0 10HillhouseAve-Ste442 7 POBox208283 1 NewHaven,CT06520-8283,UnitedStates : e-mail:[email protected] v i AlessandroOneto X INRIASophiaAntipolisMe´diterrane´e, r 2004RoutedeLucioles, a 06902SophiaAntipolis,France, e-mail:[email protected] RobertL.Williams TexasA&MUniversity,DepartmentofMathematics Mailstop3368 CollegeStation,TX77843-3368UnitedStates e-mail:[email protected] 1 2 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams areconstructedbyconsideringtheentry-wisesumandmultiplication,respectively, ofpointsonthevarieties.Duetothenatureoftheseoperations,thereisaremarkable differencebetweentheaffineandtheprojectivecase. The entry-wise sum is not well-defined over projective spaces. For this reason, weconsideronlyMinkowskisumsofaffinevarieties.However,inthecaseofaffine cones, the Minkowski sum corresponds to the classical join of the corresponding projectivevarieties.Conversely,wefocusonHadamardproductsofprojectivevari- etiesand,inparticular,ofvarietiesofmatriceswithfixedrank.Thisisbecausethese Hadamardproductsparametrizeinterestingproblemsrelatedtoalgebraicstatistics andquantuminformation. Ouroriginalmotivatingquestionwasthefollowing. Question1.1.Which properties do the Minkowski sum and the Hadamard product havewithrespecttothepropertiesoftheoriginalvarieties?Inparticular,whatare theirdimensionsanddegrees? Wenowintroducetheseconstructions.Weworkoveranalgebraicallyclosedfieldk. Wewilladdextraassumptionsonkwhenneeded.Weusethenotationk×:=k\{0}. Definition1.2.LetX,Y ⊂An beaffinevarieties.WedefinetheMinkowskisumof X and Y, denoted X+Y, as the Zariski closure of the image of X×Y under the entry-wisesummationmap φ : An×An → An, + ((a ,...,a ),(b ,...,b ))(cid:55)→(a +b ,...,a +b ) 1 n 1 n 1 1 n n Note that taking the Zariski closure of φ (X×Y) is necessary to construct an + algebraicvariety,asexplainedinExample3.1. As far as we know there is no literature about Minkowski sums of varieties. We computethedimensionanddegreeofMinkowskisumsofgenericaffinevarieties. Theorem3.9.Let X,Y ⊂An be varieties. Then, for X andY in general position, dim(X+Y)=min{dim(X)+dim(Y),n}. Corollary3.12.Supposekhascharacteristicotherthan2.LetX,Y ⊂An bevari- eties whose projective closures X,Y ⊂Pn are contained in complementary linear subspaces; equivalently, X,Y are contained in disjoint affine subspaces which are notparallel.Thenforgenericα ∈k×,deg(αX+Y)=deg(X)deg(Y). AcrucialobservationinourcomputationsisthattheMinkowskisumofaffineva- rietiesdisjointatinfinitycanbedescribedintermsofthejoinoftheirprojectiviza- tions, see Proposition 3.5 and Remark 3.6. This is a construction inspired by the combinatorialCayleytrickusedtoconstructMinkowskisumsofpolytopes. Definition1.3.LetX,Y ⊂Pnbeprojectivevarieties.WedefinetheHadamardprod- uctofX andY,denotedbyX(cid:63)Y,astheZariskiclosureoftheimageofX×Y under themap MinkowskisumsandHadamardproductsofalgebraicvarieties 3 φ : Pn×Pn (cid:57)(cid:57)(cid:75) Pn, (cid:63) ([a :...:a ],[b :...:b ])(cid:55)→[a b :a b :...:a b ]. 