ResearchArticle 1 Millimeter-Wave Broadband Anti-Reflection Coatings Using Laser Ablation of Sub-Wavelength Structures TOMOTAKE MATSUMURA1, KARL YOUNG2, QI WEN2, SHAUL HANANY2, HIROKAZU ISHINO3, YUKI INOUE4, MASASHI HAZUMI5,6, JÜRGEN KOCH7, OLIVER SUTTMAN7, AND VIKTOR SCHÜTZ7 6 1 1JapanAerospaceExplorationAgency(JAXA)-InstituteofSpaceandAstronauticalScience(ISAS),Rm1624,3-1-1Yoshinodai,Chuo,Sagamihara, 0 Kanagawa252-5210,Japan 2 2SchoolofPhysicsandAstronomy,andMinnesotaInstituteforAstrophysics,UniversityofMinnesota/TwinCities,116ChurchSt.SEMinneapolis,MN55455, r USA a 3OkayamaUniversity,3-1-1Tsushima-naka,Kita-ku,Okayama700-8530Japan M 4TheGraduateUniversityforAdvancedStudies(SOKENDAI),1-1Oho,Tsukuba,Ibaraki305-0801,Japan 5InstituteofParticleandNuclearStudies(IPNS),HighEnergyAcceleratorResearchOrganization(KEK),1-1Oho,Tsukuba,Ibaraki305-0801,Japan 1 6KavliInstituteforthePhysicsandMathematicsoftheUniverse,TheUniversityofTokyo,5-1-5Kashiwanoha,Kashiwa,Chiba,277-8583,Japan 3 7LaserZentrumHannovere.V.,Hollerithallee8,30419Hannover,Germany 1Correspondingauthor:[email protected] ] M CompiledApril1,2016 I . h We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings p - (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to o r producepyramid-shapedstructureswithpitchofabout320µmandtotalheightofnear800µm. Transmis- t s sion measurements between 70 and 140 GHz are in agreement with simulations using electromagnetic a [ propagationsoftware. ThesimulationsindicatethatSWSARCwiththefabricatedshapeshouldhavea fractionalbandwidthresponseof∆ν/ν = 0.55centeredon235GHzforwhichreflectionsarebelow 3 center v 3%. Extensionofthebandwidthtobothlowerandhigherfrequencies,betweenfewtensofGHzandfew 6 THz,shouldbestraightforwardwithappropriateadjustmentoflaserablationparameters. 4 2 OCIScodes: (310.1210)Antireflectioncoatings; (050.2065)Effectivemediumtheory; (050.6624)Subwavelengthstructures; 8 (050.6875)Three-dimensionalfabrication. 0 . http://dx.doi.org/10.1364/ao.XX.XXXXXX 1 0 6 1 v: 1. INTRODUCTION peated observations each with a different filter bank and/or i opticalelementsoptimizedforthespecificfrequencyband.But X Themmandsub-mmregionsoftheelectromagneticspectrum withbroad-bandwidthobservations,allopticalelementsalong are important for observations of a variety of astrophysical r thelightpath,includinglenses,filters,vacuumwindows,and a sources.Extinctionbygalacticdustislowatthesewavelengths polarizationmodulators(ifapplicable)shouldexhibithighopti- andthereforeotherwiseobscuredobjects,suchasgalacticem- calefficiency,namely,hightransmission.Hightransmissionis bedded protostar regions, the black hole at the center of the achievedbyminimizingabsorptionthroughappropriatechoice Milky Way, and dusty high redshift galaxies become observ- ofmaterialsandminimizingreflectionsbyusinganappropriate able[1–3].Also,thecosmicmicrowavebackground(CMB)radi- anti-reflectioncoatings(ARC). ation,whichencodesawealthofinformationabouttheorigin andevolutionoftheUniverse[4],peaksatmmwavelengths. Sub-wavelengthstructures(SWS)havebeenwidelyexplored Thereisahostofinstrumentsconductingobservationsatthese asARCinthevisibleandinfraredregionswheretheyareoften wavelengths. referredtoasmoth’seyestructures(forareviewseeRautet One of the demands for many astrophysical observations, al.