ebook img

Mind, Body, World: Foundations of Cognitive Science PDF

506 Pages·2013·4.052 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mind, Body, World: Foundations of Cognitive Science

MIND, BODY, WORLD OPEL (open paths to enriched learning) Series Editor: Connor Houlihan Open Paths to Enriched Learning (OPEL) reflects the continued commitment of Athabasca University to removing barriers — including the cost of course materials — that restrict access to university-level study. The OPEL series offers introductory texts on a broad array of topics, written especially with undergraduate students in mind. Although the books in the series are designed for course use, they also afford lifelong learners an opportunity to enrich their own knowledge. Like all AU Press publications, OPEL course texts are available for free download at www.aupress.ca, as well as for purchase in both print and digital formats. series titles Open Data Structures: An Introduction Pat Morin Mind, Body, World: Foundations of Cognitive Science Michael R.W. Dawson M I N D, FOuNDatIONs OF COgNItIve sCIeNCe B O D Y, MIChaeL R. W. DaWsON W O R L D Copyright © 2013 Michael R. W. Dawson Published by AU Press, Athabasca University 1200, 10011 – 109 Street, Edmonton, AB T5J 3S8 A volume in OPEL (Open Paths to Enriched Learning) issn 2291-2606 (print) 2291-2614 (digital) Cover design by Marvin Harder, marvinharder.com. Interior design by Sergiy Kozakov. Printed and bound in Canada by Marquis Book Printers. library and archives canada cataloguing in publication Dawson, Michael Robert William, 1959—, author Mind, body, world: foundations of cognitive science / Michael R. W. Dawson. (OPEL (Open paths to enriched learning), 2291-2606 ; 2) Includes bibliographical references and index. Issued in print and electronic formats. isbn 978-1-927356-17-3 (pbk.) — isbn 978-1-927356-18-0 (pdf) — isbn 978-1-927356-19-7 (epub) 1. Cognitive science. I. Title. II. Series: Open paths to enriched learning ; 2 BF311.D272 2013 153 C2013-902162-0 C2013-902163-9 We acknowledge the financial support of the Government of Canada through the Canada Book Fund (cbf) for our publishing activities. Assistance provided by the Government of Alberta, Alberta Multimedia Development Fund. This publication is licensed under a Creative Commons licence, Attribution-Noncommercial-No Derivative Works 2.5 Canada: see www.creativecommons.org. The text may be reproduced for non- commercial purposes, provided that credit is given to the original author. To obtain permission for uses beyond those outlined in the Creative Commons licence, please contact AU Press, Athabasca University, at [email protected]. Contents List of Figures and Tables | ix Preface | xiii Who Is This Book Written For? | xiv Acknowledgements | xv Chapter 1. The Cognitive Sciences: One or Many? | 1 1.0 Chapter Overview | 1 1.1 A Fragmented Psychology | 2 1.2 A Unified Cognitive Science | 3 1.3 Cognitive Science or the Cognitive Sciences? | 6 1.4 Cognitive Science: Pre-paradigmatic? | 13 1.5 A Plan of Action | 16 Chapter 2. Multiple Levels of Investigation | 19 2.0 Chapter Overview | 19 2.1 Machines and Minds | 20 2.2 From the Laws of Thought to Binary Logic | 23 2.3 From the Formal to the Physical | 29 2.4 Multiple Procedures and Architectures | 32 2.5 Relays and Multiple Realizations | 35 2.6 Multiple Levels of Investigation and Explanation | 38 2.7 Formal Accounts of Input-Output Mappings | 40 2.8 Behaviour by Design and by Artifact | 41 2.9 Algorithms from Artifacts | 43 2.10 Architectures against Homunculi | 46 2.11 Implementing Architectures | 48 2.12 Levelling the Field | 51 Chapter 3. Elements of Classical Cognitive Science | 55 3.0 Chapter Overview | 55 3.1 Mind, Disembodied | 56 3.2 Mechanizing the Infinite | 59 3.3 Phrase Markers and Fractals | 65 3.4 Behaviourism, Language, and Recursion | 68 v 3.5 Underdetermination