0 n 0 n 0 0 1 1 n n Let {x ,...,x } be the homogeneous coordinates over Pn. The map φ is not de- 0 n (cid:63) fined over the union of coordinate spaces HI×HIc, where I ⊂{0,...,n}, Ic is its complement,andH isthelinearspacedefinedby{x =0|i∈I}. I i Thus,theHadamardproductofprojectivevarietiesX,Y ⊂Pnis X(cid:63)Y :={p(cid:63)q : p∈X, q∈Y, p(cid:63)qisdefined}⊂Pn, where p(cid:63)q:=[p q :...: p q ]isthepointobtainedbyentry-wisemultiplication 0 0 n n of the points p=[p :...: p ] and q=[q :...:q ]. Also in this construction the 0 n 0 n operationofclosureiscrucial,asweshowinExample4.1. In [1], the authors studied the geometry of Hadamard products, with a particular focusonthecaseoflinearspaces.Thisworkhasbeencontinuedin[2]. Inparticular,weareinterestedinstudyingHadamardproductsofvarietiesofma- trices.TheHadamardproductofmatricesisaclassicaloperationinmatrixanalysis [7].Itsmostrelevantpropertyisthatitisclosedonpositivematrices.TheHadamard productoftensorsappearedmorerecentlyinquantuminformation[8]andinstatis- tics[4,11].Inthelatter,theauthorsstudiedrestrictedBoltzmannmachineswhich are statistical models for binary random variables where some are hidden. From a geometric point of view, this reduces to studying Hadamard powers of the first secantvarietyofSegreproductsofcopiesofP1.Aninterestingquestionistounder- standhowtoexpressmatricesasHadamardproductsofsmallrankmatrices.Wecall theseexpressionsHadamarddecomposition.WedefineHadamardranksofmatri- cesbyusingamultiplicativeversionoftheusualdefinitionsusedforadditivetensor decompositions.ThestudyofHadamardranksisrelatedtothestudyofHadamard powersofsecantvarietiesofSegreproductsofprojectivespaces. InSection4,wefocusinparticularonthedimensionoftheseHadamardpowers. We define the expected dimension and, consequently, we define the expected r- th Hadamard generic rank, i.e., the expected number of rank r matrices needed to decomposethegenericmatrixofsizem×nastheirHadamardproduct.Itis (cid:24)dimP(Mat )−dim(X )(cid:25) (cid:24) mn−(m+n−1) (cid:25) exp.Hrk◦(m,n)= m,n 1 = . r dim(X )−dim(X ) r(m+n−r)−m−n+1 r 1 WeconfirmthisiscorrectforsquarematricesofsmallsizeusingMacaulay2. Thepaperisstructuredasfollows.InSection2,wepresentsomeexplicitcom- putationsofthesevarieties.WeusebothMacaulay2[5]andSage[12].Thesecom- putations allowed us to conjecture some geometric properties of Minkowski sums andHadamardproductsofalgebraicvarieties.InSection3,weanalyzeMinkowski sums of affine varieties. In particular, we prove that, under genericity conditions, thedimensionoftheMinkowskisumisthesumofthedimensionsandweinvesti- gatethedegreeoftheMinkowskisum.InSection4,westudyHadamardproducts 4 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams and Hadamard powers of projective varieties. In particular, we focus on the case of Hadamard powers of projective varieties of matrices of given rank. We intro- ducethenotionofHadamarddecompositionandHadamardrankofamatrix.These conceptsmaybeviewedasthemultiplicativeversionsofthewell-studiedadditive decompositionoftensorsandtensorranks. 