[5]).SWS-basedARCshavetheadvantagesthattheycanpro- including those targeting the polarization of the CMB, is to videarelativelylargeoperatingbandwidthwithlowreflection achievebroadfrequencycoverage. Simultaneousbroadband- whileatthesametime(1)thereisnoneedtomatchindices,thick- widthwithinasingleinstrumentenablesefficientuseoftele- nesses,andmaterialtypesbetweenmultiplelayersofdifferent scope and observing time, obviating the need to conduct re- materials,and(2)thestructureisrobustincryogenicapplica- ResearchArticle 2 tionsbecauseitismadeofthesamematerialasthesubstrate, obviatingtheneedtomatchthermalcoefficientsofexpansion betweendifferentmaterials. RecentlySWSARCshavebeenimplementedinthemm-wave bandonrexolite[6],highdensitypolyethylene[7],andsilicon [8].Inthesecasesthefabricationapproachreliedonmechanical machiningorinjectionmolding.Butneitherdirectmechanical machiningnorinjectionmoldingispracticalforthesmallfea- tures and high aspect ratios required when the materials are hard or have high melting temperatures, as is the case with aluminaandsapphire. Figure1: Cross-sectionalviewofthedesignedSWS.Theyare Bothaluminaandsapphirehaveopticalpropertiesthatmake madebylaserablationofgroovesinthesubstrate. Thefilling themappealingforuseinmmwavebandinstruments. They fraction increases toward the substrate, gradually increasing havehighindexofrefractionn(cid:39)3givinglenseshighcorrecting the index. The specific design parameters are: p = 330 µm, powerwithrelativelysmallcurvaturesandthicknesses;a-cut h=810µm,ands=60µm.Thewidthwisafunctionofthez sapphire’sbirefringenceisnear10%enablingthemakingofthin coordinate. retarders;bothmaterialsarenearlyopaqueintheIRandhave highthermalconductancemakingthemidealabsorbingfilters ofhighfrequencyradiationincryogenicinstruments. (Rosen EM-FEA. etal.[9]givesimilarmotivationsfortheirdevelopmentoftwo- Atnormalincidencetheupperband-edgeoftheSWS-ARC andthree-layerARConaluminabasedonlayeredepoxies.) issetbyνu =c/(pns)≈290GHz,abovewhichdiffractionsets LaserablationisanalternativeapproachforfabricatingSWS in [18]. This is well reproduced by the EM-FEA calculations structures.Severalauthorsreportedonthecombineduseofdry assharpreflectionspikes;seeFigure3. Thelowerband-edge, chemicaletchingandlaserablationonsilicontoproduceARC definedhereasthefrequencyatwhichbandaveragedreflections inthevisibleandnearIR[10–14]. Herewereportonthefirst dropbelow3%,isapproximatelyνl ∼c/h∼110GHz.Weuse useoflaserablationtogeneratemillimeter-waveSWSARCon abandwidthof∆ν/ν=30%foraveragingthereflections. aluminaandsapphire.Inourapplicationtherearenochemical etchants, and the process takes place in regular atmospheric 3. SAMPLEPREPARATION environment. InSection2wedescribethedesignoftheSWS. A. Materials ThesamplesandfabricationprocessaredetailedinSection3. Section4givesourmeasurementsofthegeometricalshapeand Weusealuminaandc-cutsapphire;thephysicalparametersof mm-wavetransmissionoftheSWSsamples. Wediscussand thenativesamplesaregiveninTable1.C-cutsapphireisnon- summarizeourresultsinSections5and6. Togetherwiththis birefringentforradiationatnormalincidence.Bothsamplesare paper,whichconcentratesontheopticalpropertiesoftheablated laserablatedonone-sideonly.Theindexofrefractionofthetwo surfaces,wearereferringreadersinterestedinthetechnicalities materialsismeasuredusingdifferentsamplesofaluminaand ofthelaserablationtoacompanionpaper[15]. sapphirebutofthesamepuritylevel;theyarelistedinTable1. B. Fabrication 2. DESIGN Ablationisdoneusinga515nmlaseroperatingwith7pspulses OurnominaldesignfortheSWS-ARCisshowninFigure1.It andarepetitionrateof400kHz.Atfocusthebeamhasa1/e2 consistsofasquarearrayofpyramidseachwithsquarecross widthof30µm.Thebeamisscannedinarasterpatternacross section. AsinallSWS-ARCsthegoalistoachieveagradient thesurface,firstinonedirectionthentheorthogonal,asshown in the index of refraction through an increase in the area fill schematicallyinFigure4. Theprogressionoftheablationas fractionofthematerialasradiationpropagatesinthe−zdirec- afunctionofthenumberofpassesisshowninFigure5. The tion. Withanappropriatelydesignedgradient,reflectionscan aluminawasmachinedusing200identicalpasses,coveringthe