ebook img

MIMO Gaussian Broadcast Channels with Confidential and Common Messages PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MIMO Gaussian Broadcast Channels with Confidential and Common Messages

MIMO Gaussian Broadcast Channels with Confidential and Common Messages Ruoheng Liu, Tie Liu, H. Vincent Poor, and Shlomo Shamai (Shitz) Abstract—This paper considers the problem of secret com- H1 Z1n munication over a two-receiver multiple-input multiple-output × + Y1n Receiver 1 (W^0,W^1) (MIMO) Gaussian broadcast channel. The transmitter has two 1n_I(W2;Y1n )→0 independent,confidentialmessagesandacommonmessage.Each Xn of the confidential messages is intended for one of the receivers (W0,W1,W2) Transmitter H2 Z2n 10 but needs to be kept perfectly secret from the other, and the × + Y2n Receiver 2 (W^0,W^2) 0 common message is intended for both receivers. It is shown 1n_I(W1;Y2n )→0 that a natural scheme that combines secret dirty-paper coding 2 withGaussiansuperpositioncodingachievesthesecrecycapacity Fig.1. Channelmodel n region.Toprovethisresult,achannel-enhancementapproachand a an extremal entropy inequality of Weingarten et al. are used. J 6 As shown in Fig. 1, we consider the communication sce- I. INTRODUCTION 1 nario in which there is a common message W and two 0 In this paper, we study the problem of secret communi- independent, confidential messages W1 and W2 at the trans- ] T cation over a multiple-input multiple-output (MIMO) Gaus- mitter. Message W0 is intended for both receivers. Message I sian broadcast channel with two receivers. The transmitter is W1 is intendedforreceiver1 butneedsto bekeptsecretfrom s. equipped with t transmit antennas, and receiver k, k = 1,2, receiver 2, and message W2 is intended for receiver 1 but c is equipped with r receive antennas. A discrete-time sample needs to be kept secret from receiver 2. The confidentiality [ k of the channel at time m can be written as ofthe messagesatthe unintendedreceiversis measuredusing 1 the normalized information-theoreticcriteria [1] v Yk[m]=HkX[m]+Zk[m], k =1,2 (1) 1 1 6 I(W ;Yn)→0 and I(W ;Yn)→0 (3) 0 where Hk is the (real) channel matrix of size rk × t, and n 1 2 n 2 1 28 {adZdki[tmive]}mvecistoarnGinaduespsieanndennotiasendpirdoecnetsiscawllyithdizsterriobumteeda(ni.ia.dn.d) warheetraekeYnknas:=the(Ybklo[1ck],.l.e.n,gYthkn[n]→), k∞=. T1h,e2,goaanldisthteolcimhaitrs- . 1 identity covariance matrix. The channel input {X[m]}m is acterize the entire secrecy rate region Cs[SBC](H1,H2,S) = 0 subject to the matrix power constraint: {(R ,R ,R )} that can be achieved by any coding scheme, 0 0 1 2 n whereR ,R andR arethecommunicationratescorrespond- 1 1 0 1 2 v: n (X[m]X⊺[m])(cid:22)S (2) ing to the common message W0, the confidential message m=1 W destined for receiver 1 and the confidential message W i X 1 2 X where S is a positive semidefinite matrix, and “(cid:22)” denotes destined for receiver 2, respectively. r “less than or equal to” in the positive semidefinite partial In recent years, MIMO secret communication has been an a ordering between real symmetric matrices. Note that (2) is active area of research. Several special cases of the commu- a rather general power constraint