ebook img

Minimal surfaces in $\mathbb{R}^3$ properly projecting into $\mathbb{R}^2$ PDF

0.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Minimal surfaces in $\mathbb{R}^3$ properly projecting into $\mathbb{R}^2$

MINIMAL SURFACES IN R3 PROPERLY PROJECTING INTO R2 ANTONIOALARCO´NANDFRANCISCOJ.LO´PEZ ABSTRACT. ForallopenRiemannsurfaceN andrealnumberθ∈(0,π/4),weconstructaconformal minimalimmersionX =(X1,X2,X3):N →R3suchthatX3+tan(θ)|X1|:N →Rispositiveand proper.Furthermore,Xcanbechosenwitharbitrarilyprescribedfluxmap. 0 Moreover,weproduceproperlyimmersedhyperbolicminimalsurfaceswithnonemptybound- 1 aryinR3lyingaboveanegativesublineargraph. 0 2 b e F 1. INTRODUCTION 9 1 Theconformalstructureofacomplete minimalsurfaceplaysafundamentalroleinitsglobal properties. Itisthenimportanttodeterminetheconformaltypeofagivenminimalsurface. An ] G openRiemannsurfaceissaidtobehyperbolicifanonlyifitcarriesanegativenon-constantsub- harmonic function. Otherwise, itissaidto beparabolic. CompactRiemann surfaceswith empty D boundaryaresaidtobeelliptic. . h Completeminimalsurfaceswithfinitetotalcurvatureorcompleteembeddedminimalsurfaces t a withfinitetopologyinR3areproperlyimmersedandhaveparabolicconformaltype(forfurther m information, see[Os,JM,CM,MPR,MP2]). Ontheotherhand,thereexistsproperlyimmersed [ hyperbolicminimalsurfacesinR3 witharbitrarynoncompacttopology[Mo,AFM,FMM]. 2 It is then interesting to elucidate how properness and completeness influence the conformal v geometryofminimalsurfaces. In[Lo2]itisshownthatanyopenRiemannsurfaceadmitsacon- 4 2 formal complete minimal immersion in R3, even with arbitrarily prescribed flux map. In this 1 paper we extend this result to the family of proper minimal immersions, proving considerably 4 more(seeTheorem4.4): . 0 1 TheoremI.ForallopenRiemannsurfaceN,groupmorphismp: H1(N,Z)→R3and 9 realnumberθ ∈ (0,π),thereexistsaconformalminimalimmersionX = (X ,X ,X ) : 4 1 2 3 0 N →R3 satisfyingthat: v: • X3+tan(θ)|X1| : N →Rispositiveandproper,and i • ∂X =ip(γ)forallγ ∈ H (N,Z),where∂isthecomplexdifferentialoperator. X γ 1 R r a This result is sharp in the sense that the angle θ cannot be zero. Indeed, by the Strong Half SpaceTheorem[HM] properlyimmersed minimalsurfacesinahalfspaceareplanes. Contrari- wise, TheoremIshows thatanywedgeofangle greaterthan π inR3 containsminimal surfaces properlyimmersedinR3,evenofhyperbolictype. Inparticular,neitheropenwedgesnorclosed wedgesofanglegreaterthanπ areuniversalregionsforsurfaces(see[MP1]foragoodsetting). OtherPicardconditionsforproperlyimmersedminimalsurfacesinR3guaranteeingparabolicity canbefoundin[Lo1]. 2000MathematicsSubjectClassification. 53A10;49Q05,49Q10,53C42. Keywordsandphrases. Properminimalsurfaces,Riemannsurfacesofarbitraryconformalstructure. ResearchofbothauthorsispartiallysupportedbyMCYT-FEDERresearchprojectMTM2007-61775andJuntadeAn- daluc´ıaGrantP09-FQM-5088. 2 A.ALARCO´NANDF.J.LO´PEZ FromTheoremIfollowsomeremarkableresultsconcerningnotonlyminimalsurfaces.Weare goingtomentionthreeofthemrelatedtoproperharmonicmapsintoC,properholomorphicnull curvesinC3andmaximalsurfacesintheLorentz-MinkowskispaceR3. 1 SchoenandYauconjecturedthattherearenoproperharmonicmapsfromDtoCwithflatmet- rics,andconnectedthisquestionwiththeexistenceofhyperbolicminimalsurfacesinR3properly projectingintoR2[SY,p.18].Acounterexampletothisconjecturefollowsfromtheresultsin[DF], which imply the existence of proper harmonic maps from any finite bordered Riemann surface (that is to say, a compact Riemann surface minus a finite collection of pairwise disjoint closed discs)intoR2.ItremainsopenwhetherornotahyperbolicminimalsurfaceinR3canbeproperly projectedintoR2.TheoremIanswerspositivelythisquestionforminimalsurfaceswitharbitrary openconformalstructure(justnoticethattheharmonicmap(X ,X ) : N →R2 isproper). 