beminimizedoverabroadrangeoffrequencies.Thefillfraction center27×27mm2ofthesample.Machiningtimewas5hours. forournominaldesign, definedas f(z) = w(z)/p, isshown Thefullsurfaceofsapphirewasmachinedinaseriesof3.3×3.3 inFigure2. Theapproximatereflectionpropertiesofamate- mm2sub-areas.Eachsub-areawasscanned50timesusingthe rialwith f(z)canbecalculatedusingeffectivemediumtheory samescanpatternasinFigure4beforemovingtothenextsub- (EMT)[16],whichgivesaconversionfrom f(z)toaneffective area. Total machining time was 5.6 hours. Schütz et al. [15] indexneff(z);neff(z)isalsoshowninFigure2.Thereflection describethemachiningprocessinmoredetail. isthencalculatedusingastandardmulti-layercoatingapproach withalargenumberofstackedthinlayers,eachwithitsneff. 4. MEASUREMENTS Figure3showsthereflectionpredictedforthenominaldesign usingn (z)ascalculatedusingEMTandusingelectromag- A. Shape eff neticfiniteelementanalysis(EM-FEA)approach[17].Wefound WeuseaKeyenceVHX-5000opticalmicroscopeandaNikon thatincomparisonstoEM-FEAEMTproducesreflectionval- A1RMPconfocalmicroscopetoimagethelaserablatedsurfaces. uesthatarewithin10%ofthenumericalcalculationsaslong Themicroscopestakeaseriesof2-dimensionalimagesspaced astheratioofpitchtowavelengthsatisfies p/λ <∼ 0.1. Devia- equallyinz. Thein-planeresolutionis1.7µmorhigherand tionscouldincreaseforlargerratios,dependingonthespecific dependsonthespecificmicroscope.Thespacinginzis10µm structures simulated. With p = 330 µm EMT is expected to fortheopticalmicroscopeand1.3−4µmfortheconfocalmi- beaccurate(within10%)onlyforfrequenciesbelow∼90GHz. croscope,dependingonimagelocation. Thisseriesofimages Thereforeinthispapercomparisonstomeasureddatauseonly isusedtoreconstructa3-dimensionalimageofthesample. A ResearchArticle 3 Table1:Measuredsamplepropertiesand1σmeasurementerrors. diameter(mm) thickness(mm) indexa Alumina amorphous;99.6%pure 42 2.21±0.01 3.04±0.02 Sapphire c-cut;99.99pure 51 3.832±0.003 3.074±0.003 a Theindicesofrefractionvaluesweremeasuredonsampleswiththesamepuritylevelthatwerenotlaser-ablated.Thereforesomedifferencebetweenthemeasuredindices andtheactualindicesofoursamplesisexpected. Figure3:EM-FEA(blue),EMT(green),andEM-FEAaveraged across 30% bandwidth (red) predictions of reflection for the designgeometryonalumina,ns =3.1.Thetotalsamplethick- ness,includingtheSWS,is4.62mm,andtheSWScoatingwith thedesignparametersisassumedonbothsides. ForEMTwe calculated n (z) asshowninFigure2with150layers. The eff verticalreddashlinemarksthefrequencywherediffractionis firstexpectedtooccuratnormalincidence. sectionofthesapphiresampleisshowninperspectiveinFig- ure6.Azoomedversionshowninprojectionalongthezaxisis inFigure7. Using the optical images we measured the parameters of themachinedsurfacesintendifferentlocationsforeachofthe alumina and sapphire samples. In each location we image a squareconsistingofapproximatelytwopyramidsonasideand Figure2: Thefillfraction f(z)(bluesolid)andeffectiveindex extractthegeometricparametersofthemachinedsamples.The n (z)(greendashed)forthedesigngeometryonaluminawith eff average values across all these spatial locations are given in ns =3.1(seeFigure1andTable2).Theeffectiveindexiscalcu- Table 2. Because groove depth is not uniform - grooves are latedusingEMT(seetext). deepestatgroovecrossings-theremaybeambiguityaboutthe heightmeasurement. Tomeasureheightwefirstcalculatethe fill fraction as a function of z in steps of 5 µm and set z = 0 whenthefillfractionis1.maximumheightisdefinedbythez positionwherethefillfractionis0.ForallvaluesinTable2,the errorsquotedarethestandarddeviationinthemeasurements acrossthedifferentareasandprovideameasureofstructure uniformity. Wecharacterizethesymmetryofthestructuresbycomparing 