that subsumes many other nication problem that we consider here have been studied in important power constraints including the average total and the literature. Specifically, per-antenna power constraints as special cases. • With only one confidential message (W1 or W2), the problem was studied as the MIMO Gaussian wiretap This research was supported bytheUnited States National Science Foun- channel. The secrecy capacity of the MIMO Gaussian dation under Grant CNS-09-05398, CCF-08-45848 and CCF-09-16867, by the Air Force Office of Scientific Research under Grant FA9550-08-1-0480, wiretap channel was characterized in [2] and [3] under by the European Commission in the framework of the FP7 Network of the matrix power constraint (2) and in [4] and [5] under Excellence in Wireless Communications NEWCOM++, and by the Israel an average total power constraint. Science Foundation. Ruoheng Liu and H. Vincent Poor are with the Department of Electri- • With bothconfidentialmessagesW1 and W2 butwithout cal Engineering, Princeton University, Princeton, NJ 08544, USA (e-mail: the common message W , the problem was studied in 0 {rliu,poor}@princeton.edu). [6] for the multiple-inputsingle-output(MISO) case and Tie Liu is with the Department of Electrical and Computer Engineer- ing, Texas A&M University, College Station, TX 77843, USA (e-mail: in [7] for general MIMO case. Rather surprisingly, it [email protected]). was shown in [7] that, underthe matrix powerconstraint Shlomo Shamai (Shitz) is with the Department of Electrical Engineering, (2), both confidential messages can be simultaneously Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel (e-mail: [email protected]). communicatedattheirrespectedmaximumsecrecyrates. • With only one confidential message (W1 or W2) and Theorem 2 (Aligned MIMO Gaussian broadcast channel): the common message W , the secrecy capacity region ThesecrecycapacityregionC[SBC](N ,N ,S)of the aligned 0 s 1 2 of the channel was characterized in [8] using a channel- MIMO Gaussian broadcast channel (5) with a common enhancement approach [9] and an extremal entropy in- messageW and confidentialmessagesW andW underthe 0 1 2 equality of Weingarten et al. [10]. matrix powerconstraint(2) is givenby the set of nonnegative The main contribution of this paper is to provide a precise rate triples (R ,R ,R ) such that 0 1 2 characterization of the secrecy capacity region of the MIMO 1 S+N 1 S+N Gaussian broadcast channel with a more complete message R ≤min log 1 , log 2 0 2 (S−B )+N 2 (S−B )+N setthatincludesacommonmessageW andtwoindependent, (cid:26) (cid:12) 0 1(cid:12) (cid:12) 0 2(cid:12)(cid:27) 0 1 B +(cid:12)N 1 B(cid:12) +N (cid:12) (cid:12) ecnohnafindceenmtiaelnmt aersgsuagmeesnWt o1fa[n8d].W2bygeneralizingthechannel- R1 ≤ 2log(cid:12) 1N(cid:12)(cid:12)1 1(cid:12)− 2log(cid:12) 1(cid:12)(cid:12)N2 2(cid:12)(cid:12)(cid:12) (cid:12)(cid:12) 1 (cid:12)(S−B )(cid:12)+N (cid:12)1 (S−(cid:12) B )+N II. MAIN RESULT R ≤ log(cid:12) 0 (cid:12) 2 −(cid:12) log (cid:12) 0 1 2 2 (cid:12) B +N(cid:12) (cid:12)2 (cid:12)B +N Themainresultofthepaperissummarizedinthefollowing (cid:12) 1 2 (cid:12) (cid:12) 1 1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (6) theorem. