ebook img

Million-Body Star Cluster Simulations: Comparisons between Monte Carlo and Direct $N$-body PDF

1.7 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Million-Body Star Cluster Simulations: Comparisons between Monte Carlo and Direct $N$-body

MNRAS000,1–9(2016) Preprint19January2016 CompiledusingMNRASLATEXstylefilev3.0 Million-Body Star Cluster Simulations: Comparisons between Monte Carlo and Direct N-body Carl L. Rodriguez1,2(cid:63), Meagan Morscher1,2, Long Wang3,4, Sourav Chatterjee1,2, Frederic A. Rasio1,2, Rainer Spurzem3,5,6,7 1CenterforInterdisciplinaryExplorationandResearchinAstrophysics(CIERA),NorthwesternUniversity,Evanston,IL,USA 2DepartmentofPhysicsandAstronomy,NorthwesternUniversity,Evanston,IL,USA 3KavliInstituteforAstronomyandAstrophysics,PekingUniversity,YiheyuanLu5,HaidianQu,100871,Beijing,China 6 4DepartmentofAstronomy,SchoolofPhysics,PekingUniversity,YiheyuanLu5,HaidianQu,100871,Beijing,China 1 5NationalAstronomicalObservatoriesandKeyLaboratoryofComputationalAstrophysics,ChineseAcademyofSciences, 0 20ADatunRd.,ChaoyangDistrict,100012,Beijing,China 2 6KeyLaboratoryofFrontiersinTheoreticalPhysics,InstituteofTheoreticalPhysics,ChineseAcademyofSciences,Beijing,100190,China 7AstronomischesRechen-Institut,ZentrumfürAstronomie,UniversityofHeidelberg,Mönchhofstrasse12-14,69120,Heidelberg,Germany n a J Lastupdated19January2016 6 1 ] ABSTRACT M We present the first detailed comparison between million-body globular cluster simula- tions computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, I . NBODY6++GPU.Bothsimulationsstartfromanidenticalclustermodelwith106 particles, h and include all of the relevant physics needed to treat the system in a highly realistic way. p Withthetwocodes“frozen"(nofine-tuningofanyfreeparametersorinternalalgorithmsof - o the codes) we find excellent agreement in the overall evolution of the two models. Further- r more, we find that in both models, large numbers of stellar-mass black holes (> 1000) are t s retainedfor12Gyr.Thus,theveryaccuratedirect N-bodyapproachconfirmsrecentpredic- a tionsthatblackholescanberetainedinpresent-day,oldglobularclusters.Wefindonlyminor [ disagreements between the two models and attribute these to the small-N dynamics driving 1 theevolutionoftheclustercoreforwhichtheMonteCarloassumptionsarelessideal.Based v ontheoverwhelminggeneralagreementbetweenthetwomodelscomputedusingthesevastly 7 differenttechniques,weconcludethatourMonteCarloapproach,whichismoreapproximate, 2 butdramaticallyfastercomparedtothedirectN-body,iscapableofproducingaveryaccurate 2 description of the long-term evolution of massive globular clusters even when the clusters 4 containlargepopulationsofstellar-massblackholes. 0 . Keywords: binaries:close—globularclusters:general—Gravitationalwaves—Methods: 1 0 numerical—Stars:blackholes—Stars:kinematicsanddynamics 6 1 : v i 1 INTRODUCTION enablesthemodelingofGCsystemswithrealisticnumberofstars X andalltherelevantphysics. r In the last few years, our understanding of the dynamical evolu- a tionofglobularclusters(GC),especially,asaresultofthedetailed Sincetheearlytheoreticalworkpredictingtherapidejection ofBHsfromclusters,severalgroupshaveperformedevermorere- dynamicalevolutionandfateofthelargenumbersofblackholes alisticevolutionarysimulations.Whileseveralofthefirstattempts (BHs)thatareboundtoformintheselarge-N clusters,hasshifted confirmedthetheoreticalpredictionforcompleteevaporation,the significantly.Whileitwasoncethoughtthatpresent-dayoldGCs most recent models have predicted that at least some BHs, and shouldhaveatmostacoupleofBHsremaining,morerecentstud- ieshaveshownthatifBH-formationkicksarenotsufficientlyhigh likelymany,mayremaininoldGCstoday.Theseresultsarecom- ingatanexcitingtimewhenstellarBHsarebeingdiscoveredata toejectallBHsfromtheGCs,asignificantfractionoftheformed rapidpaceinGCsintheMilkyWayandinotherGalaxiesthrough BHsareretaineduptothetypicaloldages(∼12Gyr)oftheGCs X-ray and radio surveys (Maccarone et al. 2007; Barnard et al. (Breen&Heggie2013;Heggie&Giersz2014;Mackeyetal.2008; 2011;Maccaroneetal.2011;Shihetal.2010;Straderetal.2012; Sippel&Hurley2013;Morscheretal.2015).Thisnewperspective Chomiuketal.2013). has been driven by major advances in parallel computing, which We are also beginning to understand why these new results areatoddswiththeearlytheoreticalpredictionofrapidBHevap- (cid:63) Contacte-mail:[email protected] oration. The original argument assumed that the BHs would be- (cid:13)c 2016TheAuthors 2 C.L.Rodriguezetal. comeSpitzerunstableduetotheirrapidmass-segregation,dynam- meansitcanbeusedtoexploretheparameterspaceofinitialcon- icallydecouplingfromthecluster.Oncedecoupled,theBHswould ditions and test the robustness of our results. This feature sets it evolveasanisolatedcluster,withanevaporationtimescaleof∼ 1 apartfromdirectN-bodysimulations,whicharesignificantlymore Gyr.Whiletherewereafewtheoreticalhintsfromsimulationsthat computationallyexpensive,andthereforeareusuallyrestrictedto atleastsomeBHscouldberetainedfor12Gyr,therewasnogood N (cid:46) 105.ThespeedoftheMCtechniquecomesataprice,how- explanationforhowthiscouldbepossible,andwheretheoldpre- ever,inthattwo-bodyrelaxation,aswellasotherdynamicalpro- diction breaks down. Using two-component direct N-body mod- cesses,aretreatedinanapproximatewayviaasingleinteraction els, Breen & Heggie (2013) showed that after the BHs began to perpairofstarspertimestep,wherethetimestepischosentobe segregate, their rate of energy generation was controlled by the a small fraction of the relaxation timescale. Physics occuring on rate of energy flow through the cluster as a whole, and so it was muchshortertimescales,suchasthedynamicaltimescale,cannot setbytherelaxationtimescaleoftheentirecluster,notsimplyby beresolvedaccuratelywiththeMCmethod,butishandlednatu- thatofthesmallsubpopulationofBHs.Recently,Morscheretal. rallywiththedirectN-bodytechnique. (2015)(hereafterMOR15)presentedagridof 42detailedMonte OurMCcodehasbeencomparedextensivelytodirectN-body Carlo models for realistic star clusters containing substantial ini- simulationswheneverpossible,andhasshownexcellentagreement tialpopulationsofstellarBHs.Thisstudywasthefirsttopresenta (Joshietal.2000,2001;Fregeauetal.2003;Fregeau&Rasio2007; large number of realistic simulations with a range of initial clus- Chatterjeeetal.2010;Umbreitetal.2012).However,thetypesof ter masses (from ∼ 105 −106M(cid:12)) as well as variation in other clusterswearenowcapableofsimulatingarequitedifferentthan importantparameters,suchasthevirialradius,thatalsoincludes thosewehavesimulated(andthustested)inthepast.Inparticular, alloftherelevantphysicsrequiredtodescribethesesystemsaccu- theinclusionoflargepopulationsofBHswithabroadspectrumof rately.Startingfromstandardassumptionsfortheinitialconditions masseshasasignificanteffectonclusterevolution,producingclus- of MW-like clusters and BH formation processes, MOR15 found ters at 12 Gyr with very different properties than models without thatnearlyallofthemodelsdidindeedretainsignificantfractions suchobjects(cf.Chatterjeeetal.2010,inwhichtheBHmassspec- oftheirBHsuptotheendofthesimulationat12Gyr.Theretained trumwastruncatedatjustabove2M ).Forexample,thedeepBH- (cid:12) BHsheatedthefullcluster,leadingtolargefinalcoresizes;how- driven core oscillations that occur ubiquitously in our new CMC ever,themostcompactinitialclustermodelswereabletoejectthe modelsareanewphenomenonthatwehavenotseenbeforeinpre- majorityoftheirBHsby12Gyr,causingtheircorestocontract(the viousmodels.Duringthesecollapses,thephysicsmaybegoverned so-calledsecondcorecollapse)tosizessimilartothoseobservedin byaverysmallnumberofobjects(∼ 10)thatarepartiallydecou- MWGCs.Workisinprogresstostudytheeffectofvaryingtheini- pledfromtherestofthecluster.Iftherelaxationtimescaleofthe tialmassfunctionandtheBHbirthkickdistribution,ontheinitial subsetofstarsismuchsmallerthantherelaxationtimescaleofthe BHpopulationsinclusters,andultimatelytheirimpactoncluster clusterasawhole,thenitsevolutionisperhapsnotbeingcomputed dynamicsandlong-termBHretention. accuratelybyourapproximateMCscheme.Furthermore,itispos- Perhapsmostinterestingly,MOR15hasrevealedanewtheo- siblethatourcrudeprescriptionforformingthree-bodybinariesis reticalunderstandingofthecomplexdynamicalinterplaybetween notcapableofproperlycapturingthephysicsofthisdynamically BHsandclusters,andhowitmaybepossibleforclusterstoretain importantprocess. large numbers of BHs for many Gyr. These MC models showed These limitations of our MC calculations could potentially that,inrealisticsystensm,theSpitzerinstabilitydoesnot involve have an impact on our results regarding the dynamical evolution alloftheBHsinthecluster.Rather,theBHspowercoreoscilla- ofBHsindenseclusters,includinglong-termBHretentionandthe tionsduringwhichonlyasmallsubsetoftheBHssegregatefrom resultingheatingthatproducespuffyclustercores.Fortheserea- the cluster to form a deep cusp, which then promptly re-expands sons, it would be desirable to re-test the results produced by the uponformationofthree-bodybinaries.Thus,asaresultoftheen- latestversionofourMCcodewiththebestcurrently-availabledi- ergy generated by the dynamics of the BHs, the BH interaction rectN-bodysimulations.Forourspecificinterests,therehavepre- rate, and therefore also the evaporation rate, is kept much lower viouslybeennosuitablelarge-N directN-bodysimulationsavail- thanpreviouslythought,makingitpossibleforstarclusterstore- abletowhichwecouldcompareourlarge-NMCsimulations.Re- tainsignificantnumbersofBHsfor12Gyr.Itseemsthatweshould cently,however,Wangetal.2015developedanewdirectN-body notexpecttheBHstosuccombtotheSpitzerInstability;mostof codethatemployshybridparallelizationmethodstospeedupthe theBHs,infact,alwaysremainspreadthroughoutthecluster,far NBODY6++ code (Spurzem 1999; Spurzem et al. 2008), which fromthecentralcusp.ThisnewunderstandingofBHdynamicsin is considered to be the gold standard in direct N-body modeling. starclustershasprovidedatheoreticalbasisforexplainingthere- Thisnewcode,NBODY6++GPU,iscapableofmodelingclusters centdiscoveriesofseveralBHcandidatesinoldGCs. with106 starswithinayear(Wangetal.2015;Wangetal.2016). Asalways,wewouldliketobeabletocompareourresultsto