1-dimensionalheightprofilesintwoorthogonaldirectionsthat are parallel to the grooves. These 1-dimensional profiles on sapphire(alumina)areillustratedinFigure7(9)andareplotted inFigure8(10).WediscussthesemeasurementsinSection5. ResearchArticle 4 Figure11:Diagramoftheexperimentalsetup.Aperturediametersforsapphirewerea=3cmandb>10cm.Foraluminaa=1.5cm andb>10cm. Figure5:Scanningelectronmicroscopeimageofpyramidsona testsapphiresampleafterNpablationscans. Forthesapphire sampleusedforthetransmissionmeasurements(Fig.12)we usedNp =50becausetherewasonlyminorevolutioninstruc- Figure 4: The ablation pattern consists of Np identical scans tureshapeforsubsequentpasses. acrossthesurface. Ineachscanthelasermakesasingleraster passofthehorizontallines(blue)thentheverticallines(red). Thegroupsofblue/redlinesbecomethegroovesbetweenthe B. Transmission pyramids.Withaluminathelinesare27mmlongandNp =200. Transmissionismeasuredatroomtemperatureusingamillime- Withsapphireeachlineis3.3mmlong,andthesampleismade terwavesourceandapowerdetector.Aschematicdiagramof up of square sub-areas machined separately; Np = 50. The thesetupisshowninFigure11.Twoadjustable-frequencymm- progressionoftheablationonsapphireisshowninFigure5. wavemultipliersareusedtoup-converttheGHzsignalofthe generatortobandsbetween75and110GHz,and90to140GHz. Pyramidalhornswith3dBbeam divergenceof ∼25degrees couplethelinearlypolarizedmm-wavesignaltofreespace.The Table2:GeometricparametersofSWS. sourceischoppedwithamechanicalbladeproducingamodu- Sample height(µm) pitch(µm) peakwidth(µm) latedsignalat10Hz.Weusealock-inamplifierattheoutputof thedetector.Thesampleiscontainedwithinaboxthathastwo Designed aperturesandislinedwithmm-waveabsorbingmaterial.The All 810 330 60 polarizationaxisofthemm-wavesourceisalignedparallelto oneoftheprincipaldirectionsoftheSWS-ARC,asdefinedby Measureda theorientationofthegrooves.Thesamplecanberotatedby90 Alumina 790±60 313±4 66±8 degreestoenabletransmissionmeasurementsattwoorthogonal polarizations. Sapphire 715±24 325±4 57±6 Ameasurementconsistsofarelativenormalizationstagein a Errorquotedisthestandarddeviationformeasurementsin10locations.Indi- whichthesampleisnotpresent,butthesamplemountandall vidualmeasurementerrorsare±2µmforpitchand±4µmforheightandpeak aperturesareincluded,andadatatakingstagewiththesample. width. Duringthenormalizationstagetheoutputofthepowerdetector ResearchArticle 5 Figure8: 1-dimensionalheightprofilesonsapphire. Thepro- filesareproducedfromcutsthroughpeakcenters,asshownin Figure7,for6locationsacrossthesample. Cutsatconstanty areingreen;constantxareinblue. Theyhavebeenmanually translatedtoalignverticallyandhorizontallytoenablevisual comparisonofstructureuniformity. Figure6:OpticalimageofSWS-ARConsapphirereconstructed fromaseriesof2-dimensionalimagestakenalongthezaxis. Figure9: HeightmapofSWSonalumina. The1-dimensional Figure7:HeightmapofSWSonsapphire. The1-dimensional heightprofilesthatareshowninFigure10aremarkedhereas heightprofilesthatareshowninFigure8aremarkedhereas broadblueandgreenlines.Thewidthofeachlinecorresponds broadblueandgreenlines.Thewidthofeachlinecorresponds to the portion of the height map averaged to produce the 1- to the portion of the height map averaged to produce the 1- dimensionalprofile. dimensionalprofile. ResearchArticle 6 Figure10: 1-dimensionalheightprofilesonalumina. Thepro- filesareproducedfromcutsthroughpeakcenters,asshownin Figure9,for5locationsacrossthesample. Cutsatconstanty areingreen;constantxareinblue. Theyhavebeenmanually translatedtoalignverticallyandhorizontallytoenablevisual comparisonofstructureuniformity. Figure12:Measuredtransmissionasafunctionoffrequencyfor sapphireattwofrequencybandsbetween75and110GHz(red) andbetween90and140GHz(cyan). Alldataweretakenata