1 3 It is well known that any open Riemann surface properly holomorphically embeds in C3 and immerses in C2 [Bi, Nar, Re]. Moreover, there are proper null immersions in C3 of the unit disc [Mo], and of any open parabolic Riemann surface of finite topology [Pi, Lo2]. The- orem I also shows that any open Riemann surface admits a proper null immersion in C3, and a holomorphic immersion in C2 properly projecting into R2. Indeed, choosing p = 0 in The- orem I and labeling X∗ = (X∗,X∗,X∗) as the conjugate minimal immersion of X, the map 1 2 3 X+iX∗ = (F ,F ,F ) : N → C3 isaproperholomorphicnullimmersion,and(F ,F ) : N → C2 1 2 3 1 3 isaholomorphicimmersionwhichproperlyprojectsintoR2. Finally, fromTheorem I follows the existence of proper Lorentziannull holomorphic immer- sions in C3 (see [UY]) and proper conformal maximal immersions in the Lorentz-Minkowski space, with singularities and arbitrary conformal structure. See [Al] for the hyperbolic simply connectedcase. The lastpartof the paper is devotedto properlyimmersed minimal surfacesin R3 with non emptyboundary.ARiemannsurfaceMwithnonemptyboundaryissaidtobeparabolicifbounded harmonic functions on M are determined by their boundary values, or equivalently, if the har- monic measureof Mrespecttoapoint P ∈ M−∂(M)isfullon∂(M).Otherwise, thesurfaceis saidtobehyperbolic(see[AS,Pe]foragoodsetting). Forinstance,D−{1}isparabolicwhereas D+ := D∩{z ∈ C|Im(z) > 0} is hyperbolic. Properly immersed minimal surfaces with non emptyboundarylyinginahalfspaceofR3 areparabolic[CKMR],andthesameresultholdsfor properminimalgraphsinR3[Ne]. Itisalsoknownthatanyproperlyimmersedminimalsurface inR3withnonemptyboundarylyingoveranegativesublineargraphinR3andwhoseGaussian imageiscontainedinahyperbolicdomainoftheRiemannsphereisparabolic[LP]. Weprovethe followingcomplementaryresult(seeTheorem5.1),whichalsoshowsthattheconditionaboutthe sizeoftheGaussmapin[LP]playsanimportantrole: Theorem II. Thereexists a conformalminimalimmersion X = (X1,X2,X3) : D+ → R3 such that (X1,X3) : D+ → R2 isproperand limn→∞min{|XX1(3p(np)n|)+1,0} = 0 for alldivergentsequence{pn}n∈N inD+. TheoremIIcontributestotheunderstandingofMeeks’conjectureaboutparabolicityofminimal surfaces with boundary. This conjecture asserts that any properly immersed minimal surface lyingaboveanegativehalfcatenoidisparabolic. Thetechniquesdevelopedinthispapermaybeappliedtoawiderangeofproblemsonmini- malsurfacestheory. Inthepaper[AFL]completeminimalsurfacesinR3witharbitraryconformal structure and whose Gauss map misses two points are constructed. Our tools come from deep resultsonapproximationtheorybymeromorphicfunctions[Sc1,Sc2,Ro]. Themostusefulone istheApproximationLemmainSection2,whereaccurateuseofRunge’sapproximationtheorem andclassicaltheoryofRiemannsurfaces[AS,FK]ismade.Inthisway,wecanrefinetheclassical MINIMALSURFACESINR3PROPERLYPROJECTINGINTOR2 3 construction methodsof completeminimal surfaces(see, amongothers, [JX,Nad,LMM,MUY] foragoodsetting). Thepaperislaidoutasfollows. InSection2weintroducethenecessarybackgroundonRie- mannsurfacesandapproximationtheory,andtherequirednotations. Furthermore,weprovethe Approximation Lemma. Section 3 is devoted to some preliminaries on minimal surfacesin R3. Finally,TheoremsIandIIareprovedinSections4and5,respectively. 