2 Experiments Problem5onSurfacesin[13]askedthefollowing: ComputetheMinkowskisumandtheHadamardproduct oftworandomcirclesinR3.Tryothercurves. InordertocomputeMinkowskisumsandHadamardproductsofcirclesandother curves,weusedthealgebrasoftwaresMacaulay2andSagetoobtainequationsand nice graphics. These also aided our general understanding of the geometric prop- ertiesoftheseconstructions.Viaeliminationtheory,wecancomputetheidealsof MinkowskisumsandHadamardproducts.ThisisthescriptinMacaulay2todoso. R = QQ[z_1..z_n, x_1..x_n,y_1..y_n]; I = ideal( ... ); -- ideal of X in variables x_i; J = ideal( ... ); -- ideal of Y in variables y_i; ---- construct the ideals of graphs of the maps ---- phi_+ and phi_star S = I + J + ideal(z_1-x_1-y_1,...,z_n-x_n-y_n); P = I + J + ideal(z_1-x_1*y_1,...,z_n-x_n*y_n); Msum = eliminate(toList{x_1..x_n | y_1..y_n}, S); Hprod = eliminate(toList{x_1..x_n | y_1..y_n}, P); With Sage, we produced graphics of the real parts of Minkowski sums and HadamardproductsofcurvesinA3.Thisisthescriptweused. A.<x1,x2,x3,y1,y2,y3,z1,z2,z3>=QQ[] I=( ... )*A # ideal of X in the variables x; J=( ... )*A # ideal of Y in the variables y; # construct the ideals defining the graphs of the maps # phi_+ and phi_star S = I + J + (z1-(x1+y1),z2-(x2+y2),z3-(x3+y3))*A P = I + J + (z1-(x1*y1),z2-(x2*y2),z3-(x3*y3))*A MSum = S.elimination_ideal([x1,x2,x3,y1,y2,y3]) HProd = P.elimination_ideal([x1,x2,x3,y1,y2,y3]) # Assuming we get a surface, take the one generator of # each ideal. MSumGen=MSum.gens()[0] HProdGen=HProd.gens()[0] MinkowskisumsandHadamardproductsofalgebraicvarieties 5 # We plot these surfaces. # Because MSumGen and HProdGen are considered as elements of A, # which has 9 variables, they take 9 arguments. var(’z1,z2,z3’) implicit_plot3d(MSumGen(0,0,0,0,0,0,z1,z2,z3)==0, (z1, -3, 3), (z2, -3,3), (z3, -3,3)) implicit_plot3d(HProdGen(0,0,0,0,0,0,z1,z2,z3)==0, (z1, -3, 3), (z2, -3,3), (z3, -3,3)) In Figures 1, 2, 3 and 4 are some of the pictures we obtained. These experiments gaveusafirstideaaboutthepropertiesofMinkowskisumsandHadamardproducts. Note2.1.ThefactthatX+Y andX(cid:63)Y aretheclosuresofimagesofX×Y under themapsφ andφ immediatelygivesusthat + (cid:63) dim(X+Y),dim(X(cid:63)Y)≤dim(X)+dim(Y) andthatifX andY areirreducible,soareX+Y andX(cid:63)Y. Also,thefactthatX+Y andX(cid:63)Y arelinearprojectionsofX×Y ⊂An×AnandX× Y ⊂Pn×Pn ⊂Pn2+2n, respectively, leads us to expect other geometric properties ofX+Y andX(cid:63)Y.BecausetheprojectionofavarietyZ⊂PN ingenericposition fromalinearspaceLwithdim(Z)+dim(L)<N−1isgenericallyone-to-one,we na¨ıvelyexpectthat,forX andY ingeneralposition,withdim(X)+dim(Y)<n, dim(X+Y),dim(X(cid:63)Y)=dim(X)+dim(Y), deg(X+Y)=deg(X×Y)=deg(X)deg(Y), (X×Y ⊂An) deg(X(cid:63)Y)=deg(X×Y)=(cid:0)dim(X)+dim(Y)(cid:1)deg(X)deg(Y), (X×Y ⊂Pn2+2n). dim(X) Theseexpectations,however,donotfollowdirectlyfromtheprojectionsofthevari- etiesingeneralpositionbecause,evenforX andY ingeneralposition,X×Y isnot ingeneralposition.Hence,weneedfurtheranalysisasinthefollowingsections. Fig.1 Minkowskisumofacircleofradius1inthex,y-planeandacircleofradius2inthex,z- plane.Thisisadegreefoursurface. 6 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams Fig.2 Minkowskisumofthetwoparabolasx=y2 inthex,y-planeandy=z2 inthey,z-plane. Thisisadegreefoursurface. Fig.3 Minkowskisumofthetwistedcubicwiththeunitcircleinthex,y-plane,y,z-plane,and x,z-planefromlefttoright,respectively.Eachoftheseareadegreesixsurface. Fig.4 TherealpartoftheHadamardproductof(left)theunitcircleinthez=1planeandthe unitcircleinthey=1planeand(right)thecirclesx2+(y+z)2=1,z−y=1andx2+(z−y)2= 1,y+z=1.Thesurfaceontheleftisofdegreefour,andthesurfaceontherightisofdegreetwo. 