Thisprovidesanexcellentopportunityforustotestourpredictions simulationsdonewithothercodes,especiallythosethatusediffer- regardingtheevolutionofclusterswithBHsthroughadirectcom- entmodelingtechniques.ThedirectN-bodytechniqueisthemost parison. accurate and assumption-free method for modeling the dynamics Herewepresentacomparisonbetweenmodelsgeneratedwith of star clusters. It resolves physics on the dynamical timescale, our MC code (the MC model) and with NBODY6++GPU (the NB which means it can inprinciple be used to model clusters of any model). We present this as an honest comparison using what are size,becauseitisvalidevenforclusterswithrelaxationtimescales believedtobethebestversionsofthetwocodes,andwedonotdo not much longer than their dynamical timescales. This is in con- anyfine-tuningoffreeparameters.Thisrestofthispaperisorga- trast to the MC technique, whose assumptions rely on the relax- nizedasfollows.InSection2wedescribethetwocodesinmore ation timescale being long compared to the dynamical timescale. detailandgivetheinitialconditionsforthemodelthatisthefocus ForlargeenoughN,however,theMCtechniqueusedinourstudy ofthiscomparison.InSection3wepresentandcomparetheresults is an extremely powerful tool that is capable of computing many ofthetwosimulations,includingtheglobalstructuralevolutionas large-Ndynamicalclustermodelsinashortamountoftime,which wellastheevolutionoftheBHpopulations.Wediscusssomeof MNRAS000,1–9(2016) Million-BodyComparisonsbetweenMonteCarloandDirect N-body 3 thedifferencesbetweenthemodelsanduncertaintiesandcompare ontheamountoffallbackmaterial,andbothcodeshavealsoup- tootherstudiesinSection4.FinallyinSection5wesummarizeour datedtheirbirthkickprescriptionstodependonfallbackaccording resultsandstateourconclusions. toBelczynskietal.(2002).ThekicksaredrawnfromaMaxwellian velocity distribution with σ = 265 km s−1, then reduced propor- tionallytothemassofthematerialthatfallsbackontothenewly- formedcompactobject. 2 NUMERICALSETUP Whilethree-bodybinaryformationoccursnaturallyindirect WecomparetheresultsofasmallsetofMCmodelstoasingledi- N-body calculations, the MC technique relies on pair-wise inter- rectN-bodysimulation,allstartingwithidenticalinitialconditions. actionsbetweentwoneighboringparticles,precludingthedynam- Thecomparisonmodelisamillion-particledirectN-bodysimula- ical formation of a binary from encounters involving three parti- tion that has been computed with NBODY6++GPU (Wang et al. cles. Therefore we opt to use a simple analytic prescription that 2015;Wangetal.2016),anewlydevelopedoptimizedversionof reliesonanestimateofthelocalprobabilityofbinaryformation, NBODY6++withimprovedhybridparallelizationmethods(MPI, asdescribedindetailinMOR15.IntheMCcode,weusetheex- GPU,OpenMPandAVX/SSE). actphysical assumptionsand parametersas presentedin MOR15 This new code combines the MPI parallelized NBODY6++ (e.g.,thoseassociatedwiththree-bodybinaryformation;seeSec- (Spurzem1999;Hemsendorf,Khalisi,Omarov&Spurzem2003) tion2.2,Equations1and2fromMOR15).Onedifferenceisthatthe withtheGPUandAVX/SSElibrariesofNitadori&Aarseth2012 MCcodeisnotabletotreatstabletriplesystemsthatformthrough to significantly accelerate the direct N-body integratcion. They four-body(binary-binary)encounters.Thesesystemsarethusbro- havealsomadeimprovementstospeedupthetime-stepschedul- kenuponformation.However,sincetheyformrelativelyrarely,we ingandstellarevolution,whichhadbecomebottlenecksafterthe wouldnotexpectthesetohaveasignificantimpactontheevolution hybridparallelizationschemewasimplemented.Withthesemodi- ofthecluster. fications,forclustermodelsconsistingofsingleobjectsonly,dis- TheinitialconditionsusedinthemodelofWangetal.(2016) tributedover320CPUcores(across16nodes),with86016GPU wereselectedtobesimilartolargeGCsintheMilkyWay.They cores(on32GPUs),theyachieveaspeed-upfactorof400-2000, useaKingmodelwithconcentrationWo = 6,N = 106,half-mass dependingonthenumberofstars.NBODY6++GPUisthefirstdi- radiusRh = 7.5pc,binaryfractionof5%,Galactocentricdistance rectN-bodycodecapableofsimulatingtheevolutionofamillion- RG = 7.1 kpc, and metallicity Z = 0.00016. Stellar masses were bodycollisionalstarclusterovermanyGyr.Foradetaileddescrip- chosen in the range 0.1 − 100M(cid:12) according to the initial mass tionofthishybridcodeseeWangetal.(2015). function(IMF)ofKroupa(2001),whichisabrokenpower-lawof Wangetal.havesharedtheresultsforthemillion-bodysim- theformdN/dm ∝ m−α,withα = 1.3for0.08 (cid:54) m/M(cid:12) < 0.5, ulation presented in Wang et al. (2016). Provided with the exact and α = 2.3 for m/M(cid:12) (cid:62) 0.5. Binaries are created by choosing initialclustermodelusedintheirN-bodysimulation,wehaveper- anexistingsinglestarrandomlytobecomeabinary,anddrawing formedasimulationwithourownMCcode,CMC,whichhasbeen acompanionmassfromthedistribution0.6(m1/m2)−0.4(withm1(cid:54) describedingreatdetailinseveralearlierpapers(Joshietal.2000, m2)(Kouwenhovenetal.2007).Thesemi-majoraxisisthendrawn 2001;Fregeauetal.2003;Fregeau&Rasio2007;Chatterjeeetal. from a distribution that is uniform in loga in the range 