2. RIEMANNSURFACES ANDAPPROXIMATION RESULTS GivenatopologicalsurfaceW,∂(W)willdenotetheonedimensionaltopologicalmanifoldde- terminedbytheboundarypointsofW.GivenS⊂W,callbyS◦andStheinteriorandtheclosure ofSinW,respectively. A Riemann surface M is said to be open if it is non-compact and ∂(M) = ∅. As usual, C = C∪{∞}willdenotetheRiemannsphere. Wedenote ∂ astheglobalcomplexoperatorgivenby ∂| = ∂ dzforanyconformalchart(U,z)on M. U ∂z Remark2.1. ThroughoutthispaperN willdenoteafixedbutarbitraryopenRiemannsurface. Let S denote a subset of N, S 6= N. We denote by F (S), respectively F(S), as the space of 0 continuous functions f : S → C, respectively f : S → C, which are holomorphic, respectively meromorphic, onanopenneighborhood of S inN,and f−1(∞) ⊂ S◦.Likewise, F∗(S),respec- 0 tively F∗(S), willdenote the spaceof continuous functions f : S → C, respectively f : S → C, beingholomorphic,respectivelymeromorphic,onS◦ andsatisfyingthat f−1(∞) ⊂S◦. As usual, a 1-form θ on S is said to be of type (1,0) if for any conformal chart (U,z) in N, θ| = h(z)dzforsomefunctionh : U∩S → C.WedenotebyΩ (S),respectivelyΩ(S),asthe U∩S 0 space of holomorphic, respectivelymeromorphic, 1-forms on an open neighborhood of S in N, andwithoutpolesonS−S◦.WecallΩ∗(S)asthespaceof1-formsθ oftype(1,0)onSsuchthat (θ| )/dz ∈ F∗(S∩U)foranyconformalchart(U,z)onN.LikewisewedefineΩ∗(S). U 0 LetDiv(S)denotethefreecommutativegroupofdivisorsofSwithmultiplicativenotation. If D = ∏n Qni ∈ Div(S),wheren ∈ Z−{0}foralli,theset{Q ,...,Q }issaidtobethesup- i=1 i i 1 n portofD,writtensupp(D).AdivisorD ∈Div(S)issaidtobeintegralifD = ∏n Qni andn ≥0 i=1 i i for all i. Given D , D ∈ Div(S), D ≥ D if and only if D D−1 is integral. For any f ∈ F(S) 1 2 1 2 1 2 wedenoteby(f)0and(f)∞ itsassociatedintegraldivisorsofzeroesandpolesinS,respectively, and label (f) = ((ff))∞0 as the divisor associated to f on S. Likewise we define (θ)0, (θ)∞ for any θ ∈ Ω(S),andcall(θ)= (θ)0 asthedivisorofθonS. (θ)∞ InthesequelwewillassumethatSisacompactsubset of N andW ⊂ N anopensubsetcon- tainingS. Bydefinition,aconnectedcomponentVofW−SissaidtobeboundedinWifV∩Wiscompact, whereV istheclosureofV inN. Definition2.2. AcompactsubsetS⊂W issaidtobeadmissibleinW ifandonlyif: • W−ShasnoboundedcomponentsinW, • M := S◦ consistsofafinitecollectionofpairwisedisjointcompactregionsinW withC0 S boundary, • C :=S−M consistsofafinitecollectionofpairwisedisjointanalyticalJordanarcs,and S S • anycomponent α of C withanendpoint P ∈ M admitsananalyticalextension β inW S S suchthattheuniquecomponentofβ−αwithendpointPliesin M . S 4 A.ALARCO´NANDF.J.LO´PEZ Observe that if S is admissible in N then it is admissible inW as well, but the contrary is in generalfalse. We shall say that a function f ∈ F∗(S), respectively f ∈ F∗(S), can be uniformly approxi- 0 mated on S by functions in F(W), respectively in F0(W), if there exists {fn}n∈N ⊂ F(W), re- spectively {fn}n∈N ⊂ F0(W), such that {|fn − f|}n∈N → 0 uniformly on S. We also say that {fn|S}n∈N → f in the ω-topology. In particular all fn have the same set Pf of poles on S◦. A 1-form θ ∈ Ω∗(S), respectively θ ∈ Ω∗(S), can be uniformly approximated on S by 1-forms in 0 Ω(W),respectivelyinΩ0(W),ifthereexists{θn}n∈N ⊂ Ω(W),respectively{θn}n∈N ⊂ Ω0(W), such that {θnd−zθ}n∈N → 0 uniformly on S∩U, for any conformal closed disc (U,dz) on W. In particularallθn havethesamesetofpolesPθ onS◦.Asabove,wesaythat{θn|S}n∈N → θinthe ω-topology. RecallthatacompactJordanarcinN issaidtobeanalyticalifitiscontainedinanopenana- lyticalJordanarcinN. GivenanadmissiblecompactsetS ⊂ W,afunction f : S → Cn,n ∈ N,issaidtobesmooth if f| admits a smooth extension f to an open domain V in W containing M , and for any MS 0 S component αof C andanyopenanalyticalJordanarc βinW containingα, f admitsansmooth S extension f to β satisfying that f | = f | . A function f ∈ F∗(S) is said to be smooth if β β V∩β 0 V∩β f| issmooth,whereV isanyopenneighbourhoodof f−1(∞)suchthatS−V