3 Minkowskisumofaffinevarieties Recall the definition of the Minkowski sum of two affine varieties X andY as the closureoftheimageofX×Y underthemap φ : An×An → An, + ((a ,...,a ),(b ,...,b ))(cid:55)→(a +b ,...,a +b ) 1 n 1 n 1 1 n n MinkowskisumsandHadamardproductsofalgebraicvarieties 7 Theoperationofclosureisneededinordertogetanalgebraicvariety.Indeed,we can give an example where X+ Y :=φ (X×Y)={p+q| p∈X,q∈Y}, the set + setwiseMinkowskisumofX andY,isnotclosed. Example3.1.In the affine plane A2 with coordinates {x,y}, consider the plane curves X ={xy=1} andY ={xy=−1}. We claim that φ (X×Y) contains the + torus(k×)2,soX+Y =A2.Forif(α,β)∈(k×)2and(p,q)∈X×Y thenφ (p,q)= + (α,β) if and only if we can write p and q in the forms p = (α+a, 1 ) and α+a q=(−a,1)forsomescalara(cid:54)=0,−α suchthatβ = 1 +1.Clearingdenomina- a α+a a torsinthislastexpression,wefindtherequirementisthatβa(α+a)=a+(α+a), i.e.aisazeroofthequadraticpolynomial f (t)=βt2+(βα−2)t−α.Notethat α,β f (0)=−α and f (−α)=βα2−βα2+2α−α =α.Soifweletabeazero α,β α,β of f thenwith pandqasabovewehaveφ (p,q)=(α,β). α,β + OntheotherhandX+ Y isnotallofA2.Ifthecharacteristicofthebasefieldis set not2,thenX+ Ydoesnotcontaintheorigin(thoughitdoescontainthepunctured set axes). In characteristic 2 we find that X+ Y contains no point of the punctured set axes{x=0}\{(0,0)}and{y=0}\{(0,0)}. OneofourmaintoolsforprovingresultsabouttheMinkowskisumisanalter- nativedescriptionofitintermsofthejoinofthetwovarieties. ForX,Y subvarietiesofAn orPn,weletJ (X,Y)bethesetwisejoinofX and set Y,i.e.,theunionofthelinesconnectingdistinctpointsx∈X andy∈Y.Thisspace isusuallynotclosedanditsZariskiclosureJ(X,Y)istheclassicaljoinofX andY. Our analysis of the Minkowski sum of affine algebraic sets X andY via a join willinvolvehyperplanespositionedasinLemma3.2below.Foranintuitivesense ofthestatementofthelemma,onemayconsiderthecasewhereL,M, andNarethe projectivizationsofparallelaffinehyperplanes. Lemma3.2.Let L,M,N be three distinct hyperplanes in Pn with E :=L∩M = L∩N =M∩N. Say X ⊂M and Y ⊂N are nonempty disjoint subvarieties. Let Xa=X\E,Ya=Y\E,∂X =X∩E,and∂Y =Y∩E.Then: (i)J(X,Y)=J (X,Y), set (ii)J(X,Y)∩L=(J (Xa,Ya)∩L)∪J (∂X,∂Y)∪∂X∪∂Y,and set set (iii)J(X,Y)∩L\E=J (Xa,Ya)∩L. set Inparticular,ifX andY havepositivedimensionthen J(X,Y)∩L=(J (Xa,Ya)∩L)∪J (∂X,∂Y). set set Proof. (i) Because X and Y are disjoint, we have J (X,Y) is Zariski closed, so set J(X,Y)=J (X,Y)[seeExample6.17onp.70of[6]]. set (ii)Fromthefirstpart,wehave J(X,Y)=J (Xa,Ya)∪J (Xa,∂Y)∪J (∂X,Ya)∪J (∂X,∂Y). set set set set SotogettheclaimedexpressionforJ(X,Y)∩Litsufficestoshow 8 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams (a) J (Xa,∂Y)∩L,J (∂X,Ya)∩L⊂∂X∪∂Y and set set (b) J (∂X,∂Y)∪∂X∪∂Y ⊂L. set (a) BysymmetryitisenoughtoshowthatJ (Xa,∂Y)∩L⊂∂Y. set Say x∈Xa and y∈∂Y. So y∈L but x∈/ L. Thus, the line between x and y intersectsLinexactly{y}⊂∂Y. (b) WeshowthatJ (∂X,∂Y)∪∂X∪∂Y ⊂E. set Bydefinition,∂X,∂Y ⊂E.So,becauseE isalinearspace,foranyx∈∂X and y∈∂Y,thelinebetweenxandyiscontainedinE. (iii)First,notethatbecauseJ (∂X,∂Y)∪∂X∪∂Y ⊂E,wehave set (J(X,Y)∩L)\E⊂(J (Xa,Ya)∩L)\E. set Hence,wejustneedtoshowthatJ (Xa,Ya)∩LisdisjointfromE. set Considering any x∈Xa and y∈Ya, it suffices to show that the line (cid:96) between xandydoesnotmeetE.Ifweassume,towardsacontradiction,thatthereissome z∈(cid:96)∩E,thenzandx wouldbedistinctpointsonthehyperplaneM,sotheline(cid:96) betweenthemwouldbecontainedinM.Buty∈Ya⊂N\E =N\M,so(cid:96)cannot becontainedinM. Finally,ifX andY arepositivedimensionalthen∂X =X∩Land∂Y =Y∩Lare nonempty,so∂X,∂Y ⊂J (∂X,∂Y). (cid:116)(cid:117) set Our alternative description of the Minkowski sum will give us cases in which X+ Y is already closed. Recall from Example 3.1 that for the two plane curves set X ={xy=1}andY ={xy=−1},X+ Y isnotZariskiclosed.Notethatinthis set example,X andY haveacommonasymptote,orequivalently,thattheirprojective closuresmeetatthelineatinfinity.Wewillseethatwhenthecharacteristicofthe basefieldisnot2,allcaseswhereX+ Y isnotclosedshareananalogousproperty. set Definition3.3.Let X,Y ⊂An be varieties and denote the projective closures of X andY inPn byX andY,respectively.LetH ={[x :···:x ]∈Pn|x =0}bethe 0 0 n 0 hyperplaneat∞.WesaythatX andY aredisjointatinfinityifX∩Y∩H =0/. 0 Remark3.4.If X andY are disjoint at infinity then dim(X∩Y)<1, thus dimX+ dimY ≤n. Proposition3.5.Assumethatthecharacteristicofkisnot2.SupposeX,Y ⊂Anare varietiesthataredisjointatinfinity.Letz ,z bedistinctscalarsandletX˜,Y˜ ⊂Pn+1 0 1 betheprojectiveclosuresofX×{z }andY×{z },respectively.Letx ,x ,...,x ,z 0 1 0 1 n bethecoordinatesonPn+1. IfweidentifyS={z= z0+z1x }⊂Pn+1withPnandS\H withAn,then: 2 0 0 (i)J (X˜,Y˜)=J(X˜,Y˜); set (ii) 1(X+Y)=J(X˜,Y˜)∩S\H ; 2 0 (iii)X+ Y =X+Y,namely,X+ Y isZariskiclosed. set set MinkowskisumsandHadamardproductsofalgebraicvarieties 9 Proof. (i)LetE={x =0}⊂Pn+1bethehyperplaneat∞inPn+1.Notethat 0 (cid:26) (cid:27) z +z E∩{z=z x }=E∩ z= 0 1x =E∩{z=z x }={z=0,x =0}, 0 0 0 1 0 0 2 which is identified with H . Therefore the statement that X and Y are disjoint at 0 infinityisequivalentto X˜∩Y˜∩E=0/. On the other hand, X˜ \E =X×{z } and Y˜ \E =Y ×{z }, and so we see that 0 1 X˜∩Y˜ =0/. So, by Lemma 3.2 applied to S={z= z0+z1x }, X˜ ⊂{z=z x }, and 2 0 0 0 Y˜ ⊂{z=z x },wefindthat 1 0 J (X˜,Y˜)=J(X˜,Y˜) and J(X˜,Y˜)∩S\H =J (X×{z },Y×{z })∩S. set 0 set 0 1 (ii)&(iii)Foranyx∈X andy∈Y,thelinebetweenthepoints(x,z )∈X×{z } 0 0 and (y,z )∈Y×{z } meets the affine hyperplane S\E ={z= z0+z1} in exactly 1 1 2 the point (x+y,z0+z1). So, we have shown that J(X˜,Y˜)∩S\H = 1(X+ Y). In 2 2 0 2 set particular,becauseJ(X˜,Y˜)isclosed,thistellsusthatX+ Y isaclosedsubsetof set S\H ∼=An.Hence, 1(X+Y)= 1(X+ Y)=J(X˜,Y˜)∩S\H . (cid:116)(cid:117) 0 2 2 set 0 Remark3.6.Wecalltheconstruction 1(X+Y)=J(X˜,Y˜)∩S\H theCayleytrick, 2 0 astheunderlyingideaisexactlythesameasthatoftheCayleytrickusedtoconstruct Minkowskisumsofpolytopes. Asaconsequenceofthefollowinglemma,ifwerestricttothecaseswithdimX+ dimY ≤n, then the hypothesis that X andY are disjoint at infinity is a