ebook img

Microstructure Sensitive Design for Performance Optimization PDF

409 Pages·2012·16.518 MB·424\409
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microstructure Sensitive Design for Performance Optimization

Microstructure-Sensitive Design for Performance Optimization Brent L. Adams Surya R. Kalidindi David T. Fullwood AMSTERDAM(cid:129)BOSTON(cid:129)HEIDELBERG(cid:129)LONDON NEWYORK(cid:129)OXFORD(cid:129)PARIS(cid:129)SANDIEGO SANFRANCISCO(cid:129)SINGAPORE(cid:129)SYDNEY(cid:129)TOKYO Butterworth-HeinemannisanimprintofElsevier Butterworth-HeinemannisanimprintofElsevier 225WymanStreet,Waltham,MA02451,USA TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK (cid:1)2013ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhave aprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData Applicationsubmitted BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-12-396989-7 ForinformationonallButterworth-Heinemannpublications visitourWebsiteathttp://store.elsevier.com PrintedintheUnitedStates 1213141516 10987654321 Preface The prominent “grand challenge” in materials engineering for the twenty-first century is to effect a reversal of the paradigm by which new materials are developed, especially for highly constrained design (HCD) applications. Traditional methodologies for new materials development are driven mainly by innovations in processing; it follows that only a limited number of readily accessible microstructures are considered,1 with attention focused on a small number of properties or perfor- manceobjectives.ForHCDapplications,thedesignerfacesincreasinglycomplexrequirementswith multiple property objectives/constraints and material anisotropy affecting system performance. It is evidentthatthetime-andresource-consumptiveempiricismthathasdominatedmaterialsdevelopment duringthe past centurymustgiveway toa greater dependence on modelingand simulation.2 Weneedtoinvertthecurrentparadigminnewmaterialsdevelopmentfromthepresent(deductive) cause-and-effectapproachtoamuchmorepowerfulandresponsive(inductive)goal–meansapproach (Olson,1997).Thisshiftcouldsubstantiallyreducesystemdevelopmenttimeandcostformaterials- sensitiveHCDproblems.Therehasexistedafundamentalincompatibilityduringthepasttwodecades between materials science and engineering and the engineered product design cycle. Current meth- odology for introducing new materials into engineered components requires up to 10 years of developmenttime.Thiscompareswithdesignoptimizationmethodologiesthatarepresentlycapable of introducing sophisticated design evolvements (excluding materials considerations) in a matter of daysorweeks.Oneconsequenceofthisincompatibilityisafundamentalweaknessinthenexusthat linksmaterialsscienceandengineeringtothedesignenterprise,wherethegoalistotailoramaterial’s microstructuretomeetthestringentpropertiesandperformancerequirementsofcomplexcomponents and systems.Addressing this gap isthe primarymotivation for this book. To the best of the authors’ knowledge, this book presents the first mathematically rigorous frameworkforaddressing the inverse problems of materials designand process design,while using acomprehensivesetofhierarchicalmeasuresofthemicrostructurestatisticsandcompositetheories that are based on the same description of the microstructure. The framework presented in the book utilizes highly efficient spectral representations to arrive at invertible linkages between material structure, itsproperties,andtheprocessingpathsusedtoalter thematerialstructure. Severalrecent high-profile reports (“Integrated Computational Materials Engineering (ICME),” The National Academies Press, 2008; “Materials Genome Initiative for Global Competitiveness,” National Science and Technology Council, 2011; “A National Strategic Plan for Advanced Manufacturing,” NationalScienceandTechnologyCouncil,2012)haveallcalledforthecreationofanewmaterials innovation infrastructure to facilitate the design, manufacture, and deployment of new high- performance materials at a dramatically accelerated pace in emerging advanced technologies. We believe that the framework presented in this book can serve as the core enabler for these strategic initiatives. 