isadmissiblein S−V W− f−1(∞).Analogously,a1-formθ ∈ Ω∗(S)issaidtobesmoothif(θ| )/dz ∈F∗(S∩U)is S∩U smooth for any closed conformal disk (U,z) on W such that S∩U is an admissible set. Given a smooth f ∈ F∗(S), we set df ∈ Ω∗(S) as the smooth 1-form given by df| = d(f| ) MS MS and df| = (f ◦α)′(x)dz| , where (U,z = x+iy) is a conformal chart on W such that α∩U α∩U α∩U = z−1(R∩z(U)).Obviously,df| (t) = (f ◦α)′(t)dtforanycomponentαofC ,wheretis α S anysmoothparameteralongα. Asmooth1-formθ ∈ Ω∗(S)issaidtobeexactifθ = df forsomesmooth f ∈ F∗(S),orequiv- alentlyif θ =0forallγ ∈ H (S,Z). γ 1 R Severalextensions of classicalRunge’s Theoremcanbe found in [Ro, Sc1, Sc2]. For our pur- poses,weneedonlythefollowingcompilationresult: Theorem2.3. LetS⊂W beanotnecessarilyconnectedadmissiblecompactsubsetinW. Thenanyfunction f ∈ F∗(S)canbeuniformlyapproximatedonSbyfunctionsinF(W)∩F (W− 0 P ),whereP = f−1(∞).Furthermore,ifD ∈ Div(S)isanintegraldivisorsatisfyingthatsupp(D)⊂ f f S◦,thentheapproximationsequence{fn}n∈N inF(W)canbechosensatisfyingthat(f − fn|S)0 ≥ D. 2.1. The Approximation Lemmas. Throughout this section, W ⊂ N will denote an open con- nectedsubsetoffinitetopology,andSanadmissiblecompactsubsetinW. Lemma 2.4. Consider f ∈ F∗(S) such that f never vanishes on S−S◦. Then f can be uniformly ap- proximatedonSbyfunctions{fn}n∈NinF(W)satisfyingthat(fn) =(f)onW foralln.Inparticular, f isholomorphicandnevervanishingonW−Sforalln. n Proof. LetµandbdenotethegenusofW andthenumberoftopologicalendsofW−supp((f)). It is well known (see [FK]) that there exist 2µ+b−1 cohomologically independent 1-forms in Ω(W)∩Ω (W −supp((f))) generating the first holomorphic De Rham cohomology group 0 H1 (W −supp((f))). Furthermore, the 1-forms can be chosen having at most single poles at hol points of supp((f)).Thus, the map H1 (W−supp((f))) −→ C2µ+b−1, τ 7→ τ , where hol c c∈B0 B isanyhomologybasisofW−supp((f)),isalinearisomorphism,andtheree(cid:0)xRists(cid:1)τ ∈ Ω(W)∩ 0 MINIMALSURFACESINR3PROPERLYPROJECTINGINTOR2 5 Ω W−supp((f)) with atmost single polesatpoints of supp((f)) such that 1 τ ∈ Z for 0 2πi γ all(cid:0)γ ∈ H W−sup(cid:1)p((f)),Z anddf/f −τ ∈Ω∗(S)isexact. Set f = fe− τ ∈ F∗R(S). 1 0 0 R Itisclea(cid:0)rthatlog(f ) ∈ F∗(cid:1)(S),andso f isholomorphic andnevervanishingonS.ByTheo- 0 0 0 rem2.3,thereexistsasequence{hn}n∈N ⊂ F0∗(W)convergingtolog(f0)intheω-topologyonS. Thesequence fn =ehn+ τ,n∈N,solvesthelemma. (cid:3) R Lemma2.5. Considerθ ∈ Ω∗(S)suchthatθ nevervanishesonS−S◦. Thenθ canbeuniformlyapproximatedonSby1-forms{θn}n∈N inΩ(W)satisfyingthat(θn) = (θ) onW.Inparticular,θ isholomorphicandnevervanishingonW−Sforalln. n Proof. Let τ be a non zero 1-form in Ω (W) with finitely many zeroes, none of them lying in 0 S−S◦.Label f = θ/τ ∈ F∗(S).ByLemma2.4, f canbeapproximatedintheω-topologyonSby asequence{fn}n∈NinF(W)satisfyingthat(fn) =(f)onWforalln.Itsufficestotakeθn := fnτ, n ∈N. (cid:3) Lemma 2.6 (The Approximation Lemma). Let Φ = (φ ) be a smooth triple in Ω∗(S)3 such j j=1,2,3 0 that ∑3 φ2 = 0, ∑3 |φ |2 never vanishes on S, and Φ| ∈ Ω (M )3. Then Φ can be uniformly j=1 j j=1 j MS 0 S approximatedonSbyasequence{Φn = (φj,n)j=1,2,3}n∈N ⊂ Ω0(W)3satisfyingthat: (i) ∑3 φ2 =0and∑3 |φ |2 nevervanishesonW, j=1 j,n j=1 j,n (ii) Φ −ΦisexactonSforalln. n Proof. Labelg = φ3 ,η = 1φ = φ −iφ andη = gφ = −φ −iφ ∈ Ω∗(S).Westartwith φ1−iφ2 1 g 3 1 2 2 3 1 2 0 thefollowingclaim: Claim2.7. Withoutlossofgenerality,wecanassumethatg| isnotconstant. MS Proof. Supposeforamomentthat g| isconstant,anduptoreplacingΦbyΦ·Aforasuitable MS orthogonalmatrix A ∈ O(3,R),assumethatg 6= ∞.Foreachh ∈ F (W),setη (h) = (g+h)2η 0 2 1 and φ (h) = η (g+h).LetB beahomology basisof H (M ,Z),labelµ asitscardinalnumber 3 1 1 S andconsider theholomorphic map T : F (W) → C2µ, T(h) = ( (η (h)−η ,φ (h)−φ )) . 