0.005-50 2010; Umbreit et al. 2012). Briefly, we use a variation of the so- AU,andeccentricityischosenfromthethermaldistribution.The called“orbit-averagedMonteCarlomethod"developedbyHénon maindifferencebetweentheinitialmodelusedhereandthetypes (1971)forsolvingtheFokker-Planckequation.Withourrecently ofmodelspresentedinMOR15isthatthemodelpresentedhereis parallelizedMCcode(Pattabiramanetal.2013),wecancalculate muchmoreextended,withahalf-massradiusof7.56pc,compared million-bodysimulationssuchastheonepresentedhereinlessthan tothetypicalhalf-massradiiofaround2pcforthemodelsfrom 2days1whendistributedoverjust48CPUcores. ourmainstudy. While these two codes employ very different techniques for WehaveconvertedtheinitialconditionsusedbyWangetal. modeling stellar dynamics, they include nearly all of the same into a format that can be used in CMC, which means our model physicalprocesses,includingtwo-bodyrelaxation(treatedinanap- isanidenticalstar-by-starrepresentationoftheN-bodymodel.Of proximatewaybytheMCcode),directphysicalcollisions,higher- course,toretainsphericalsymmetryweneededtoconvertthestar orderstrongbinaryencounters(integrateddirectlyinbothcodes), coordinatesx,y,andztoaradialcoordinater,andthevelocityvec- andsingleandinteractingbinarystellarevolution(usingSSEand torsvx,vy,andvztotheircorrespondingradialandtransversevec- BSE, Hurley et al. 2000, 2002). These stellar evolution prescrip- tors,vrandvt.Allotherinitialproperties,includingstellarmasses, tionshavebeenmodifiedfromtheoriginalpubliclyavailablever- positions,andbinaryproperties,areidentical. sions. In the original SSE/BSE codes, only very low-mass BHs were formed. This was pointed out by Belczynski et al. (2002), who also provided a new prescription for forming more realistic 3 COMPARISONTODIRECTN-BODY BHmassesincludingfallbackbasedonFryer&Kalogera(2001). In both CMC and NBODY6++GPU, the remnant masses are se- Inwhatfollows,wemakedirectcomparisonsbetweenthetwosim- ulationsuptoatimeof12Gyr.InSection3.1,weexploretheevo- lectedfollowingthemetallicity-dependentprescriptionofBelczyn- lutionanddynamicsoftheBHsinbothsimulations,whileinSec- skietal.(2002)whichformsBHsintherangeofabout3−30M for (cid:12) tion 3.2 we highlight the agreement (and disagreement) between typicalGCmetallicities.Also,themagnitudesofthenatalkicksre- thestructuralpropertiesofbothclustermodels. ceivedbystellarremnantsthatformviaasupernovashoulddepend 3.1 BlackHoleRetentionandEjection 1 Thisistrueformodelswithrelativelylargeinitialhalf-massradii,asis thecasehere.However,MCsimulationsstartingfromcompactmodelswith Westartwithourmostexcitingresult:thedirect N-bodysimula- halfmassradiiofabout1pccantakemorethanamonth. tion confirms the findings of MOR15 that large numbers of BHs MNRAS000,1–9(2016) 4 C.L.Rodriguezetal. Black Holes, 100 Myr Black Holes, 12 Gyr 400 400 2 Monte Carlo 350 350 N-body 300 300 1 250 250 r e b m 200 0 200 nu 150 30 35 40 45 50 55 150 100 100 50 50 0 0 10 15 20 25 30 10 15 20 25 30 mass (M ) mass (M ) fl fl 1.0 1.0 on 0.8 0.8 uti b BHs (MC) stri 0.6 BHs (NB) 0.6 di e non-BHs (MC) v ati 0.4 non-BHs (NB) 0.4 ul m u 0.2 0.2 c 0.0 0.0 0 10 20 30 40 50 60 0 10 20 30 40 50 60 radius (pc) radius (pc) Figure1. TheBHmass(top)andradialdistributions(bottom)forBHsinbothclustermodelsat100Myr(left)and12Gyr(right).Onthetop,theBHmasses formodelMCareshownbythesolidblackline,andthoseformodelNBareindicatedbythedashedredline.OverallthenumberofretainedBHsandthemass distributionsagreeverywell.ThereareasmallnumberofBHswithmassesbetween30M(cid:12)and55M(cid:12),highlightedintheinsert,whichareonlyformedinthe NBmodel.ThebottompanelsshowtheradialdistributionsfortheBHs(solidcurves)andthenon-BHs(dottedcurves)separately,withmodelMCinblackand modelNBinred.Eachstariscountedindividually,regardlessofwhetheritisapartofabinary(oranevenhigher-ordersystem,whichispossibleinthedirect N-bodysimulation). canberetainedformanyGyrinoldGCs.Attheendofthesimula- tion,thereare1085BHsremaininginmodelMCand1036inmodel NB.Figure1showstheinitialandfinaldistributionsofBHsmasses forthetwomodels,whichareinnearlyperfectagreement.Dynami- cally,thetwomodelsproduceextremelysimilarresults,withmodel MCejecting336BHsandmodelNBejecting400BHsfromthepop- ulation that is retained initially, and, in agreement with MOR15, ejectingthemostmassiveBHsfirst.WedonotethatmodelNBcon- tainsahandfulofBHswithmassesabove35M ,whereasmodel (cid:12) MChasnone.TheseabnormallymassiveBHsareformedasaresult ofaminorbugintheN-bodytreatmentofmergedstellarbinaries, whichwasdiscoveredafterthesimulationhadbegun. Onthebottompanelsinthesamefigureweshowthecumula- Figure2. ComparisonofthetotalnumberofBHsretainedineachcluster tiveradialdistributionsoftheBHs(solidcurves)andthenon-BHs modelasafunctionoftime.ModelMCisshowninblackandmodelNBin (dottedcurves)afterBHformationandattheendofthesimulation red.AsalreadyseeninFigure3,bothmodelsformsandretainsinitially (solidcurves).Thetwomodelsshowexcellentagreementinthera- (at20Myr,afterBHformation)aroughlyidenticalnumberofBHs.Over dialdistributionsofbothstartypes,withonlyslightdisagreement time,BHsareslowlyejectedinbothmodelsatasimilarrate,withmodel