isloggedasafunctionofthesourcefrequencyνanddetector positionalongthez-axis.Therangeofsamplinginzisslightly singlepolarizationstate.WeshowHFSSpredictionsforasample thatisablatedononesideandassumingallSWSaremadewith largerthanonewavelength. Thesearethenormalizationdata N(ν). Thesampleistheninsertedintoitsholderanddataare thetallest(h=740µm,blue)andshortest(h=680µm,green) retakenatthesamesourcefrequenciesandzpositions. These profilesmeasuredin10differentlocationsacrossthesample. arethedataD(ν).ForeachfrequencyνbothNandDarefitto ThedataarenormalizedtotheblueHFSScurveat87GHz. models N(ν,z)= N (ν)+N (ν)sin(N (ν)z+N (ν)), (1) 0 1 2 3 and D(ν,z)=D (ν)+D (ν)sin(D (ν)z+D (ν)), (2) 0 1 2 3 whereN, D (i=0,1,2,3)arethefitparameters.Thetransmis- i i siondatawereportis D (ν) T(ν)=C 0 , (3) N (ν) 0 whereCisaconstantusedtonormalizeTtotheEM-FEApre- dictions,asdiscussedinSection5.Thez-dependentsinusoidal fitsaccountforstandingwavesbetweenthesourceanddetector. ThetransmissiondataforthetwosamplesisshowninFigures12 and13alongwithHFSSpredictions,whicharediscussedinSec- tion5.Generally,dataweretakenatonepolarizationstate.With aluminadataatthehigherfrequencybandwasrecordedattwo polarizationstates. 5. DISCUSSION Figure13: Measuredtransmissionasafunctionoffrequency A. Geometry foraluminaattwofrequencybandsbetween75and110GHz (red,asinglepolarizationstate)andbetween90and140GHz Thespatiallyaveragedshapeparametersofbothsamplesmatch (cyanforonepolarizationstate,andpurplefortheorthogonal thenominaldesigntobetterthan12%;theheightofthesapphire polarizationstate).WeshowHFSSpredictionsforasamplethat pyramidsisconsistentlyshortby12%andthewidthofthealu- is ablated on one side and assuming all SWS are made with minatipsaretoowideby11%,althoughthereisasimilarlevel thetallest(h=875µm,blue)andshortest(h=715µm,green) ofspatialdispersionacrossthesample,seeTable2.Otherwise profilesmeasuredin10differentlocationsacrossthesample, theshapeparametersagreewithin5%.Thislevelofagreement with the design was achieved with a small number of trials. andforns =3.16(darkblueandgreen)andns =3.04(lightblue andgreen). ThedataarenormalizedtothedarkgreenHFSS Noextensiveattemptsweremadetodecreasediscrepanciesbe- simulationat85GHz. tweenthedesignedandablatedstructures.Withsinglecrystals likesapphirebetteragreementisachievableandwehavenot identifiedanylimitationthatwouldpreventevenmoreaccurate ResearchArticle 7 ablation. Aluminaissinteredmaterialanditspropertiesmay Withtallerstructures,thenonAR-coatedpartofthesampleis showvariationsbetweendifferentsamples.Thisaspectrequires thinner,resultinginalowerfrequencyfringepattern. furtherinvestigation. Variationinlaserpowerisnotalikely Withsapphirethedataandmeasuredshapevariabilitymatch causeforthe∼10%spatialdispersionofthemeasuredparame- EM-FEApredictionsclosely.Thedataisbracketedbyprediction tersaspowerwasstabletobetterthan0.1%overthe5-6hoursit withthetallestandshorteststructuresmeasured. Thisisnot tooktoablateeachsample. thecasewithaluminaforwhichthedataisoutsidetherange The ablated SWS have square tops and they transition to ofshortesttotallestpredictionsmadewiththemeasuredindex approximatelycircularbases.Thestructuresareslightlyasym- ofns =3.04;seelightgreentoblueinFigure13. Wenotethat metric;saddlesbetweenpeaksinoneorientationareonaverage reportedmeasurementsoftheindexofaluminahavelargervari- slightlydeeperthanintheorthogonaldirection,seeFigures8 abilitythanthosewithsapphire[19]andthatourmeasurement and10.Suchasymmetry,whileavoidablewithbettertuningof wascarriedoutonadifferentsamplethantheoneablated.The ablationparameters,maybeimportantforpolarimetricstudies. indexofaluminathatbettermatchesourdataisns =3.16and