0 c 2 2 3 3 c∈B Note that the analytical subset T−1(0) is conical, that is to say, Rif T(h) = 0 then T(λh) = 0 for all λ ∈ C. Furthermore, since F (W) has infinite dimension we can choose a non constant 0 h ∈ T−1(0).Take{λn}n∈N ⊂ Cconvergingtozero,sethn := λnh ∈ T−1(0)foralln,andnotice that{hn}n∈N →0intheω-topologyonS. SetΨ ≡(ψ ,ψ ,ψ ) :=(1(η −η (h )), i(η +η (h )),φ (h ))∈ Ω∗(S)∩Ω (M )3,and n 1,n 2,n 3,n 2 1 2 n 2 1 2 n 3 n 0 0 S observethat∑3 ψ2 =0,∑3 |ψ |2nevervanishesonSandg = ψ3,n isholomorphicand j=1 j,n j=1 j,n n ψ1,n−iψ2,n nonconstanton M .ItisclearthatΨ −Φisexacton M ,n ∈ N.Furthermore,wecanslightly S n S deformΨ | sothatΨ −ΦisexactonSaswell, n ∈ N(weleavethedetailstothereader). If n CS n thelemmaholdsforΨn foralln,wecanconstructasequence{Ψˆn,m}m∈N ⊂ Ω0∗(S)3 converging to Ψ in the ω-topology on S and satisfying that Ψˆ −Ψ is exact on S for all n. A standard n n,m n (cid:3) diagonalargumentprovestheclaim. Claim2.8. Without lossofgenerality, wecanassumethat g,1/g and dg never vanishon ∂(M )∪C S S (hencethesameholdsforη,i =1,2,andφ ,j=1,2,3).Inparticular,g∈ F∗(S)anddg∈ Ω∗(S). i j Proof. Take a sequence M ⊃ M ⊃ ... of tubular neighborhoods of M in W such that M ⊂ 1 2 S n Mn◦−1 foranyn,∩n∈NMn = MS,Φ(andsog)meromorphicallyextends(withthesamename)to M ,∑3 |φ |2 6= 0on M ,and g,1/g,anddgnevervanishon∂(M )foralln(takeintoaccount 1 j=1 j 1 n 6 A.ALARCO´NANDF.J.LO´PEZ Claim2.7).ChooseM insuchawaythatS := M ∪C isanadmissiblesubsetofWandγ−M◦ n n n S n isa(non-empty)JordanarcforanycomponentγofC .Inparticular,C = C −M◦,n ∈N. S Sn S n Let(h ,ψ )∈ F∗(S )×Ω∗(S )besmoothdatasuchthat n 3,n n 0 n • (h ,ψ )| =(g,φ )| and∑3 |ψ |2nevervanishesonS ,whereΨ =(ψ ) = n 3,n MSn 3 MSn j=1 j,n n n j,n j=1,2,3 1(1/h −h ), i(1/h +h ),1 ψ ∈Ω∗(S )3,n∈N, 2 n n 2 n n 3,n 0 n • h(cid:0)n,1/hn anddhnnevervanish(cid:1)on∂(MSn)∪CSn, • Ψ | −ΦisexactonS,and n S • thesequence{Ψn|S}n∈N ⊂Ω0∗(S)3convergestoΦintheω-topologyonS. Theconstructionofthesedataisstandard,weomitthedetails. Label T ⊂ Ω (W)3 as the subspace of data Ψ formally satisfying (i) and (ii). If the Lemma 0 heldforanyofthedatain{Ψ | n ∈N},Ψ wouldlieintheclosureofT inΩ∗(S )3withrespect n n 0 n totheω-topologyonS foralln ∈N,hencethesamewouldoccurforΦandwearedone. (cid:3) n Let B be a homology basis of H (S,Z) and label ν its cardinalnumber. Endow F∗(S) with S 1 0 themaximumnorm,andconsidertheFre´chetdifferentiablemap: P : F∗(S)×F∗(S)→C3ν, P((h ,h ))= ((eh2−h1 −1)η ,(eh2+h1−1)η ,(eh2−1)φ ) . 0 0 1 2 Zc 1 2 3 c∈BS (cid:0) (cid:1) The meromorphic data inside the integrals arise frommultiplying g by eh1 and φ3 by eh2. Label A : F∗(S)×F∗(S) →C3ν astheFre´chetderivativeofP at(0,0). 0 0 0 Claim2.9. A | issurjective. 0 F0(W)×F0(W) Proof. ReasonbycontradictionandassumethatA (F (W)×F (W))liesinacomplexsubspace 0 0 0 U = { (x ,y ,z ) ∈C3ν| ∑ A x +B y +D z =0},where A ,B andD ∈Cforall c c c c∈BS c∈BS c c c c c c c c c c ∈ B (cid:0)and∑ (cid:1) |A |+|B |+|D | (cid:0)6=0.Thissimplyme(cid:1)ansthat: S c∈BS c c c (cid:0) (cid:1) (2.1) − hη + hη = hη + hη + hφ =0 1 2 1 2 3 ZΓ ZΓ ZΓ ZΓ ZΓ 1 2 1 2 3 forallh ∈F (W),whereΓ =∑ A c,Γ = ∑ B candΓ =∑ D c. 0 1 c∈BS c 2 c∈BS c 3 c∈BS c LabelΣ = {f ∈ F (W)| (f) ≥ (φ )2}.ByTheorem2.3,thefunctionh = df/φ ∈ F∗(S)lies 0 0 3 3 0 intheclosureofF (W)intheω-topologyonF∗(S)forany f ∈ Σ .Therefore,equation(2.1)can 0 0 0 beappliedformallytoh = df/φ ,gettingthat 1df = gdf = 0forall f ∈ Σ .Integrating 3 Γ1 g Γ2 0 byparts, R R dg (2.2) f = f dg=0 ZΓ g2 ZΓ 1 2 forall f ∈ Σ . 0 LetusshowthatΓ =0. 