and Innateness | 72 3.6 Physical Symbol Systems | 75 3.7 Componentiality, Computability, and Cognition | 78 3.8 The Intentional Stance | 82 3.9 Structure and Process | 85 3.10 A Classical Architecture for Cognition | 89 3.11 Weak Equivalence and the Turing Test | 93 3.12 Towards Strong Equivalence | 97 3.13 The Impenetrable Architecture | 106 3.14 Modularity of Mind | 113 3.15 Reverse Engineering | 119 3.16 What is Classical Cognitive Science? | 122 Chapter 4. Elements of Connectionist Cognitive Science | 125 4.0 Chapter Overview | 125 4.1 Nurture versus Nature | 126 4.2 Associations | 133 4.3 Nonlinear Transformations | 139 4.4 The Connectionist Sandwich | 142 4.5 Connectionist Computations: An Overview | 148 4.6 Beyond the Terminal Meta-postulate | 149 4.7 What Do Output Unit Activities Represent? | 152 4.8 Connectionist Algorithms: An Overview | 158 4.9 Empiricism and Internal Representations | 159 4.10 Chord Classification by a Multilayer Perceptron | 162 4.11 Trigger Features | 172 4.12 A Parallel Distributed Production System | 177 4.13 Of Coarse Codes | 184 4.14 Architectural Connectionism: An Overview | 188 4.15 New Powers of Old Networks | 189 4.16 Connectionist Reorientation | 193 4.17 Perceptrons and Jazz Progressions | 195 4.18 What Is Connectionist Cognitive Science? | 198 Chapter 5. Elements of Embodied Cognitive Science | 205 5.0 Chapter Overview | 205 5.1 Abandoning Methodological Solipsism | 206 5.2 Societal Computing | 210 5.3 Stigmergy and Superorganisms | 212 5.4 Embodiment, Situatedness, and Feedback | 216 vi 5.5 Umwelten, Affordances, and Enactive Perception | 219 5.6 Horizontal Layers of Control | 222 5.7 Mind in Action | 224 5.8 The Extended Mind | 230 5.9 The Roots of Forward Engineering | 235 5.10 Reorientation without Representation | 239 5.11 Robotic Moments in Social Environments | 245 5.12 The Architecture of Mind Reading | 250 5.13 Levels of Embodied Cognitive Science | 255 5.14 What Is Embodied Cognitive Science? | 260 Chapter 6. Classical Music and Cognitive Science | 265 6.0 Chapter Overview | 265 6.1 The Classical Nature of Classical Music | 266 6.2 The Classical Approach to Musical Cognition | 273 6.3 Musical Romanticism and Connectionism | 280 6.4 The Connectionist Approach to Musical Cognition | 286 6.5 The Embodied Nature of Modern Music | 291 6.6 The Embodied Approach to Musical Cognition | 301 6.7 Cognitive Science and Classical Music | 307 Chapter 7. Marks of the Classical? | 315 7.0 Chapter Overview | 315 7.1 Symbols and Situations | 316 7.2 Marks of the Classical | 324 7.3 Centralized versus Decentralized Control | 326 7.4 Serial versus Parallel Processing | 334 7.5 Local versus Distributed Representations | 339 7.6 Internal Representations | 343 7.7 Explicit Rules versus Implicit Knowledge | 345 7.8 The Cognitive Vocabulary | 348 7.9 From Classical Marks to Hybrid Theories | 355 Chapter 8. Seeing and Visualizing | 359 8.0 Chapter Overview | 359 8.1 The Transparency of Visual Processing | 360 8.2 The Poverty of the Stimulus | 362 8.3 Enrichment via Unconscious Inference | 368 8.4 Natural Constraints | 371 8.5 Vision, Cognition, and Visual Cognition | 379 8.6 Indexing Objects in the World | 383 vii 8.7 Situation, Vision, and Action | 390 8.8 Scaffolding the Mental Image | 394 8.9 The Bounds of Cognition | 397 Chapter 9. Towards a Cognitive Dialectic | 399 9.0 Chapter Overview | 399 9.1 Towards a Cognitive Dialectic | 400 9.2 Psychology, Revolution, and Environment | 406 9.3 Lessons from Natural Computation | 412 9.4 A Cognitive Synthesis | 417 References | 425 Index | 485 viii List of Figures and Tables Figure 2-1. (A) An electrical switch, labelled x. (B) Switches x and y in series. (C) Switches x and y in parallel. | 31 Figure 2-2. A relay, in which a signal through an electromagnetic gate controls a switch that determines whether the current from the source