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Theorem 1 (General MIMO Gaussian broadcast channel): for some B0 (cid:23)0, B1 (cid:23)0 and B0+B1 (cid:22)S. Thesecrecycapacityregionofthe MIMOGaussianbroadcast Next, we prove Theorem 2 by generalizing the channel- channel (1) with a common message W (intended for enhancementargumentof[8].Extensionfromthealignedcase 0 both receivers) and confidential messages W (intended for (6) to the general case (4) follows from the standard limiting 1 receiver 1 but needing to be kept secret from receiver 2) and argument[9]; the details are deferred to the extended version W (intended for receiver 2 but needing to be kept secret of this work [11]. 2 from receiver 1) under the matrix power constraint (2) is III. PROOF OFTHEOREM2 given by the set of nonnegativerate triples (R ,R ,R ) such 0 1 2 that A. Achievability 1 H SH⊺+I The problem of a two-receiver discrete memoryless broad- R ≤min log 1 1 r1 , 0 2 H (S−B )H⊺+I cast channel with a common message and two confidential 1(cid:26) (cid:12)(cid:12) H1 SH⊺+0I 1 r1(cid:12)(cid:12) common messages was studied in [12], where an achievable log (cid:12) 2 2 r2 (cid:12) secrecy rate region was given by the set of rate triples 2 H(cid:12)(S−B )H⊺+I (cid:12) (cid:12) 2 0 2 r2(cid:12)(cid:27) (R ,R ,R ) such that 1 (cid:12) (cid:12) 0 1 2 R ≤ log|I (cid:12)+H B H⊺| (cid:12) 1 2 r1(cid:12) 1 1 1 (cid:12) R0 ≤min[I(U0;Y1), I(U0,Y2)] 1 − 2log|Ir2 +H2B1H⊺2| R1 ≤I(V1;Y1|U0)−I(V1;V2,Y2|U0) 1 I +H (S−B )H⊺ and R2 ≤I(V2;Y2|U0)−I(V2;V1,Y1|U0) (7) and R ≤ log r2 2 0 2 2 2 I +H B H⊺ where U , V and V are auxiliary random variables such (cid:12) r2 2 1 2 (cid:12) 0 1 2 − (cid:12)(cid:12)1log Ir1 +H1(S−B0(cid:12)(cid:12))H⊺1 (4) that (U0,V1,V2)→X→(Y1,Y2) forms a Markov chain. (cid:12)2 I +H B H(cid:12)⊺ The scheme to achieve this secrecy rate region is a natural (cid:12) r1 1 1 1 (cid:12) combination of secret dirty-paper coding and superposition (cid:12) (cid:12) for some B0 (cid:23) 0, B1 (cid:23) 0 (cid:12)(cid:12)and B0 + B1 (cid:22) S. He(cid:12)(cid:12)re, Irk coding. Thus, the achievability of the secrecy rate region (6) denotes the identity matrix of size r ×r for k =1,2. k k follows from that of (7) by setting Remark 1: NotethatforanygivenB ,theupperboundson 0 R and R can be simultaneously maximized by a same B . V =U +FU 1 2 1 1 1 2 In fact, the upper bounds on R1 and R2 are fully symmetric V2 =U2 withrespectto H andH , eventhoughitisnotimmediately 1 2 and X=U +U +U evident from the expressions themselves. 0 1 2 To prove Theorem 1, we shall follow [9] and first consider whereU ,U andU arethreeindependentGaussianvectors 0 1 2 the canonical aligned case. In an aligned MIMO Gaussian withzeromeansandcovariancematricesB ,B andS−B − 0 1 0 broadcast channel [9], the channel matrices H and H are B , respectively, and 1 2 1 square and invertible. Multiplying both sides of (1) by H−1, k F:=BH⊺(I +H BH⊺)−1H . the channel can be equivalently written as 1 r1 1 1 1 The details of the proof are deferred to the extended version Y [m]=X [m]+Z [m], k =1,2 (5) k k k of this work [11]. where {Z [m]} is an i.i.d. additive vector Gaussian noise k m B. The converse process with