1Itisknownthatthespaceofpotentialmicrostructuresisvastlylargerthanthesetthatistypicallycharacterized. 2ThispositionhasbeenstronglyarticulatedinthereportoffindingsofaNationalScienceFoundation(NSF)-sponsored workshopentitled“NewDirectionsinMaterialsDesignScienceandEngineering,”editedbyMcDowellandStory(1998). vii viii Preface This book is primarily intended as a reference for specialists engaged in the emerging field of materialsdesign.Itcanalsobeusedasatextbookforasequenceoftwocoursesofferedforahigh-level undergraduateclassoragraduateclass.Chapters1through3serveasbackgroundmaterialandcanbe skipped(orassignedasself-reading)ifstudentshavefamiliaritywiththismaterial.Chapters4through 11introducethebasicconceptsofthefirst-ordertheoriesandillustratetheirusageinfirst-orderinverse solutionstomaterialsandprocessdesignproblems.Thesechapterscouldbethefocusofafirstcourse in MSDPO (microstructure-sensitive design for performance optimization). In a second follow-up course,thefocuscanbeonthemoredifficultconceptsassociatedwithsecond-ordertheoriespresented inChapters12through15.Chapter16providesusefulbackgroundmaterialonmicroscopytechniques (with astrong focus onelectron backscatterdiffraction) thatcan beusedineither course togivethe student a solid introduction to at least one characterization technique that complements the compu- tationalapproachesfound intherestofthetext.Ourpastexperienceindicatesthatthese courses are highlyamenabletotheincorporationofteamprojectsbysmallgroupsofstudentsasanintegralpartof the course. Acknowledgments Theauthorswouldliketoacknowledgethemanypeoplewhohavecontributedtotheproductionofthis book. Much of the groundwork for the book was undertaken during a sabbatical leave that Brent AdamstookatDrexelUniversitytocollaboratewithSuryaKalidindiin2004–2005.Theauthorsare thankful for the support of Brigham Young University and Drexel University that facilitated this fruitful period ofidea development. Innumerablecolleaguescontributedtotheprogressofthiswork,withparticularthankstoHamid Garmestani and Graeme Milton. Stuart Wright of Edax-TSL kindly provided various Orientation (cid:1) ImagingMicroscopy(OIM )imagesusedinthebook,andtheoverviewofOIMthatformedthebasis for Chapter16. Furthermore, numerous students contributed directly or indirectly to this development, including StephenNiezgoda,SadeghAhmadi,MaxBinci,HariDuvvuru,BradFromm,CarlGao,BenHenrie, Eric Homer, Josh Houskamp, Marko Knezevic, Colin Landon, Scott Lemmon, Ryan Larsen, Mark Lyon, Gwe´nae¨lle Proust, Craig Przybyla, Joshua Shaffer, Xianping Wu, and Tony Fast. Bradford Singleyproduced manyofthe figures. Partial funding was also provided by the Army Research Office, under program manager David Stepp,andvariousNSFgrants.EarlierworkwasalsomadepossibleunderagrantfromtheAirForce Office of Scientific Research with program manager Craig Hartley. Surya Kalidindi was partially fundedforhiseffortundergrantsfromtheOfficeofNavalResearch(ONR)withprogrammanagers Julie Christodolou and William Mullins. Generous supplemental funding, provided through the Warren N. and Wilson H. Dusenberry Professorship held by Brent Adams, was instrumental in providing support for undergraduate students engaged in developing the case studies, and for travel that hasgreatly facilitatedthis work. ix Nomenclature a,b,. (lowercaseitalic)scalar v,n,. (lowercase,bold)vector vi,. (lowercaseitalics)vectorcomponent e ,. basisvector 1 