will flow through the drain. | 35 Figure 3-1. The starting configuration for a five-disc version of the Tower of Hanoi problem. | 62 Figure 3-2. An intermediate state that occurs when MoveStack () is applied to a five- disc version of the Tower of Hanoi. | 63 Figure 3-3. The root of the Sierpinski triangle is an equilateral triangle. | 64 Figure 3-4. The second step of constructing a Sierpinski triangle. | 64 Figure 3-5. The Sierpinski triangle that results when the recursive rule is applied four times to Figure 3-4. | 65 Figure 3-6. A phrase marker for the sentence Dogs bark. | 66 Figure 3-7. Phrase markers for three noun phrases: (A) the dog, (B) the cute dog, and (C) the cute brown scruffy dog. Note the recursive nature of (C). | 67 Figure 3-8. How a Turing machine processes its tape. | 69 Figure 3-9. How a finite state automaton processes the tape. Note the differences between Figures 3-9 and 3-8. | 70 Figure 3-10. Results of applying MDS to Table 3-1. | 88 Figure 3-11. Unique features pop out of displays, regardless of display size. | 101 Figure 3-12. Unique combinations of features do not pop out. | 102 Figure 3-13. The Müller-Lyer illusion. | 111 Figure 4-1. A distributed memory, initially described by James (1890a) but also part of modern connectionism. | 136 Figure 4-2. (A) Pattern space for AND; (B) Pattern space for XOR. | 143 Figure 4-3. A Rosenblatt perceptron that can compute the AND operation. | 144 Figure 4-4. A multilayer perceptron that can compute XOR. | 146 Figure 4-5. A typical multilayer perceptron has no direct connections between input and output units. | 147 Figure 4-6. Probability matching by perceptrons. Each line shows the perceptron ix activation when a different cue (or discriminative stimulus, DS) is presented. Activity levels quickly become equal to the probability that each cue was reinforced (Dawson et al., 2009). | 154 Figure 4-7. A small piano keyboard with numbered keys. Key 1 is C. | 162 Figure 4-8. The C major scale and some of its added note chords. | 162 Figure 4-9. The circle of fifths. | 163 Figure 4-10. The two circles of major seconds. | 167 Figure 4-11. The four circles of major thirds. | 168 Figure 4-12. The hidden unit space for the chord classification network. H1, H2, and H3 provide the activity of hidden units 1, 2, and 3 respectively. | 171 Figure 4-13. An example of output unit partitioning of the hidden unit space for the chord classification network. | 172 Figure 4-14. Any input pattern (dashed lines) whose vector falls in the plane orthogonal to the vector of connection weights (solid line) will be a trigger feature for a hidden value unit. | 174 Figure 4-15. An example of banding in a jittered density plot of a hidden value unit in a network that was trained on a logic problem. | 175 Figure 4-16. Coordinates associated with each output note, taken from an MDS of the Table 4-8 correlations. Shading reflects groupings of notes as circles of major thirds. | 197 Figure 8-1. Underdetermination of projected movement. | 364 Figure 8-2. The aperture problem in motion perception. | 365 Figure 8-3. An example Sudoku puzzle. | 372 Figure 8-4. The “there can be only one” constraint propagating from the cell labelled 5 | 372 Figure 8-5. The “last available label” constraint. | 373 Figure 8-6. The “naked pair constraint.” | 374 Figure 8-7. The motion correspondence problem. | 376 Figure 8-8. Pylyshyn’s theory of preattentive visual indexing provides referential links from object files to distal objects in the world. | 390 Figure 9-1. Word cloud generated from the text of Chapter 3 on classical cognitive science. | 401 Figure 9-2. Word cloud generated from the text of Chapter 4 on connectionist cognitive science. | 402 Figure 9-3. Word cloud generated from the text of Chapter 4 on embodied cognitive science. | 402 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.