growingintheoutskirtsoftheclustermodelsforthenon-BHs.The MCejecting336BHsandmodelNBejecting400BHsby12Gyr. crudetidaltreatmentintheMCcodeisnotexpectedtoreproduce themoreaccuratethree-dimensionaltreatmentinthedirectN-body code. It is clear that the BHs, while more centrally concentrated MNRAS000,1–9(2016) Million-BodyComparisonsbetweenMonteCarloandDirect N-body 5 1.05 Monte Carlo 1.00 N-body 0.95 0.90 6 0 10.85 N/ 0.80 0.75 0.70 0.65 0 2 4 6 8 10 12 time (Gyr) 0.050 0.049 n o ti c a0.048 r y f r a n bi0.047 0.046 0 2 4 6 8 10 12 time (Gyr) Figure4.Top:Numberofboundstarsremainingintheclusterasafunction oftimeformodelMC(solidblack)andmodelNB(dashedred).Eachstaris countedindividually,regardlessofwhetheritisapartofabinary(oraneven higher-order system, which is possible in the direct N-body simulation). Bottom:binaryfractionasafunctionoftime,withthesamecolorscheme asabove. thanthenon-BHs,arestillquitespreadoutoverthecluster.About half of the BHs lie outside of the inner 4 pc, and about 10% lie beyond10pc. InFigure2weshowthetotalnumberofBHsretainedineach modelasafunctionoftime.Theagreementisexcellentthroughout theformationofnearlyalloftheBHs,withtheMCmodelforming andretaininganinitialpopulationof1421BHsandtheNBmodel forming 1436 BHs. By about 20 Myr, after all BHs have formed andtheoneswithlargenatalkickshavebeenejectedfromtheclus- ter, the number of BHs in each model levels out to the initially retainednumbersgivenabove.OvertimethenumberofBHsde- Figure3.ThepropertiesofthebinaryBHsejectedfromeachsimulation. creasesslowlyineachmodelatasimilarrate,withtheNBmodel The top plot shows the number of ejected binaries over time for the MC ejecting 64 more BHs than the MC model by 12 Gyr. Part of this model(solidblack)andtheNBmodel(dashedred).Themiddleplotshows increase can be attributed to the more-massive BHs (35-55 M ) thecomponentmassesofthebinaries(MCinblackcircles,NBinredcrosses), (cid:12) foundinthe N-bodysimulationwhichwillbeejectedfasterthan whilethebottomplotshowstheeccentricityandsemi-majoraxisdistribu- the∼ 25M BHs.However,the18erroneouslylargeBHscannot tionsofthebinaries(withsamecolorscheme). (cid:12) accountforthefulldiscrepancyinthenumberofejectedBHsbe- tweenthetwomodels. MNRAS000,1–9(2016) 6 C.L.Rodriguezetal. Finally,wecomparethepropertiesoftheejectedBHbinaries. els.Intheouterpartsofthecluster(beyondafewtensofpc),model InFigure3,weshowthenumberofBHbinariesejectedbyeach NBexpandsslightlymorethaninmodelMCearlyon,andthemem- model over time. As the NB model is ejecting BHs more quickly oryofthisseemstolastthroughtheendofthesimulations.Again, thantheMCmodel,therateofbinaryBHejectionisalsolargerin wedonotnecessarilyexpectthetwocodestoproduceidenticalre- theN-bodymodel(54versus41binaries).Here,abouthalfofthese sultsbecauseoftheverydifferenttidalstrippingprescriptionsem- ejectedbinariescanbeattributedtobinarieswhosecomponentsare ployed.Moreimportantly,the10%and50%Lagrangeradiiagree abnormally large. Even then, this suggests that the Monte Carlo nearlyperfectly.The1%radiusinmodelMCisnoisieranddisplays methodmayunderestimatetheproductionrateofbinaryBHs.We slightlydeepercollapsesthanthatofmodelNB,althoughtheouter alsocomparethecomponentmasses,eccentricities,andsemi-major envelopeofthetwocurvesmatchesverywell.Thebehaviorofthe axesoftheejectedbinaries(themiddleandbottompanelsofthe 1%radiusissimilartothatofthecoreradiusshowninFigure5. samefigure).Inthisinstance,wefindverygoodagreementbetween Since the MC approach is not designed to handle the physics of the NB and MC models. Such good agreement is to be expected, smallnumbersofobjects,itisactuallyquiteimpressivethatthebe- asbothcodesmodelbinaryhardeningandpartnerexchanges(via havioronthesesmallscalesagreesaswellasitdoeswiththedirect threeandfour-bodyencounters)usingadirectN-bodyintegration. N-bodysimulation. InFigure7weagainshowtheLagrangeradii,onlythistime weseparatetheBHsfromtheothertypesofobjectsinordertobet- 3.2 StructuralClusterProperties ter understand the behavior of the BHs. With model MC in black Nextwecomparetheoverallstructuralevolutionofthetwomod- andmodelNBinred,weshow(frombottomtotop)the1%,10%, els.InFigure4weshowthenumberofboundstarsremainingin 50%and90%radiifortheBHs,andthesameLagrangeradiifor thecluster(top)andthebinaryfraction(bottom)asafunctionof thenon-BHsinblueformodelMCandcyanformodelNB.Wecan time,withmodelMCshowninblack(solidline)andmodelNBin seethattheinnermost1%oftheBHmassinbothmodelspartici- red(dashedline).Herethenumberofboundstarsisdeterminedby patesinoscillationssimilartothoseseeninthecoreradiiinFigure countingeverystarindividually(i.e.,abinarycountsastwostars). 