T,C,. (uppercasebold)tensor T12,Cijkl,. (uppercaseitalics)tensorcomponents u,v dotproductofvectors juj modulusofavector u(cid:2)v cross-productofvectors ˛ permutationsymbol ijk e5e dyadic(outer)productofvectors i k d deltasymbol ij I ¼ dijei5ej ¼ ei5ei identitytensor ST transposeofamatrix/tensor trðSÞ traceofamatrix/tensor Qij unitarymatrix(transformation) g coordinatetransformationusingarotation ij f4 ;F;4 g Euleranglesdescribingarotation 1 2 det T determinantofamatrix/tensor R rotationmatrix V deloperator grad gradoperator div v ¼ V$v divergence curl v ¼ V(cid:2)v curl V2f ¼ V$Vf Laplaceanoperator s stresstensorcomponent ji sji;j commadenotesdifferentiation ε straintensorcomponent ij c “forall” ε_ dotdenotesdifferentiationbytime(i.e.,arate) ij Cijkl stiffnesstensorcomponent Sijkl compliancetensorcomponent Cij stiffnesstensorcomponentinreducednotation(i.e.,matrixform) b Burgersvector ð111Þ slipplanes xi xii Nomenclature h110i slipdirections na slipplanenormal ma slipdirection sa resolvedshearstress RSS s criticalresolvedshearstress CRSS g_a effectiveshearrate Lapp appliedvelocitygradienttensor Lp plasticvelocitygradienttensor W* rigid-bodyspin Wp anti-symmetriccomponentofLp Dp symmetriccomponentofLp sgnðaÞ signofa * “because” a averagevalueofa C*,Ceff effective(macroscopic)valueofC(theasteriskisalsousedfor‘complexconjugate’ invariousequationsinvolvingFourieranalysis) Cr referencevalueforC C0 polarizedvalueofC(i.e.,Cr(cid:3)CorC(cid:3)C) h localstate Mð!x;hÞ microstructurefunction dV=V volumefraction dh theinvariantmeasure H thelocalstatespace fao;ao;aog latticebasisvectors 1 2 3 Lo locallattice ðao; ao; ao; ao; bo; go Þ latticeparameters(magnitudesandangles) 1 2 3 ~I signifiestheinversiontensor FZ fundamentalzone SOð3Þ specialorthogonalgroup(rotationgroup) SOð3Þ=G leftcosetofGwithSO(3) FZðOÞ fundamentalzoneforcubiclattices FZðD6Þ fundamentalzoneforhexagonallattices ðkÞð(cid:129)Þ kthelementofanensemble h(cid:129)i ¼ 1PK ðkÞð(cid:129)Þ ensembleaverage K k¼1 f2ðh;h0j!rÞ two-pointlocalstatecorrelationfunction U sampleregion,representativevolumeelement(RVE),etc. Ujr subsetofUsuchthataddingthevectorrtoanypointremainsinU JðUÞ spaceofvectors,r,thatcanfitinU vH localstatespaceofinterfaces(betweengrains) vh localstateataninterface Nomenclature xiii SV surfaceareaperunitvolume SVðRA;n^;RBÞ grainboundarycharacterdistribution(GBCD) DR ¼ RTARB latticemisorientation SVðDRÞ misorientationdistributionfunction(MDF) ½0;DkÞ realintervalgreaterthanorequaltozero,lessthanDk us1s2s34uns subcellofU cðxÞ ¼ 1ifx˛us spatialindicatorfunctionforsubcells s 0otherwise g orunsubcelloflocalstatespaceH,containinglocalstatehn n n cnðhÞ ¼ 1ifh˛gn localstateindicatorfunctionforsubcelln 0otherwise Dn microstructurecoefficientsinprimitiveFourierapproximation s Ftnn0 ¼ Hss0t DnsDns00 two-pointcorrelationfunctionFouriercoefficients S2 thesetofallphysicallydistinctunitvectors TðRÞ complexrepresentationofthespecialorthogonalgroupSO(3) L2ðS2Þ setofsquareintegrablefunctionsonunitsphere kmðn^Þ surfacesphericalharmonicfunctions(SSHFs) l TmnðRÞ generalisedsphericalharmonicfunctions(GSHFs) l T__mnðRÞ GSHFwithcrystalsymmetry l T_mnðRÞ GSHFwithstatisticalsymmetry l S statisticalsymmetrygroup T€_mnðRÞ GSHFwithcrystalandstatisticalsymmetry l WpqðxkÞ Haarwaveletfunction Wpq11pq22pq33ðxÞ 3DHaarwaveletfunction ds orientationdistributionincellsinprimitivebasis d^ðiÞ singleorientationincells,oreigentexture s M microstructurehull s dk0 distancebetweenmicrostructurefunctionskandk0 k Pr($) probabilityof PrðT[dbÞ probabilitythatT“hits”db LðdbXTÞ linesegmentofintersection Apð(cid:129)Þ areaofprojection P,L ,A ,V point,line,area,andvolumefraction P L A V LA linelengthperunitofarea fe^ig labcoordinatebasis fe^Sg sectioningcoordinateframe i PtðcosnÞ normalizedassociatedLegendrefunctions r s2 