zero mean and covariance matrix N = k H−1H−⊺, k = 1,2. The secrecy capacity region of the Next, we prove the converse part of Theorem 2 assuming k k aligned MIMO Gaussian broadcast channel is summarized in that S ≻ 0. The case where S (cid:23) 0, |S| = 0 can be found in the following theorem. the extended version of this work [11]. Let Hence, we have f0(B0)=min 12log (S−SB+N)+1 N , (β1+β2)R0†+λ1R1†+λ2R2† (cid:26) (cid:12) 0 1(cid:12) β1 S+N1 β2 S+N2 1 S(cid:12) +N (cid:12) = log + log 2log (S−(cid:12)(cid:12)B )+2 N (cid:12)(cid:12) 2 (cid:12)(S−B⋆0)+N1(cid:12) 2 (cid:12)(S−B⋆0)+N2(cid:12) f1(B1)= 12log (cid:12)(cid:12)(cid:12)(cid:12)B1N+N01 − 212lo(cid:12)(cid:12)(cid:12)(cid:12)g(cid:27) B1N+N2 +λ1(cid:18)(cid:12)(cid:12)(cid:12)21log(cid:12)B⋆1N+1N1(cid:12)(cid:12)(cid:12)(cid:12)− 21log(cid:12)B(cid:12)(cid:12)(cid:12)⋆1N+2N2(cid:12)(cid:19) (cid:12)(cid:12)(cid:12) and f2(B0,B1)= 12log(cid:12)(cid:12)(cid:12)(cid:12)(S−B1B+0)N(cid:12)(cid:12)(cid:12)(cid:12)+N2 (cid:12)(cid:12)(cid:12)(cid:12) 2 (cid:12)(cid:12)(cid:12)(cid:12) +λ2(cid:18)21log(cid:12)(cid:12)(cid:12)(cid:12)(S−B⋆1B+⋆0)N(cid:12)(cid:12)(cid:12)+2N2(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) − 21l(cid:12)(cid:12)(cid:12)(cid:12)og (S1−BB+02)N+N(cid:12)(cid:12)(cid:12)(cid:12) 1 . (8) −21log(cid:12)(S(cid:12)(cid:12)(cid:12)−B⋆1B+⋆0)N+1N1(cid:12)(cid:19)(cid:12)(cid:12)(cid:12)+ρ. (15) (cid:12) 1 1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Then, the secrecy rate region (6)(cid:12)can be rewritten(cid:12)as (cid:12) (cid:12) (cid:12) (cid:12) Next, we shall find a contradictionto (15) by followingthe R := (R ,R ,R ) in 0 1 2 following three steps. B0(cid:23)0,B1(cid:23)[0,B0+B1(cid:22)S(cid:8) (cid:12) R ≤f (B ), R ≤f (B ), R ≤f (B(cid:12) ,B ) . (9) 0 0 0 1 1 1 2 2 0 1 To show that Rin is indeed the secrecy capacity re(cid:9)gion of 1) Step 1–Split Each Receiver into Two Virtual Receivers: the aligned MIMO Gaussian broadcast channel (5), we will Consider the following aligned MIMO Gaussian broadcast consider proof by contradiction. Assume that (R†,R†,R†) is channel with four receivers: 0 1 2 an achievable secrecy rate triple that lies outside the region Rin. Since (R0†,R1†,R2†) is achievable, we can bound R0† by Y1a[m]=X[m]+Z1a[m] Y [m]=X[m]+Z [m] 1 S+N 1 S+N 1b 1b R0† ≤min 2log N 1 , 2log N 2 =R0max. Y2a[m]=X[m]+Z2a[m] (cid:18) (cid:12) 1 (cid:12) (cid:12) 2 (cid:12)(cid:19) Moreover, if R† = (cid:12)(cid:12)R† = 0,(cid:12)(cid:12)then Rm(cid:12)(cid:12)ax can be(cid:12)(cid:12) achieved by and Y2b[m]=X[m]+Z2b[m] (16) 1 (cid:12) 2 (cid:12) 0(cid:12) (cid:12) setting B0 =S and B1 =0 in (6). Thus, we can find λ1 ≥0 where{Z1a[m]},{Z1b[m]},{Z2a[m]}and{Z2b[m]}arei.i.d. and λ ≥0 such that additive vector Gaussian noise processes with zero means 2 and covariance matrices N , N , N and N , respectively. λ R†+λ R† =λ R⋆+λ R⋆+ρ (10) 1 1 2 2 1 1 2 2 1 1 2 2 Suppose that the transmitter has three independent messages for some ρ>0, where λ R⋆+λ R⋆ is given by W0, W1 and W2, where W0 is intended for both receivers 1b 1 1 2 2 and 2b, W is intended for receiver 1a but needs to be kept 1 (Bm0,aBx1) λ1f1(B1)+λ2f2(B0,B1) secretfromreceiver2b,andW2 isintendedforreceiver2abut needstobekeptsecretfromreceiver1b.Notethatthechannel subject to f (B )≥R† 0 0 0 (16) has the same secrecy capacity region as the channel (5) B (cid:23)0 under the same power constraints. 