genericity condition. Lemma3.7.LetX,Y ⊂PnbevarietieswithdimX+dimY <n.Then,wehavethat theset{g∈GL |gX∩Y =0/}isanonemptyopensubsetofGL .Thatis,for n+1 n+1 genericg∈GL ,gX andY donotintersect. n+1 Proof. First,notethatforanypoint p∈Pn thestabilizerof pinGL hasdimen- n+1 sionn2+n+1.ThisisbecauseanytwopointstabilizersinGL areconjugateand n+1 thestabilizerof[1:0:0:···:0]∈Pn isthesetofallg∈GL withfirstcolumn n+1 (cid:2) (cid:3)T oftheform ∗00··· 0 ,whichhasdimension(n+1)n+1. LetZ={(g,x,y)∈GL ×X×Y |gx=y}whichisasubvarietyofGL × n+1 n+1 X×Y.Letπ :Z→GL andπ :Z→X×Y betherestrictionsofthecanonical 1 n+1 2 projectionsfromGL ×X×Y.Notethatπ issurjective,becauseforanyx,y∈Pn n+1 2 thereexistssomeg∈GL takingxtoy.Further,thefiberoveranypoint(x,y)∈ n+1 X×Y isaleftcosetofapointstabilizerinGL andsohasdimensionn2+n+1. n+1 Thus,dimZ=n2+n+1+dimX+dimY <n2+2n+1=dimGL . n+1 BecauseX×Y isprojective,theprojectionGL ×X×Y →GL isaclosed n+1 n+1 map,soπ (Z)isaclosedsubsetofGL .Sincedimπ (Z)≤dimZ<dimGL , 1 n+1 1 n+1 π (Z)isaproperclosedsubsetofGL .So, 1 n+1 {g∈GL |gX∩Y =0/}=GL \π (Z) n+1 n+1 1 10 NetanelFriedenberg,AlessandroOneto,andRobertL.Williams isanonemptyopensubsetofGL . (cid:116)(cid:117) n+1 Now,weclaimthatifX,Y ⊂AnarevarietieswithdimX+dimY ≤n,then forgeneralg∈GL ,gX andY aredisjointatinfinity. n Toseethis,notethat,consideringH ={x =0}, 0 0 dim(X∩H )+dim(Y∩H )≤dimX−1+dimY−1<dimX+dimY−1≤n−1. 0 0 TheactionofGL onAnextendstoanactiononPn,andtheidentificationH ∼=Pn−1 n 0 isGL -equivariant.Sowehave n gX∩Y∩H =(gX∩H )∩(Y∩H )=g(X∩H )∩(Y∩H ). 0 0 0 0 0 ByLemma3.7,forgeneralg∈GL thisisempty. n Remark3.8.We could have used the group of affine transformations Aff =An(cid:111) n GL . Indeed, shifting an affine variety does not change the part at infinity of its n projectiveclosure. When a result holds under the same conditions as Lemma 3.7, i.e., if we fix X andY thenitholdsforgX andY,forgeneralg∈Aff ,weshallsaythattheresult n holdsforX andY ingeneralposition. WearenowreadytocomputethedimensionofMinkowskisums.Basedonthe examples in Section 2, it seems that for dimX+dimY ≤n, we get dim(X+Y)= dimX+dimY.Thisdoeshappengenerically. Theorem3.9.Let X,Y ⊂An be varieties. Then for X and Y in general position, dim(X+Y)=min{dimX+dimY,n}. Proof. AsobservedinNote2.1,wehavethat,foranyX,Y ⊂An, dim(X+Y)≤min{dim(X)+dim(Y),n}. So,weneedtoprovetheconverseforX,Y ingeneralposition. Letk=dim(X)andl=dim(Y). Notethatbecause(X+v)+Y =(X+Y)+vforanyvectorv,itsufficestoshow that for general g∈GL , dim(gX+Y)≥min{dim(X)+dim(Y),n}. We consider n thecasedim(X)+dim(Y)≤n,thecasedim(X)+dim(Y)≥nbeinganalogous. Notethatbyjustlookingatfull-dimensionalirreduciblecomponentsofX andY, wemayassumewithoutlossofgeneralitythatX andY areirreducible. WedenotebyT (X)thetangentspacetothevarietyX atthepoint p. p Fornowfixg∈GL .If(p,q)∈An×Anthen n (dφ ) :T An×T An→T An + (p,q) p q p+q issimplytheadditionmapφ ,andsoweseethatifp∈gX andq∈Y thenT (gX)+ + p TY ⊆T (gX+Y).Sotoconcludethatdim(gX+Y)≥dim(X)+dim(Y)itsuf- q p+q ficestoshowthatthereisadensesubsetΞ ofgX+Y suchthatforeachξ ∈Ξ there exist p∈gX andq∈Y withξ =p+qandT (gX)∩TY =0,forthen p q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.