5(i.e.,deeperoscillationsintheMCmodel,moreshallowonesin By the final time of 12 Gyr, both models have lost roughly 30% theN-body),buttheseoscillationsarenotseeninthenon-BHpop- oftheinitial1.05×106 stars.Thetwomodelsagreetowithin5% ulation. This tells us that these collapses are primarily driven by (withmodelsMCandNBhaving6.95×105and7.29×105stars,re- theBHs.Thisinnermost1%massbinfortheBHsconsistsofonly spectively).TheN-bodycodeusesaradialtidalcriterionsuchthat ∼ 10objects,soitisunreasonabletoexpecttheMCcodetotreat anystarthatgoesbeyondtwicetheclustertidalradiusisremoved. thissubsystemperfectly.Inallbuttheinnermost1%BHmass,we Incontrast,theMCcodereliesonanenergycriterion,whichhas findexcellentagreementbetweenthetwomodelsintheradialdis- showntoproducebetteragreementwithdirect N-bodythanara- tributionsofbothspecies(BHsandnon-BHs)asafunctionoftime. dialcriterion,buthasstillbeenobservedtostripstarsonaslightly Theoutermost90%LagrangeradiifortheBHsfallsatabout10pc shorter timescale (Chatterjee et al. 2010). The binary fraction in forbothmodelsattheendofthesimulations,andthe90%radius the models shows even better agreement to within about 1%, de- for the non-BHs lies just a bit further out at around 30 pc. Thus creasing rather slowly with time from f =0.05 initially down to the BHs remain quite spread out in the cluster, well-mixed with b f =0.0465inMCand f =0.0462inmodelNB. theotherobjects,allthewaytotheendofthesimulation.Despite b b In Figure 5 we show the time evolution of the core radius, the deeper collapses of the central BH subsystem in model MC, r ,andthehalf-massradius,r ,againwithmodelMCinblackand thefactthattheBHejectionrateagreessowellprovidesencour- c h model NB in red. Here we use the standard N-body definition of agingevidencethatBHdynamicsandretentionisnotnecessarily thecoreradiusfromCasertano&Hut(1985),whichisadensity- governedbythedepthoftheBH-drivencoreoscillations.Theonly weightedestimate ofthe averageof thestar positions.This theo- noticeablechangeintheBHdistributionsbetween100Myrand12 reticalcoreradiusisofcourseunrelatedtothatwhichanobserver Gyr(Figure1)isatthehighmassend,withtheheavyBHsbeing wouldcalculate,sinceitdependsonmassratherthanluminosity. amongthefirsttobeejected.Thetwomodelsagreeverywellin The half-mass radius is the radius that encloses half of the total thisregard.Thus,notonlydothenumbersofejectedBHsagree, cluster mass. We find nearly perfect agreement between the two butsotoodothemassesoftheejectedBHs. modelsintheevolutionofr fortheentirespanofthesimulations. h The agreement in the core radius is also very good, although at early times (within a few hundred Myr) the core radius in model 4 DISCUSSION MC expands slightly more than that of model NB. This is likely causedbysubtledifferencesinourstellarevolutionroutines(e.g. We have found that our MC approach and the new code windmassloss),whichhavebothbeenmodifiedfromtheoriginal NBODY6++GPUproducesimilarevolutionforamillion-starclus- publicly-availableSSEandBSEcodes(Hurleyetal.2000,2002). terover12Gyr,bothintermsofglobalstructuralpropertiesandthe Thesedifferencescanbedifficulttotrackdown,andthereforewe dynamicalevolutionoftheBHpopulations.Despitethesignificant leavethistopicforfutureinvestigations.Inanycase,sincethecore agreementinthedynamics,wearestillinterestedinexploringwhy radiiinbothmodelshavecontracteddowntoaverysimilarvalue theBHsinmodelMCexperiencedeepercollapsesthaninmodelNB, withinaGyr,andthenremainingoodagreementuptotheend,this asthismayhelpusbetterunderstandthenatureoftheinteractions slightdisagreementearlyonappearstohaveverylittleinfluenceon betweenBHsandtherestofthecluster.Onepotentialcauseforthe long-termevolutionofthecoreradius. deepercollapsesintheMCmodelwouldbethepresenceofmore InFigure6weshowacomparisonoftheLagrangeradiifor massive BHs than in the N-body model. MOR15 found that it is thetwomodels,withmodelMCinblackandmodelNBinred.From always the most massive BHs that are found near the center and bottom to top, the pairs of black and red lines correspond to the drivingthedeepcoreoscillations.Asaresult,theyarealsothefirst radiienclosing1%,10%,50%,90%and99%ofthetotalmassin tobeejected.However,weactuallyfindtheoppositetobetrue:for thecluster.Overallwefindstrongagreementbetweenthetwomod- thefirstGyr,theN-bodymodelcontainsabouttenBHsinthemass MNRAS000,1–9(2016) Million-BodyComparisonsbetweenMonteCarloandDirect N-body 7 [ Figure5.Comparisonofthetimeevolutionofthecoreradius(rc)andhalf-massradius(rh)betweenMC(solidblackline)andNB(dashedredline)uptothe currenttimeoftheN-bodysimulation.Thetwomodelsshowgoodagreementintheevolutionofthehalf-massradius(towithin∼ 1pc),andfairlygood agreementinthecoreradiusevolution.Wenotethatthecore-collapsesinmodelMCgodeeperthanthoseseeninNB(seeFigure7foramoredetailedlookat whatishappeninginthecentralregion). 