0 B (cid:23)0 1 B +B (cid:22)S. (11) 0 1 2) Step 2–Construct an Enhanced Channel: Let N be a Let(B⋆,B⋆)beanoptimalsolutiontotheaboveoptimization 0 1 real symmetric matrix satisfying program (11). Then, (B⋆,B⋆) must satisfy the following Karush-Kuhn-Tucker(KK0T) c1onditions: 1 −1 e N:= N−1+ M . (17) (β1+λ2)[(S−B⋆0)+N1]−1+β2[(S−B⋆0)+N2]−1+M0 (cid:18) 1 λ1+λ2 1(cid:19) =λ [(S−B⋆)+N ]−1+M (12) Note that the eabove definition implies that N (cid:22) N . Since 2 0 2 2 1 (λ1+λ2)(B⋆1+N1)−1+M1 M1B⋆1 =0, following [9, Lemma 11], we have e =(λ +λ )(B⋆+N )−1+M (13) (λ +λ )(B⋆+N)−1 =(λ +λ )(B⋆+N )−1+M 1 2 1 2 2 1 2 1 1 2 1 1 1 M B⋆ =0, M B⋆ =0, and M (S−B⋆−B⋆)=0 (14) 0 0 1 1 2 0 1 and e whereM0,M1andM2arepositivesemidefinitematrices,and |B⋆+N||N |=|B⋆+N ||N|. (18) β , k = 1,2, is a nonnegative real scalar such that β > 0 if 1 1 1 1 k k and only if Thus, by (13), we obtain e e 1log S+Nk =R†. (λ1+λ2)(B⋆1+N)−1 =(λ1+λ2)(B⋆1+N2)−1+M2. 2 (S−B⋆)+N 0 (19) (cid:12) 0 k(cid:12) (cid:12) (cid:12) e (cid:12) (cid:12) (cid:12) (cid:12) This implies that N (cid:22) N2. Consider the following enhanced capacity region of this channel satisfies Cs[DMC] ⊆Ro, where aligned MIMO Gaussian broadcast channel R denotes the set of nonnegative rate triples (R ,R ,R ) o 0 1 2 e such that Y [m]=X[m]+Z [m] 1a 1a Y1b[m]=X[m]+Z1b[m] R0 ≤min[I(U;Y1b), I(U,Y2b)] e e Y2a[m]=X[m]+Z2a[m] R1 ≤I(X;Y1a|U)−I(X;Y2b|U) and Ye2b[m]=X[m]+Ze2b[m] (20) and R2 ≤I(X;Ye2a|U)−I(X;Y1b|U) (25) where{Z1a[m]},{Z1b[m]},{Z2a[m]}and{Z2b[m]}arei.i.d. for some p(u,x)=p(u)p(x|eu). additivevectorGaussiannoise processeswith zeromeansand Theproofof Theorem3can be foundin the extendedversion covarianece matrices N, N , Ne and N , respectively. Since of this work [11]. 1 2 N(cid:22){N ,N }, we concludethatthe secrecy capacity region Now, we may combine Steps 1, 2 and 3 and consider an 1 2 of the channel (20) iseat least aes large as the secrecy capacity upper bound on the weighted secrecy sum-capacity of the reegion of the channel (16) under the same power constraints. channel (5). By Theorem 3, for any achievable secrecy rate triple (R ,R ,R ) for the channel (5) we have Furthermore, based on (19), we have 0 1 2 [(S−B⋆)+N](B⋆+N)−1 (β1+β2)R0+λ1R1+λ2R2 0 1 β β =[(S−B⋆0)+N2](B⋆1+N2)−1 (21) ≤ 1 log|2πe(S+N1)|+ 2 log|2πe(S+N2)| e e 2 2 and hence, λ N λ N + 1 log 2 + 2 log 1 +η(λ ,λ ) (26) 1 2 (S−B⋆0)+N = (S−B⋆0)+N2 . (22) 2 (cid:12)(cid:12) N (cid:12)(cid:12) 2 (cid:12)(cid:12) N (cid:12)(cid:12) Combining(cid:12)(cid:12)(cid:12)(cid:12)(12)Ba⋆1n+d (N19)e, w(cid:12)(cid:12)(cid:12)(cid:12)e m(cid:12)(cid:12)(cid:12)ay oBb⋆1ta+inN2 (cid:12)(cid:12)(cid:12) wηh(λer1e,λ2):=λ1h(X(cid:12)(cid:12) +eZ(cid:12)(cid:12)1a|U)+λ(cid:12)(cid:12)2he(X(cid:12)(cid:12) +Z2a|U) (cid:12) e (cid:12) (cid:12) (cid:12) −(λ +β )h(X+Z |U)−(λ +β )h(X+Z |U). (λ1+λ2)[(S−B⋆0)+N]−1 2 1 e 1b 1 2e 2b =(λ2+β1)[(S−B⋆0)+N1]−1 Note that 0≺N(cid:22){N1,N2}, 0≺B⋆0 (cid:22)S and B⋆0M0 =0. +(λ +β )[(S−eB⋆)+N ]−1+M . (23) Using [10, Corollary 4] and (23), we may obtain 1 2 0 2 0 e