varianceoffunction,f f n qðxÞ ¼ 10iofthxe˛rUwise localizationfunction HðUÞ caliperlengthofU vMð!x;vhÞ interfacefunction CHAPTER 1 Introduction CHAPTER OUTLINE 1.1 ClassicMicrostructure–PropertiesRelationships.................................................................................2 1.2 Microstructure-SensitiveDesignforPerformanceOptimization.............................................................3 1.3 IllustrationoftheMainConstructsofMSDPO......................................................................................7 1.3.1 Identificationofprincipalpropertiesandcandidatematerials............................................7 1.3.2 First-orderhomogenizationrelations..............................................................................10 1.3.3 Microstructurehull......................................................................................................12 1.3.4 Propertiesclosure........................................................................................................13 1.3.5 Back-mappingtodiscoveroptimizedmicrostructures......................................................15 1.3.6 Second-orderhomogenizationrelations.........................................................................17 1.3.7 SummaryoftheMSDPOprocess..................................................................................18 1.4 ImplementationofMSDPOinDesignPractice...................................................................................18 1.5 TheCentralChallengeofMSDPO.....................................................................................................20 1.6 OrganizationoftheBook.................................................................................................................21 Summary..............................................................................................................................................21 Design is that mysterious process, at the same time human and divine, that conceives the shaping of material into objects and systems of clever functionality, useful in leveraging and enhancing human activity. Microstructure-sensitive design for performance optimization (MSDPO) describes a new component ofdesignactivityinwhich the specific requirementsinpropertiesand functionality ofthe materialsarerealizedonlyinspecificpreferredmicrostructures.MSDPOrequiresbridgesthatcrossover twodistinctlengthscalesdthemacroscopicscalediscernedbythenaturaleyeinwhichspecifiedmaterial propertiesarerequiredtomeettheneedsofthedesigner,andamicroscopicscaleofthemicrostructurethat usuallyrequirestheassistanceofmicroscopytoexamine.Itishereinthedetailsofthemicrostructurethat thematerialcanbedesignedtomeetthemacroscalepropertiesdesignrequirements. It is difficult to imagine what our world would be like without microstructure-designed pro- ductsdjet aircrafts that transport people across continents in a matter of hours; computers and tele- communications systems that rapidly perform calculations, store data, and communicate vast quantities of information around the world and into the solar system; modern pharmaceuticals specificallydesignedtoarrestdiseaseandimprovehealthinplants,animals,andhumans.Intheseand many other examples, matter is organized in particular ways that provide the designer with the propertiesandfunctionalityessentialfortheconceiveddesign.Forexample,inthehotsectionofjet enginesnickel-basedsuperalloyshavebeendeveloped,containingprecipitation-strengtheningphases thatarestableathightemperatures.Thesepermitthedesignertorealizeenginesthatoperateathigh levelsof thermodynamic efficiency. 1 MicrostructureSensitiveDesignforPerformanceOptimization.http://dx.doi.org/10.1016/B978-0-12-396989-7.00001-0 Copyright(cid:1)2013ElsevierInc.Allrightsreserved. 