2 10 MC NB ) c 1 p 10 ( dii a r e g n a r 0 g 10 a L 1 10 0 2 4 6 8 10 12 time (Gyr) Figure6.ComparisonoftheLagrangeradiiformodelsMC(black)andNB(red).Thepairsofblackandredcurvesshowtheradiienclosing1%,10%,50%, 90%and99%(bottomtotop)ofthetotalclustermassforthetworespectivemodelsovertheentiresimulation. range 35−55M , whereas the MC model contains none in this retainedinthetwomodelsagreesfairlywellthroughouttheentire (cid:12) range.By4Gyr,theseheavyBHshavebeenejectedfrommodel simulation. NB.Inanycase,itisclearthatthedeepcollapsesintheMCmodel cannot be explained by the presence of more massive BHs. Fur- Anotherpossibleexplanationforthedifferenceinthecollapse thermore,wesawinFigure1that,besidesthehandfulofBHswith depthscouldbedifferencesinthepopulationofBHbinariesthat bassesbetween35−55M ,theoveralldistributionofBHmasses arisefromthesimplifiedthree-bodybinaryformationprescription (cid:12) usedinCMC.Inourstandardprescription,weallowonlyBHsto form binaries through three-body encounters, a choice motivated MNRAS000,1–9(2016) 8 C.L.Rodriguezetal. Figure7. LagrangeradiifortheBHsandthenon-BHsseparately.Theblack(MC)andred(NB)curvesshowtheradiienclosing1%,10%,50%and90%ofthe BHmass.Similarly,theblue(MC)andcyan(NB)curvesshowtheradiienclosingthesamefractionsofthenon-BHmass,Herewecanseethatitisprimarily theBHsthataredrivingthecoreoscillationsshowninFigure5.The10%,50%and90%BHLagrangeradiiforbothmodelsagreeextremelywell,althoughin modelMCthe10%radiusisabitnoisier.The1%BHLagrangeradiusinmodelMCcollapsessignificantlydeeperthaninmodelNB,howeverthisbintypically containsonlyabout10BHs.TheBHsremainverywellmixedwithotherstars(evenat12Gyr,90%oftheBHmassisspreadthroughoutthe∼ 105stars comprisingtheinner10%ofnon-BHmass). bypreviousstudiessuggestingthatfornon-compactstars,thehigh Forfulldetailsofthethree-bodybinaryformationprescriptionem- densitiesrequiredtoformthree-bodybinarieswouldinsteadlead ployedinCMC,seeMOR15. to physical collisions of these stars, rather than forming binaries Totesttheeffectofmodificationstoourbinaryformationpro- (Chernoff&Huang1996),andisthusneverimportant.Thismeans cedure we performed two additional simulations identical to MC, that in model MC we are suppressing the creation of BH-non-BH exceptforaslightmodificationtoourthree-bodybinarytreatment. binariesbythree-bodyinteractions,andourpopulationofBH-non- We have performed one simulation in which all stars, including BHbinariesislimitedtothenumberofBHsthatcanexchangeinto non-BHs, are allowed to participate in three-body binary forma- existingbinariesthroughbinaryinteractions.Thesmallernumber tion.Wefind,however,thatthischangehasessentiallynoeffecton of BH binaries (of any type) in the MC model may be responsi- theBH-drivencollapsesnorontheBHevaporationrate.Nextwe ble for the deep core collapses which would be overturned much reducedη to0.5(afactoroftensmallerthanusedinmodelMC). earlier in the collapse if we had a larger number of BH binaries. min Inthiscasewesawaslightreductioninthecollapsedepths,butthe Alternatively, the collapse depths could be sensitive to the hard- numberofretainedBHsremainedunaffected.Itseemsthatwhen nessofthethree-bodybinariesthatareformed,ortheactualrate softerbinariesareallowedtoform,whichalsoincreasestheover- of binary formation, both of which are determined in part by the allrateofproduction,theBH-drivencollapsescanbeoverturned parameterη ,theminimumhardnessofthebinariesthatareal- min slightlysooner,andtheverydeepestcollapsesareavoided.While lowedtoforminthesimpleprescription(seeMOR15forthefull thesemodificationstothesimpletreatmentofbinaryformationdo detailsoftheprocedure).Thisparameteraffectsbinaryformation notseemtohavemuchofaneffectonoverallclusterevolutionor intwodifferentways:first,ηminenterstherateequation,sotherate ontheretentionofBHs,itmayverywellaffectthedetailsofthe ofbinaryformationinagiventimestepwiththisminimumhard- BH-binarypopulations,suchastheproductionofBH-X-raybina- ness Γ(η (cid:62) η ) ∼ η−3.5, meaning that it is easier to form softer min min riesandtightBH-BHbinaries.Itwouldbepossibletostudythese binaries(smallerη).Secondly,ifourproceduredeterminesthata binarypopulationsingreaterdetail,andperhapsevenusethedirect binaryshouldform,thenwechoosetheactualhardnessforthebi- N-bodymodeltocalibratethethree-bodybinaryprocedureusedin nary from a distribution according to the differential rate, dΓ/dη, CMC,butweleavethisforafuturestudy. withlowerlimitη .Thisfunctionfallsoffrapidlyforincreasing min valuesofη,soalowerlimitwilltendtoresultinsignificantlysofter IncontrasttotheMCmodelspresentedinMOR15,theinitial binariesbeingformed.InmodelMC,aswellasinthemodelspre- modelusedinthisstudyismuchmoreextended.Otherthanslight sentedinMOR15,wehavestrictlyusedahardnesscutoffη =5. differences in the initial binary populations, the rest of the initial min model details and the physics implementation remains the same. The behavior of the core radius and the inner BH Lagrange radii MNRAS000,1–9(2016) Million-BodyComparisonsbetweenMonteCarloandDirect N-body 9 in model MC is nonetheless very similar to that seen in the much MM was supported by an NSF GK-12 Fellowship, award DGE- morecompactMCmodelspresentedinMOR15.Also,theorderin 0948017. W. L. acknowledge the support by the Silk Road whichBHsareejected,fromheavytolight,agreeswiththefind- Project at the National Astronomical Observatories of China ingsofMOR15.ThemaindifferenceintheevolutionofmodelMC (NAOC, http://silkroad.bao.ac.cn), the Max-Planck-Institute for presentedhereisthat,beingmuchmoreextended,theclusterhasa Astrophysics and the Max Planck Computing and Data Facility significantlylongerrelaxationtimescale,andthereforeitprocesses (MPCDF, http://www.mpcdf.mpg.de/) in Garching, Germany. All (andthusejects)BHsmuchmoreslowlythanmorecompactmod- directN-bodysimulationswererunontheirHydraGPUcluster. els