Wequantifythesymmetryofthepyramidsbycalculatingthe thisvalueiswithintherangeofvariabilityreportedinthelitera- fullwidthathalfheight(FWHH)andthesaddledepthsdforx ture[19].Predictionswiththisindexfortheshortestandtallest andyslicesateachofthetenimagelocationsonthesamples.We structuresmeasuredareshownasboldinFigure13. findtheglobalmaximumofeachimage,excludingthehighest We can asses the expected broadband performance of the 1%ofpointstoavoidoutliers,andthedepthofeachsaddlefor fabricatedSWSbyextendingtheHFSSsimulationsto350GHz eachslice(sd),thendeterminethewidthofeachpyramidatthe andassumingthatthesapphireandaluminasamplesarecoated halfwaypointbetweenthemaximumandthesaddle(FWHH). onbothsides. Thesimulationsassumethemeasuredsapphire TheprocedureproducesvaluesforFWHHx,sdx,FWHHy,and (alumina)pyramidshapewithaheightof740µm(715µm)and sdy.Weformaratio followthesameproceduredescribedearliertocreateperiodic boundaryconditions.ThepredictionsareshowninFigures14 rsym = FWHHx, (4) and15,eachfortwoincidentpolarizationstates.Startingatlow FWHHy frequencies,reflectiondecreaseswithincreasingfrequency,drop- pingbelow3%at170GHzforbothpolarizationsandbothma- sosymmetricstructureshaversym = 1. Table3givesaverage terials.OnSapphire,atotalbandwidthof130GHzisachieved valuesandstandarddeviationsforrsymandsd.Somestructure withbandaveragedreflectionof1.0%.Thehighfrequencyside asymmetryisexpectedwhenidenticalablationparametersare is limited by sharp reflection features that are introduced by usedforthetwoorthogonaldirections.Relativetothefirstpass, diffraction. Wediscussthesebelow. Thereisaslightlylarger thepassintheorthogonaldirectionwillproduceonaverage effective bandwidth of 140 GHz on alumina because it has a deepergrooves.Thisasymmetrycanbemitigatedbytuningthe smaller pitch, moving the sharp reflection features to higher scanspeedornumberofscanrepeats. frequencies.Thebandaveragedreflectionofaluminabetween 170and310GHz,isalso1.0%.Forcomparison,astandardλ/4 coatingoptimizedfor250GHz,alsoshownintheFigures(light Table3: Averagesymmetryparameterrsym andsaddledepth gray),hasabandwidthofonly60GHz. Rosenetal.[9]report sdx,y forthetwosamples. The1σstandarddeviationsreflect bandwidths∆ν/νof92%and104%withreflectionbelow10% spatialvariationsacrossthesample. withtwo-andthree-layerARConaluminausinglayeredepox- rsym sdx(µm) sdy(µm) ies.Theircenterfrequencyis∼150GHz.Withthisfirstroundof laserablation,ouraluminasamplehas∆ν/ν=74%,centered Alumina 1.042±0.035 545±50 525±25 on225GHz,withreflectionsbelow10%. Sapphire 0.950±0.015 500±10 450±10 Atfrequenciesbetween100and170GHzthereflectionex- pectedfromthefabricatedstructuresishigherthanpredictions based on the design geometry; compare to Figure 3. This is because the design geometry has a uniform pyramid height B. Transmission of810µm;inotherwordsthegrooveshaveuniformdepthof ThemeasuredtransmissionforeachsampleisplottedinFig- 810µmrelativetothetips. Yetwiththeablatedstructuresthe ures12and13alongwithEM-FEAsimulations.Thesimulated maximumgroovedepthisachievedoverasmallerfractionof transmissioniscalculatedbyimportingthemeasuredheight groovelength. Theaveragegroovedepthrelativetothepeaks mapofasinglepeakintoHFSS,mirroringitacrossthex-axis, is∼550µm(600µm)onsapphire(alumina),whichisafactor andthenmirroringtheresultingpairacrossthey-axistocreate of1.5(1.4)shorterthantheoriginaldesign. Recallingthatthe anarrayoffourpeakswhoseopposingboundariesareidenti- lowerbandcut-offfrequencyisproportionalto1/hweshould cal.Thisallowsustoimplementperiodicboundaryconditions findthatthelowerfrequencyedgeofthebandisafactorof∼1.5 andsimulatethesampleasaninfiniteplane.1 Foreachsample higherthantheanticipated110GHz,ingoodagreementwith weindicateapossiblerangeofpredictionsbysimulatingthe