Substituting (18) and (22) into (15), we have η(λ1,λ2)≤(λ1+λ2)log 2πe(S−B⋆0)+N (β1+β2)R0†+λ1R1†+λ2R2† −(λ2+β1)lo(cid:12)(cid:12)(cid:12)g|2πe(S−B⋆0)+eN(cid:12)(cid:12)(cid:12) 1| β1 S+N1 β2 S+N2 −(λ1+β2)log|2πe(S−B⋆0)+N2|. (27) = log + log 2 (cid:12)(S−B⋆0)+N1(cid:12) 2 (cid:12)(S−B⋆0)+N2(cid:12) Combining(26)and(27),foranyachievablesecrecyratetriple +λ (cid:12)(cid:12)(cid:12)1log (S−B⋆0)+(cid:12)(cid:12)(cid:12) N − 1l(cid:12)(cid:12)(cid:12)og (S−B⋆0)+N(cid:12)(cid:12)(cid:12) 2 (R0,R1,R2) for the channel (5) we have fol3l++o)wλρSi.21tneg p,1223w–leoOgush(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)te(arSllB−coouBnNNnees⋆0di)dfe+orrNaeeth(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)feo−uErn122-rhelaocngeci(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)ve(edSrC−dhisaBcNNnr⋆0ne21)teel+:mNIne(m12t(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)h4o!!e)- (β≤1+++β21λλβl12o) gR(cid:12)(cid:12)(cid:12)(cid:12)1120(S+lloogg−λS(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)1B((R+SS⋆01N)−−++1BBλNeN⋆0⋆02))R1++(cid:12)(cid:12)(cid:12)(cid:12)2+NNeβ(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)22−−lo112gll(cid:12)(cid:12)(cid:12)(cid:12)oo(ggS(cid:12)(cid:12)(cid:12)(cid:12)−((SSSB+−−⋆0N)BBN+2⋆0⋆02))N++2NN(cid:12)(cid:12)(cid:12)(cid:12) 21(cid:12)(cid:12)(cid:12)(cid:12)! rcoyonlnetfishsdeebsnertoicaarledcmcyaescstsaacpghaeacsnitnyaenrldegwpiiortonhv.iadecoamsimngolne-lmetetsesraoguetearnbdotuwnod <(β12+ β22)R0†(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)+λ1R1N†e+λ2Re2†(cid:12)(cid:12)(cid:12)(cid:12)(cid:12). 2 (cid:12)(cid:12)(cid:12)(cid:12) N1 (28(cid:12)(cid:12)(cid:12)(cid:12)!) Theorem 3 (Discrete memoryless broadcast channel): Clearly, this contradicts the assumption that the rate triple Consider a discrete memoryless broadcast channel with (R†,R†,R†) is achievable. Therefore, we have proved the 0 1 2 transition probability p(y ,y ,y ,y |x) and messages desired converse result for Theorem 2. 1a 1b 2a 2b W (intended for both receivers 1b and 2b), W (intended for 0 1 receiver 1a but needing teo be kepteconfidential from receiver IV. NUMERICAL EXAMPLE 2b) and W2 (intended for receiver 2a but needing to be kept Inthissection,weprovideanumericalexampletoillustrate confidential from receiver 1b). If both the secrecy capacity region of the MIMO Gaussian broadcast channel with a common message and two confidential mes- X→Y →(Y ,Y ) and X→Y →(Y ,Y ) 1a 1b 2b 2a 1b 2b sages. In this example, we assume that both the transmitter formMarkovchainsintheirrespectiveorder,thenthesecrecy andeachofthereceiversareequippedwithtwoantennas.The e e 2.5 R=0 0 5 2 R=1.60 0 4 1.5 3 R0=2.40 R0 R2 2 1 R=3.45 1 0 0 0.5 0 0 1 R 1 0 2 2 2 R1 0 0.5 1 R1 1.5 2 2.5 3 3 3 Fig.3. Secrecyrateregions {(R1,R2)}forsomegivenR0 Fig.2. Secrecycapacity region{(R0,R1,R2)} [5] F.OggierandB.Hassibi, “Thesecrecy capacity oftheMIMOwiretap channelmatricesandthematrixpowerconstraintaregivenby channel,”inProc.IEEEInt.Symp.InformationTheory,Toronto,Canada, July2008,pp.524–528. 1.8 2.0 3.3 1.3 H = , H = [6] R. Liu and H. V. Poor, “Secrecy capacity region of a multi-antenna 1 1.0 3.0 2 2.0 −1.5 Gaussian broadcast channel with confidential messages,” IEEE Trans. (cid:18) (cid:19) (cid:18) (cid:19) Inf.Theory,vol.55,no.3,pp.1235–1249, Mar.2009. 