1 Letµ and b denote the genusofW andthe number of endsofW. Itiswellknown (see[FK]) that there exist 2µ+b−1 cohomologically independent 1-forms in Ω (W) generating the first 0 holomorphic DeRhamcohomologygroupH1 (W)ofW.Thus,themap H1 (W) −→ C2µ+b−1, hol hol τ 7→ τ , where B is any homology basis of W, is a linear isomorphism. Assume that c c∈B0 0 Γ 6=0(cid:0)Rand(cid:1)take[τ] ∈ H1 (W)suchthat τ 6=0.SinceWisanopensurface,F (W)hasinfinite 1 hol Γ1 0 dimensionandwecanfind F ∈ F (W)sRuchthat(τ+dF) ≥ (dg) (g)2 (φ )2.Seth := (τ+dF)g2 0 0 0 ∞ 3 dg andnotethat(h) ≥ (φ )2.ByTheorem2.3,hliesintheclosureofΣ inF∗(S)withrespecttothe 3 0 0 MINIMALSURFACESINR3PROPERLYPROJECTINGINTOR2 7 ω-topology,henceequation(2.2)canbeformallyappliedtoh,givingthat τ+dF = τ =0, Γ Γ 1 1 acontradiction. R R ByasimilarargumentΓ =0andequation(2.1)becomes: 2 (2.3) hφ =0 3 ZΓ 3 forallh ∈F (W). 0 Since∑ |A |+|B |+|D | 6= 0,thenΓ 6= 0.Reasonasaboveandchoose[τ] ∈ H1 (W) c∈BS c c c 3 hol andF ∈ F (W)(cid:0)suchthat τ 6=(cid:1)0and(τ+dF) ≥(φ ).Seth := τ+dF andnotethath ∈ F∗(S). 0 Γ3 0 3 φ3 0 ByTheorem2.3,hliesinthReclosureofF (W)inF∗(S)withrespecttotheω-topology,andequa- 0 0 tion(2.3)givesthat τ+dF = τ =0,acontradiction. Thisprovestheclaim. (cid:3) Γ Γ 3 3 R R Let{e ,...,e } beabasisof C3ν,fix H = (h ,h ) ∈ A−1(e)∩(F (W)×F (W)) foralli, 1 3ν i 1,i 2,i 0 i 0 0 andsetQ :C3ν →C3ν astheanalyticalmapgivenby 0 Q ((z ) ) =P( ∑ z H). 0 i i=1,...,3ν i i i=1,...,3ν ByClaim2.9d(Q ) isanisomorphism,sothereexistsaclosedEuclideanballU ⊂ C3ν centered 0 0 at the origin such that Q : U → Q (U) is an analytical diffeomorphism. Furthermore, notice 0 0 that0=Q (0)∈ Q (U)isaninteriorpointofQ (U). 0 0 0 On the other hand, byLemmas2.4and 2.5there existsa sequence {(fn,ψn)}n∈N ⊂ F(W)× Ω0(W) such that (fn) = (g) and (ψn) = (φ3) for all n, and {(fn,ψn)}n∈N → (g,φ3) in the ω- topologyonF∗(S)×Ω∗(S). 0 LabelP : F∗(S)×F∗(S)→C3νastheFre´chetdifferentiablemap n 0 0 Pn((h1,h2))= Zc(eh2−h1η1,n−η1,eh2+h1η2,n−η2,eh2ψn−φ3) c∈BS, (cid:0) (cid:1) where η = 1ψ (1/f − f ) and η = iψ (1/f + f ), and call Q : C3ν → C3ν as the ana- 1,n 2 n n n 2,n 2 n n n n lyticalmapQn((zi)i=1,...,3ν) = Pn(∑i=1,...,3νziHi)foralln ∈ N.Since{Qn}n∈N → Q0 uniformly oncompactssubsetsofC3ν,withoutlossofgeneralitywecansupposethatQ : U → Q (U)is n n ananalyticaldiffeomorphismand0 ∈ Q (U)foralln.Labely = (y ,...,y )astheunique n n 1,n 3ν,n pointinUsuchthatQn(yn) =0andnotethat{yn}n∈N →0.Setting gn =e∑3j=ν1yj,nh1,jfn, φ3,n = e∑3j=ν1yj,nh2,jψn foralln∈N,thesequence{(gn,φ3,n)}n∈N solvesthelemma. (cid:3) Corollary2.10. Inthepreviouslemmawecanchooseφ = φ foralln ∈ N,providedthatφ extends 3,n 3 3 holomorphicallytoW andφ nevervanishesonC . 3 S Proof. Withoutlossofgenerality,wecansupposethatg,1/ganddgnevervanishon∂(M )∪C . S S Indeed, like in the proof of Claim 2.8 consider a sequence {Mn}n∈N of tubular neighborhoods of M in W such that ∩∞ M = M , S := M ∪C is admissible in W, g, 1/g and dg never S n=1 n S n n S vanishes on ∂(M ) and γ−M◦ is a (non-empty) Jordan arc for any component γ of C , for all n n S n ∈N.Leth ∈ F∗(S )beasmoothdatumsuchthat: n n • h | = g| and∑3 |ψ |2nevervanishesonS ,whereΨ =(ψ ) = 1(1/h − n MSn MSn j=1 j,n n n j,n j=1,2,3 2 n h ), i(1/h +h ),1 φ ∈Ω∗(S )3,n∈N, (cid:0) n 2 n n 3 0 n • h ,1/h anddh ne(cid:1)vervanishon∂(M )∪C , n n n Sn Sn • Ψ | −ΦisexactonS,and n S • thesequence{Ψn|S}n∈N ⊂Ω0∗(S)3convergestoΦintheω-topologyonS. 8 A.ALARCO´NANDF.J.LO´PEZ ReasoningasintheproofofClaim2.8,iftheLemmaheldforanyofthedatain{Ψ | n ∈N}the n samewouldoccurforΦandwearedone. Reasoning like in the proof of Lemma 2.6, we can prove that Aˆ : F (W) → Cν is sur- 0 0 jective, where Aˆ is the Fre´chet derivative of Pˆ : F∗(S) → C2ν, Pˆ(h) := P(h,0). Then take 0 0 Hˆ ∈ Aˆ−1(e)∩F (W) foralli,where {e ,...,e }isabasisofC2ν,anddefine Qˆ : C2ν → C2ν i 0 i 0 1 2ν 0 byQˆ ((z) ) = Pˆ(∑ z Hˆ ). 