theEM-FEMcalculations. transmissionforasamplemadewiththetallestandshortest ThebandwidthoftheSWS-ARCisextendabletolowerfre- structuresfoundbyimaging10locationsonthesamples. The quenciesbyincreasingtheheightofthestructuresandtohigher phaseandamplitudeofthetransmissioninterferencefringes frequenciesbydecreasingthepitch. Ausefulfigureofmerit varybetweenthetwocases, withthephasedifferenceshow- is the aspect ratio a = h/p. The current value of a, using inglargersensitivitytoheightdifference.Thefrequencyofthe h = 550 µmand p = 315 µmis1.7. Increasingthedepth eff fringepatternissensitivetothetotalthicknessofthematerial. toh =1100µm,thusdoublingtheaspectratio,wouldhalve eff the low frequency edge of the band giving a useful band be- 1Themirroringoperationproducesarepetitionofstructuresonalengthscales tween∼85and300GHz. Thesameaspectratiobutproduced of2p. Thisartificialperiodicitycreatesdiffractionfeaturesatafrequencyν = 2c/(pns),whichwemanuallyremovefromtheFigures. withhalfthepitchwouldgiveabandbetween170and600GHz. ResearchArticle 8 Weseenophysicallimitationforincreasingtheaspectratiobya factorof5-10. ThesimulationsshowninFigures 14and15reflecttheheight andsymmetrydifferencesbetweenthesamples.Thesomewhat higherasymmetrywiththesapphiresamplegivesrisetoasome- whatstrongerdifferentialreflection,asnotedprimarilybythe phasedifferenceinthereflectionfringesbetweenthetwopo- larizationstates. However,averagingovera∆ν/ν=0.3band thatiscenteredon235GHz,aswouldbeexpectedwithabroad- bandinstrumentobservinginthatband,wefindadifferential reflectionoflessthan0.1%forbothmaterials. TheoryandHFSSsimulationsindicatethatatnormalinci- dence diffraction at wavelengths shorter than λu ∼ pns pro- ducesstrongreflectionfeatures. Thedensityofthesefeatures increaseswithincreasingfrequency.Atoff-normalincidencean- glestheonsetofthereflectionfeaturesshiftstolowerfrequencies. Toavoidsuchreflections,experimentsusingSWS-ARCshould implementlowpassfilterstoblockhighfrequencyradiation. Figure15: SimulatedreflectionofourmachinedARCapplied tobothsidesofanaluminaflat. Thegreencurvecorresponds 6. SUMMARY tothestructuresandpolarizationplottedingreeninFigure13. Theorthogonalpolarizationfortheseisinred.Verticalredline We have demonstrated the first use of laser ablation to pro- ducemillimeter-waveSWSARConhard,difficult-to-machine indicatesthepointwhere p = λ/ns andthestructurescanno longerbeconsideredsub-wavelength. aluminaandsapphire. Theablationiscarriedoutinregular atmospheric conditions and involves no additional chemical etchants. Structureswithaspectratioof1.7,averageheightof ACKNOWLEDGEMENT ∼550µm, andmaximumheightof∼800µmwerefabricated ononesideof∼5cmdiametersampleswithinabout5hours. TheauthorsacknowledgeuseofresourcesprovidedbytheMin- nesotaNanofabricationCenter(http://nfc.umn.edu),theUniver- Measurementsoftransmissionareincloseagreementwithelec- sityofMinnesotaImagingCenter(http://uic.umn.edu),andthe tromagnetic simulations. The simulations indicate that with MinnesotaSupercomputingInstitute(http://www.msi.umn.edu). SWSARContwosidesthesesampleshavereflectionsofless TMthanksProf. M.Hasegawaforuseofthemillimeter-wave than3%overabandbetween170and300GHz,afractionalband- widthof∆ν/νcenter =0.55.Significantlylargerbandwidthsand source.ThisworkwaspartiallysupportedbyJSPSKAKENHI grantnumbers24740182and15H05441,theMitsubishifounda- fasterablationratesarepossiblebyappropriatelytuninglaser tion(grantnumber24inJFY2015inScienceandtechnology) parameters.AcompanionpaperbySchützet.al[15]givesmore and by the ISAS strategic development fund of the steering informationaboutthelaserablationprocess. committeeforspacescience. REFERENCES 1. C.L.H.Hull,R.L.Plambeck,W.Kwon,G.C.Bower,J.M.Carpenter, R.M.Crutcher,J.D.Fiege,E.Franzmann,N.S.Hakobian,C.Heiles, M.Houde,A.M.Hughes,J.W.Lamb,L.W.Looney,D.P.Marrone, B.C.Matthews,T.Pillai,M.W.Pound,N.Rahman,G.Sandell,I.W. Stephens,J.J.Tobin,J.E.Vaillancourt,N.H.Volgenau,andM.C.H. Wright,“TADPOL:A1.3mmSurveyofDustPolarizationinStar-forming CoresandRegions,”Ap.J.Suppl.213,13(2014). 