with similar N from MOR15, which have typically ejected ∼ 1000sofBHsonthesamephysicaltimescale. REFERENCES BarnardR.,GarciaM.,LiZ.,PriminiF.,MurrayS.S.,2011,ApJ,734,79 BelczynskiK.,KalogeraV.,BulikT.,2002,ApJ,572,407 5 SUMMARYANDCONCLUSIONS BreenP.G.,HeggieD.C.,2013,MNRAS,432,2779 Inthisstudywehavecomparedtheresultsofrealisticlarge-Nstar CasertanoS.,HutP.,1985,ApJ,298,80 clustersimulationscreatedusingtwoverydifferenttechniques:an ChatterjeeS.,FregeauJ.M.,UmbreitS.,RasioF.A.,2010,ApJ,719,915 ChernoffD.F.,HuangX.,1996,inHutP.,MakinoJ.,eds,IAUSympo- orbit-averagedMCapproach(CMC)andnewdirectN-bodycode (NBODY6++GPU). In terms of overall dynamical structure and siumVol.174,DynamicalEvolutionofStarClusters:Confrontationof TheoryandObservations.p.263 evolution,aswellasthedynamicsoftheBHsandlong-termBHre- ChomiukL.,StraderJ.,MaccaroneT.J.,Miller-JonesJ.C.A.,HeinkeC., tention,wefindquiteremarkableagreementbetweenthetwotech- NoyolaE.,SethA.C.,RansomS.,2013,ApJ,777,69 niques.Mostnotably,thedirectN-bodymodelconfirmsthefinding FregeauJ.M.,RasioF.A.,2007,ApJ,658,1047 ofMOR15thatverylargenumbersofBHs(∼1000)canberetained FregeauJ.M.,GürkanM.A.,JoshiK.J.,RasioF.A.,2003,ApJ,593,772 for∼10GyrtimescalesinoldGCs. FryerC.L.,KalogeraV.,2001,ApJ,554,548 Weseeslightdifferencesintheevolutionoftheinnermost1% HarrisW.E.,1996,VizieROnlineDataCatalog,7195,0 BHLagrangeradius:modelMCdisplayscoreoscillationsdrivenby HeggieD.C.,GierszM.,2014,MNRAS,439,2459 theheaviestBHs,whichdonotoccurinmodelNB.However,this HemsendorfM.,KhalisiE.,OmarovC.T.,SpurzemR.,2003,HighPer- formanceComputinginScienceandEngineering.SpringerVerlag,71, disagreementdoesnotseemtohaveanysignificantimpactonthe 388 overallevolutionoftheclustermodels.Forexample,thehalf-mass HénonM.H.,1971,Ap&SS,14,151 radiusevolutionofmodelMCmodelsagreeswiththatoftheN-body HurleyJ.R.,PolsO.R.,ToutC.A.,2000,MNRAS,315,543 model. Additionally, both models eject BHs at roughly the same HurleyJ.R.,ToutC.A.,PolsO.R.,2002,MNRAS,329,897 rate,losingjustover300oftheinitiallyretainedBHsovertheentire JoshiK.J.,RasioF.A.,PortegiesZwartS.,2000,ApJ,540,969 simulationandthusstillretainingmorethanathousandBHsatthe JoshiK.J.,NaveC.P.,RasioF.A.,2001,ApJ,550,691 endofthesimulation.Thisverifiesthat,whileourapproximateMC KouwenhovenM.B.N.,BrownA.G.A.,PortegiesZwartS.F.,KaperL., approachmaynot becapableoftreating thephysicsofthe small 2007,A&A,474,77 numberofBHsinthecoreperfectly,ourtechniqueisnonetheless KroupaP.,2001,MNRAS,322,231 capable of reproducing the bulk evolution of the cluster as seen MaccaroneT.J.,KunduA.,ZepfS.E.,RhodeK.L.,2007,Nature,445,183 MaccaroneT.J.,KunduA.,ZepfS.E.,RhodeK.L.,2011,MNRAS,410, intheN-bodymodelratherwell,makingitaviabletechniquefor 1655 modeling the dynamical evolution of realistic clusters containing MackeyA.D.,WilkinsonM.I.,DaviesM.B.,GilmoreG.F.,2008,MN- largenumbersofstellar-massBHs.WithourparallelCMCcode,a RAS,386,65 clustermodelliketheonestudiedherecanbecompleted(evolved MorscherM.,PattabiramanB.,RodriguezC.,RasioF.A.,UmbreitS.,2015, upto12Gyr)withinaboutaday.Thesamemodelcomputedwith ApJ,800,9 NBODY6++GPUrequiresmorethan6monthstocomplete. NitadoriK.,AarsethS.J.,2012,MNRAS,424,545 MOR15 argued that the long-term survivability of BHs in Pattabiraman B., Umbreit S., Liao W.-k., Choudhary A., Kalogera V., clusters relies on the fact that the BHs mostly avoid the Spitzer MemikG.,RasioF.A.,2013,ApJS,204,15 instability,incontrasttowhathasoftenbeenassumed.Thelackof ShihI.C.,KunduA.,MaccaroneT.J.,ZepfS.E.,JosephT.D.,2010,ApJ, BH-drivencollapsesintheN-bodymodelpresentedhereprovides 721,323 SippelA.C.,HurleyJ.R.,2013,MNRAS,430,L30 evidence thatthe BHsare even less susceptible tothe Spitzerin- Spurzem R., 1999, Journal of Computational and Applied Mathematics, stabilitythanpredictedpreviouslybyMOR15.Thiswouldprovide 109,407 strongsupportforthemainconclusionfromMOR15,namelythat SpurzemR.,BerentzenI.,BerczikP.,MerrittD.,Amaro-SeoaneP.,Harfst if large numbers of BHs are retained initially (as they are under S.,GualandrisA.,2008,inAarsethS.J.,ToutC.A.,MardlingR.A., standard assumptions regarding star cluster initial conditions and eds, Lecture Notes in Physics, Berlin Springer Verlag Vol. 760, The BHformationprocesses),thenmanywillberetainedat12Gyr,es- Cambridge N-Body Lectures. p. 377, doi:10.1007/978-1-4020-8431- peciallyforamodelwithalargeinitialvirialradius(asstudiedin 7_15 thiswork). StraderJ.,ChomiukL.,MaccaroneT.J.,Miller-JonesJ.C.A.,SethA.C., 2012,Nature,490,71 UmbreitS.,FregeauJ.M.,ChatterjeeS.,RasioF.A.,2012,ApJ,750,31 WangL.,SpurzemR.,AarsethS.,NitadoriK.,BerczikP.,Kouwenhoven M.B.N.,NaabT.,2015,MNRAS,450,4070 6 ACKNOWLEDGMENTS WangL.,SpurzemR.,AarsethS.,GierszM.,AskarA.,BerczikP.,NaabT., ThisworkwassupportedbyNSFGrantAST-1312945andNASA SchadowR.,KouwenhovenM.B.N.,2016,MNRAS,submitted Grant NNX14AP92G. All computations using CMC were per- formedonNorthwesternUniversity’sHPCclusterQuest.CRwas ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. supported by an NSF GRFP Fellowship, award DGE-0824162. MNRAS000,1–9(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.