0 i i=1,...,2ν i=1,...,2ν i i Use Riemann-Roch Theorem to find a holomorphic function H ∈ F (W) such that (H) = 0 (φ3|W−S), and then Lemma 2.4 to get {fn}n∈N ⊂ F(W) such that (fn) = (g|S) for all n and {fn}n∈N → g/Hintheω-topologyonF∗(S). SetPˆ : F∗(S)→C2νbyPˆ (h) = (e−hη −η ,ehη −η ) ,whereη = 1φ ( 1 − n 0 n c 1,n 1 2,n 2 c∈BS 1,n 2 3 fnH f H)andη = iφ ( 1 +f H),and(cid:0)cRallQˆ :C2ν →C2νasthean(cid:1)alyticalmapQˆ ((z) )= n 2,n 2 3 fnH n n n i i=1,...,2ν Pˆ (∑ z Hˆ )foralln∈N.Tofinish,reasonasintheproofofLemma2.6. (cid:3) n i=1,...,2ν i i 3. WEIERSTRASS REPRESENTATION AND FLUXMAPOF MINIMAL SURFACES LetW be anopenRiemann surfaceand let X = (X ,X ,X ) : W → R3 be a conformalmin- 1 2 3 imal immersion. Denote by φ = ∂X , j = 1,2,3,and Φ = ∂X ≡ (φ ) . The 1-forms φ are j j j j=1,2,3 k holomorphic,havenorealperiodsandsatisfythat∑3 φ2 =0.Furthermore,theintrinsicmetric k=1 k inW isgivenbyds2 =∑3 |φ |2,henceφ ,k =1,2,3,havenocommonzeroes. k=1 k k Conversely, a vectorial holomorphic 1-form Φ = (φ ,φ ,φ ) on W without real periods and 1 2 3 satisfyingthat∑3 φ2 =0and∑3 |φ (P)|2 6=0forallP ∈W,determinesaconformalminimal k=1 k k=1 k immersionX :W →R3 bytheexpression: X =Re Φ. Z By definition, the triple Φ is said to be the Weierstrass representation of X. The meromorphic function g = φ3 corresponds to the Gauss map of X up to the stereographic projection (see φ1−iφ2 [Os]). Weneedthefollowingdefinition: Definition 3.1. Given a proper region M ⊂ N with possibly non empty boundary, we denote by M(M) the space of maps X : M → R3 extending as a conformal minimal immersion to an openneighborhoodof MinN.ThisspacewillbeequippedwiththeC0 topologyoftheuniform convergenceoncompactsubsetsof M. Given X ∈ M(M) and an arclength parameterizedcurve γ(s) in M, the conormal vector of X at γ(s) is the unique unitarytangent vector µ(s) of X at γ(s) such that {dX(γ′(s)),µ(s)} is a positivebasis. Ifinadditionγisclosed,theflux p (γ)ofX alongγisgivenby µ(s)ds,andit X γ iseasytocheckthatp (γ)=Im ∂X.Thefluxmap p : H (M,Z)→R3isagrRoupmorphism. X γ X 1 R LetS ⊂ N beacompactadmissiblesubset. WedenotebyJ(S)thespaceofsmoothmapsX : S →R3 suchthatX| ∈ M(M )andX| isregular,thatistosay,X| isaregularcurveforall MS S CS α α ⊂ C .ItisclearthatY| ∈ J(S)forallY ∈ M(N). S S Consider X ∈ J(S)andlet̟ : C → R3 beansmoothnormalfieldalongC respecttoX.This S S simplymeansthatforanyanalyticalarcα ⊂ C andanysmoothparameterton X| , ̟(α(t))is S α smooth, unitaryandorthogonalto(X| )′(t),̟ extendssmoothlytoanyopenanalyticalarcβin α Wcontainingαand̟istangenttoXonβ∩S.Thenormalfield̟issaidtobeorientablerespectto MINIMALSURFACESINR3PROPERLYPROJECTINGINTOR2 9 Xifforanycomponentα ⊂ C havingendpointsP ,P lyingin∂(M ),andforanyarclengthpa- S 1 2 S rametersalongX| ,thebasisB = {(X| )′(s ),̟(s)}ofthetangentplaneofX| atP,i = 1,2, α i α i i MS i arebothpositiveornegative,wheres isthevalueofsforwhichα(s) = P,i =1,2. i i i Definition3.2. WecallM∗(S)asthespaceofmarkedimmersionsX := (X,̟),whereX ∈ J(S) ̟ and̟isanorientablesmoothnormalfieldalongC respecttoX,endowedwiththeC0topology S oftheuniformconvergenceofmapsandnormalfields. Given X ∈ M∗(S), let ∂X = (φˆ ) be the complex vectorial “1-form” on S given by ̟ ̟ j j=1,2,3 ∂X | = ∂(X| ),∂X (α′(s)) = dX(α′(s))+i̟(s),where α isacomponent of C and sisthe ̟ MS MS ̟ S arclengthparameterof X| for which {dX(α′(s)),̟(s)} arepositive, whereas above s and s α i i 1 2 are the values of s for which α(s) ∈ ∂(M ). If (U,z = x+iy) is a conformal chart on N such S that α∩U = z−1(R∩z(U)),itisclearthat(∂X )| = dX(α′(s))+i̟(s) s′(x)dz| ,hence ̟ α∩U α∩U ∂X ∈ Ω∗(S)3.Furthermore,gˆ = φˆ /(φˆ −iφˆ ) ∈ F∗(S)p(cid:2)rovidedthatgˆ−1(∞(cid:3))⊂ S◦. ̟ 0 3 1 2 It is clear that φˆ is smooth on S, j = 1,2,3, and the same occurs for gˆ on S−gˆ−1(∞). No- j tice that ∑3 φˆ2 = 0, ∑3 |φˆ |2 never vanishes on S and Real(φˆ ) is an “exact” real 1-form on j=1 j j=1 j j S, j = 1,2,3, hence we also have X(P) = X(Q)+Real P(φˆ ) , P, Q ∈ S. For these rea- Q j j=1,2,3 sons,(gˆ,φˆ )willbecalledasthegeneralized“WeierstrassRdata”ofX .AsX| ∈ M(M ),then 3 ̟ MS S (φ ) := (φˆ | ) ,and g := gˆ| arethe Weierstrassdataandthe meromorphicGauss j j=1,2,3 j MS j=1,2,3 MS mapofX| ,respectively. MS Thegrouphomomorphism p : H (S,Z)→R3, p (γ)=Im ∂X , X̟ 1 X̟ Zγ ̟ is said to be the generalized flux map of X . Obviously, p = p | provided that X = Y| ̟ X̟Y Y H1(S) S and̟ istheconormalfieldofYalonganycurveinC . Y S 4. PROPERNESS AND CONFORMAL STRUCTURE OF MINIMAL SURFACES ¿From now on, we label x : R3 → R as the k-th coordinate function, k = 1,2,3. Given a k compact M ⊂ N andamapX : M → R3,wedenotekXk := max ∑3 (x ◦X)2 1/2 asthe M j=1 j maximumnorm. Foreach̺,a ∈R,wecall (cid:8)(cid:0) (cid:1) (cid:9) Π (̺)= {(x ,x ,x ) ∈R3| x +tan(̺)x ≤ a}, Π∗(̺)=R3−Π (̺). a 1 2 3 3 1 a a Thefollowinglemmaconcentratesmostofthetechnicalcomputationsrequiredintheproofof themaintheoremofthissection. Lemma4.1. Let M, V ⊂ N be twocompactregions withanalyticalboundary such that M ⊂ V◦ and N −MhasnoboundedcomponentsinN. ConsiderX ∈ M(M)andlet p :H (V,Z)→Rbeanymorphismextensionof p .Supposethereare 1 X θ ∈ (0,π/4)andδ ∈(0,+∞)suchthatX(∂(M))⊂ Π∗(θ)∪Π∗(−θ). δ δ Then, for any ǫ > 0 there exists Y ∈ M(V) such that p = p, kY−Xk < ǫ on M, Y(∂(V)) ⊂ Y Π∗ (θ)∪Π∗ (−θ)andY(V−M) ⊂Π∗(θ)∪Π∗(−θ). δ+1 δ+1 δ δ Proof. Westartwiththefollowingclaim. Claim4.2. ThelemmaholdswhentheEulercharacteristicχ(V−M◦)vanishes. 10 A.ALARCO´NANDF.J.LO´PEZ Proof. Since M ⊂ V◦ and V◦−M has no bounded components in V◦, then V−M◦ = ∪k A , j=1 j where A ,...,A arepairwisedisjointcompactannuli. Write∂(A ) = α ∪β ,whereα ⊂ ∂(M) 1 k j j j j andβ ⊂ ∂(V)forallj. j Since X(∂(M)) ⊂ Π∗(θ)∪Π∗(−θ), each α can be divided into finitely many Jordanarcs αi, δ δ j j i = 1,...n ≥ 2,laidendtoendandsatisfyingthateitherX(αi) ⊂ Π∗(θ)orX(αi) ⊂ Π∗(−θ)for j j δ j δ alli.Uptorefiningthepartitions,wecanassumethatn =m ∈Nforallj. j Anarc αi is saidto be positiveif X(αi) ⊂ Π∗(θ),and negativeotherwise. Notice that X(αi) ⊂ j j δ j Π∗(−θ) for any negative (and possibly for some positive) αi. We also label Qi and Qi+1 as the δ j j j endpointsofαi,insuchawaythatQi+1 =αi∩αi+1,i =1,...,m,(obviously,Qm+1 = Q1). j j j j j j Let{ri| i = 1,...,m}beacollectionofpairwisedisjointanalyticalJordanarcsin A suchthat j j ri has initial point Qi ∈ α , finalpoint Pi ∈ β , ri is otherwise disjoint from ∂(A ), and ri meets j j j j j j j j transversallyαi atQi,foralliandj. j j LetWbeatubularneighborhoodofVinN,thatistosay,anopenconnectedsubsetofN such thatV ⊂W,W−V consistsofafinitecollectionofopenannuli,andtheclosureofanyannuliin W−V intersects∂(V). Set M = M∪ ∪ ri ,andnoticethat M isanadmissiblesubsetinN,andsoinW.CallΩi 0 j,i j 0 j asthecloseddisc(cid:0)in A b(cid:1)oundedbyαi∪ri∪ri+1 andapiece,named βi,of β connecting Pi and j j j j j j j Pi+1.ObviouslyΩi∩Ωi+1 =ri+1,i < m,Ωm∩Ω1 =r1,andA =∪m Ωi.ThedomainΩi issaid j j j j j j j j i=1 j j tobepositive(respectively,negative)ifαi ispositive(respectively,negative). j FIGURE 1. Theannulus Aj. TakeXˆ ∈ M∗(M )suchthatXˆ| = X,and ̟ 0 M (4.1) dist Xˆ(Pi), Π (θ)∪Π (−θ) >1, j δ δ (cid:0) (cid:1) foralliandj.Inaddition,wechooseXˆ insuchawaythat: ̟ (1+) IfΩij ispositivethenXˆ(rij∪rij+1)⊂ Π∗δ(θ). (1−) IfΩij isnegativethenXˆ(rij∪rij+1) ⊂Π∗δ(−θ).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.