2. A.RicarteandJ.Dexter,“TheEventHorizonTelescope: exploring stronggravityandaccretionphysics,”MNRAS446,1973–1987(2015). 3. C. L. Carilli and F. Walter, “Cool Gas in High-Redshift Galaxies,” ARAA51,105–161(2013). 4. PlanckCollaboration,R.Adam,P.A.R.Ade,N.Aghanim,Y.Akrami, M.I.R.Alves,M.Arnaud,F.Arroja,J.Aumont,C.Baccigalupi,and et al., “Planck 2015 results. I. Overview of products and scientific results,”ArXive-prints(2015). 5. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti- reflectivecoatings:Acritical,in-depthreview,”EnergyEnviron.Sci.4, Figure14: SimulatedreflectionofourmachinedARCapplied 3779–3804(2011). tobothsidesofasapphireflat.Thebluecurvecorrespondsto 6. H.TranandL.Page,“OpticalelementsforaCMBPolmission,”Journal thestructuresandpolarizationplottedinblueinFigure12.The ofPhysicsConferenceSeries155,012007(2009). orthogonalpolarizationforthesamestructuresisinred. The 7. A.Schröder,A.Murk,P.Yagoubov,andF.Patt,“Measurements,simula- verticalredlineindicateswhere p = λ/ns andthestructures tions,andoptimizationofanalmaband5vacuumwindowprototype,”in cannolongerbeconsideredsub-wavelength.Abasicλ/4ARC “26thInternationalSymposiumonSpaceTerahertzTechnology,Cam- bridge,Massachusetts,U.S.A,”(2015). optimizedat250GHzisshowningray. 8. R.Datta, C.D.Munson, M.D.Niemack, J.J.McMahon, J.Britton, E.J.Wollack,J.Beall,M.J.Devlin,J.Fowler,P.Gallardo,J.Hubmayr, ResearchArticle 9 K.Irwin,L.Newburgh,J.P.Nibarger,L.Page,M.A.Quijada,B.L. Schmitt, S.T.Staggs, R.Thornton, andL.Zhang, “Large-aperture wide-bandwidthantireflection-coatedsiliconlensesformillimeterwave- lengths,”Appl.Optics52,8747(2013). 9. D.Rosen,A.Suzuki,B.Keating,W.Krantz,A.T.Lee,E.Quealy,P.L. Richards, P.Siritanasak, andW.Walker, “Epoxy-basedbroadband antireflectioncoatingformillimeter-waveoptics,”Appl.Optics52,8102 (2013). 10. C.Wu,C.H.Crouch,L.Zhao,J.E.Carey,R.Younkin,J.A.Levin- son,E.Mazur,R.M.Farrell,P.Gothoskar,andA.Karger,“Near-unity below-band-gapabsorptionbymicrostructuredsilicon,”AppliedPhysics Letters78,1850–1852(2001). 11. J. D. Fowlkes, A. J. Pedraza, and D. H. Lowndes, “Microstructural evolutionoflaser-exposedsilicontargetsinsf6atmospheres,”Applied PhysicsLetters77,1629–1631(2000). 12. T.-H.Her,R.J.Finlay,C.Wu,S.Deliwala,andE.Mazur,“Microstructur- ingofsiliconwithfemtosecondlaserpulses,”AppliedPhysicsLetters 73,1673–1675(1998). 13. Z. Ming, Y. Gang, Z. Jing-Tao, and Z. Li, “Picosecond pulse laser microstructuringofsilicon,”ChinesePhysicsLetters20,1789(2003). 14. R.Younkin,J.E.Carey,E.Mazur,J.A.Levinson,andC.M.Friend, “Infraredabsorptionbyconicalsiliconmicrostructuresmadeinavari- etyofbackgroundgasesusingfemtosecond-laserpulses,”Journalof AppliedPhysics93,2626–2629(2003). 15. V.Schütz,K.Young,T.Matsumura,S.Hanany,J.Koch,O.Suttmann, andQ.Wen,“LaserProcessingofSub-WavelengthStructuresonSap- phireandAluminaforMillimeterWavelengthBroadbandAnti-Reflection Coatings,”JournalofLaserMicro/Nanoengineering(InPrint)(2016). 16. R.BräuerandO.Bryngdahl,“Designofantireflectiongratingswithap- proximateandrigorousmethods,”Appl.Optics33,7875–7882(1994). 17. ANSYS(2015).HFSS,3DFull-waveElectromagneticFieldSimulation, ElectromagnetcisSuite16.1. 18. M.E.Motamedi,W.H.Southwell,andW.J.Gunning,“Antireflection surfacesinsiliconusingbinaryopticstechnology,”Appl.Optics31, 4371–4376(1992). 19. J.W.Lamb,“Miscellaneousdataonmaterialsformillimetreandsubmil- limetreoptics,”Int.J.IRandMillimeterWaves17,1997–2034(1996).