5.0 1.25 and S= . [7] R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “Multiple- 1.25 10.0 input multiple-output gaussian broadcast channels with confidential (cid:18) (cid:19) messages,” IEEE Trans. Inf. Theory, submitted March 2009. [Online]. which yield a nondegraded MIMO Gaussian broadcast Available: http://arxiv.org/abs/0903.3786. channel. The boundary of the secrecy capacity region [8] H.D.Ly,T.Liu,andY.Liang,“Multiple-inputmultiple-outputGaussian C[SBC](H ,H ,S) is plotted in Fig. 2. broadcast channels with common and confidential messages,” IEEE s 1 2 Trans.Inf.Theory,submittedJuly2009. InFig.3,wehavealsoplottedtheboundariesofthesecrecy [9] H.Weingarten,Y.Steinberg,andS.Shamai(Shitz),“Thecapacityregion capacity region (R ,R ) for some given common rate R . It oftheGaussianmultiple-inputmultiple-outputbroadcastchannel,”IEEE 1 2 0 Trans.Inf.Theory,vol.52,no.9,pp.3936–3964, Sep.2006. isparticularlyworthmentioningthatwithR =0,thesecrecy 0 [10] H.Weingarten,T.Liu,S.Shamai(Shitz),Y.Steinberg,andP.Viswanath, capacity region{(R1,R2)} is rectangular,which implies that “The capacity region of the degraded multiple-input multiple-output underthe matrix powerconstraint,bothconfidentialmessages compoundbroadcastchannel,”IEEETrans.Inf.Theory,vol.55,no.11, pp.5011–5023, Nov.2009. W andW canbesimultaneouslytransmittedattheirrespec- 1 2 [11] R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “MIMO Gaussian tive maximum secrecy rates. The readers are referred to [7] broadcast channels with confidential and common messages,” IEEE for further discussion of this phenomenon. Trans.Inf.Theory,submittedforpublication. [12] J. Xu, Y. Cao, and B. Chen, “Capacity bounds for broadcast channels V. CONCLUSION with confidential messages,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp.4529–4542, Oct.2009. Inthispaper,wehaveconsideredtheproblemofcommuni- catingtwoconfidentialmessagesandacommonmessageover a two-receiver MIMO Gaussian broadcast channel. We have shown that a natural scheme that combines secret dirty-paper coding and Gaussian superposition coding achieves the entire secrecycapacityregion.Toprovetheconverseresult,wehave applied a channel-enhancement argument and an extremal entropy inequalityof Weingarten et al., which generalizesthe argumentof[8]forthecasewithacommonmessageandonly one confidential message. REFERENCES [1] I. Csisza´r and J. Ko¨rner, “Broadcast channels with confidential mes- sages,”IEEETrans.Inf.Theory,vol.24,no.3,pp.339–348,May1978. [2] T. Liu and S. Shamai (Shitz), “A note on the secrecy capacity of the multiple-antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no.6,pp.2547–2553,Jun.2009. [3] R. Bustin, R. Liu, H.V. Poor, and S. Shamai (Shitz), “An MMSEap- proachtothesecrecycapacityoftheMIMOGaussianwiretapchannel,” EURASIP Journal on Wireless Communications and Networking, vol. 2009,Article ID370970,8pages,2009. [4] A. Khisti and G. W. Wornell, “The secrecy capacity of the MIMO wiretap channel,” in Proc. 45th Annual Allerton Conf. Comm., Contr., Computing, Monticello, IL,Sep.2007.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.