2 CHAPTER 1 Introduction Shifting from aluminum to highly textured copper-based alloys in the metallic interconnects of computer chips facilitates smaller circuits with higher current densities and higher operating temper- atures, suppressing the electromigration and void failures that limited the application of aluminum alloys.Secondaryrecrystallizationhasbeenexploitediniron-siliconalloystoobtainhighlevelsofthe {110}<001> Goss orientation that is ideal for the magnetic properties required in electric power transformers. Thin aluminumbeveragecans became a technological realitywhen materials engineers learnedtoexactlybalancetherollingandrecrystallizationtexturecomponentsofthemicrostructureof the sheet product that is input into deep drawing and ironing operations. Thus, in each of these examples, and many others, particular characteristics of microstructure are sought that lead to combinationsofpropertiesthatfacilitatethedesiredfunctionalityofthedesign. Asourabilitytotailormaterialstomeetthefunctionalityenvisionedbydesignersincreases,sodoesthe range of possibilities and performance of designs. We say that the design space is “enhanced” or “openedup.”Foranyaugmentationofthedesignspacethatincreasesorimprovesfunctionalityiswelcome newstothedesigner.Thepurposeofthisbookistointroducetheengineertorigorousmethodologyfor specificallytailoringthemicrostructureofmaterialstomeetthepropertiesandfunctionalityrequiredby the designer. Where this is achieved, the design process transcends the traditional materials selection componentofdesignbyintroducingmaterialmicrostructureasadesignvariable. 1.1 CLASSIC MICROSTRUCTURE–PROPERTIES RELATIONSHIPS Futuristsenvisionthedaywhenindividualatomsmightbemovedintoposition,constructing,atomby atom, materials of specified chemistry, molecular arrangement, and internal structure, to achieve desirablecombinationsofpropertiesandfunctionality,muchlikeanarchitectwoulddesignabuilding onebeamatatime.Weareveryfarfromrealizingthisfuturisticvisioninatleasttwoways.First,the concept of moving individual atoms into prescribed locations faces many practical limitationsdone cannot simply push atoms aroundbymechanical devices. Thesecondlimitationisintermsofpredictingmacroscopicbehaviorofmaterialsonthebasisofatomic- scale theory. Quantum theory is currently the best available physical theory of a solid state, but if one imaginesthesystemof3NwaveequationsthatmustbesolvedforasamplecontainingNelectrons,eachwith threedegreesoffreedom(addingtheprotonsandneutronsrequiresadditionalequations),onerapidlycomes totheconclusionthatmoderncomputationalresourcesfallfarshortofwhatwouldberequiredtosimulateat theatomiclevelthepropertiesofevenaverysmallmacroscopicsystemconsistingof,forexample,onemole of atoms. If, however, classic nineteenth-century physics can be used to model material properties, then significantprogressismadetowardthegoalofdesigningmicrostructuressuitableforspecificdesigns. Themethodologyoffocusinthisbookembracesclassic(pre–quantummechanics)microstructure– propertiestheory.Thebasicbuildingblocksofmaterialsaretakentobesmallgrainsorcrystallites,or small regions of homogeneous material phase. It is presumed that the local physical laws governing thepropertiesofthesebuildingblocksareknown,bypreviousexperimentaldetermination.Perhapsthey areestablishedbysimulationwithreliabletheoriesatfiner-lengthscales.Inthiscontext,localproperties relationships can be thought of as the averaged or homogenized behavior of quantum mechanical relationsthatgoverntheatomic-scalebehavior.Theoscillationsofthatbehavioroverdistanceandtime scales appropriate for atomic simulations are no longer present in the classic relations. For many properties of interest, atomic-scale physics can be ignored, and models incorporating mesoscale

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.