ebook img

Microstructure and Corrosion Behaviour of Aerospace Aluminium Alloys PDF

369 Pages·2016·29.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microstructure and Corrosion Behaviour of Aerospace Aluminium Alloys

Microstructure and Corrosion Behaviour of Aerospace Aluminium Alloys A thesis submitted to The University of Manchester for the Degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 XINXIN ZHANG School of Materials Corrosion and Protection Centre Table of Contents Table of Contents ........................................................................................ 2 List of Figures .............................................................................................. 5 List of Tables ............................................................................................. 16 Abstract ...................................................................................................... 17 Declaration ................................................................................................. 18 Copyright Statement ................................................................................. 19 Acknowledgements .................................................................................... 20 1 Introduction ......................................................................................... 22 2 Literature Review ............................................................................... 25 2.1 Introduction ...................................................................................................... 25 2.2 Microstructure of aluminium alloys ................................................................. 26 2.2.1 Microstructure of Al-Cu-Mg alloys .......................................................... 27 2.2.2 Microstructure of Al-Cu-Li alloys ............................................................ 32 2.3 Corrosion behaviour of aluminium alloys ........................................................ 36 2.3.1 Corrosion behaviour of Al-Cu-Mg alloys ................................................. 36 2.3.2 Corrosion behaviour of Al-Cu-Li alloys ................................................... 56 3 Experimental Methods ....................................................................... 62 3.1 Materials ........................................................................................................... 62 3.1.1 AA2024-T351 aluminium alloy ................................................................ 62 3.1.2 2A97 aluminium alloys ............................................................................. 62 3.2 Specimen preparation ....................................................................................... 62 3.2.1 Mechanical polishing ................................................................................ 62 3.2.2 Electropolishing ........................................................................................ 63 3.2.3 Alkaline etching ........................................................................................ 63 3.2.4 Ultramicrotomy ......................................................................................... 64 3.2.5 GDOS etching ........................................................................................... 64 3.2.6 Focused ion beam ...................................................................................... 65 3.3 Testing .............................................................................................................. 65 2 3.3.1 Immersion testing ...................................................................................... 65 3.3.2 Electrochemical measurement .................................................................. 66 3.4 Characterization ................................................................................................ 67 3.4.1 Optical microscopy ................................................................................... 67 3.4.2 Scanning electron microscopy .................................................................. 67 3.4.3 Transmission electron microscopy ............................................................ 68 4 Microstructure Characterization of AA2024-T351 and 2A97 Aluminium Alloys...................................................................................... 74 4.1 Microstructure of AA2024-T351 aluminium alloy .......................................... 74 4.1.1 Constituent intermetallic particles............................................................. 74 4.1.2 Dispersoids and precipitates ...................................................................... 81 4.1.3 Crystallographic structure and stored energy ............................................ 83 4.1.4 Discussion ................................................................................................. 86 4.2 Microstructure of 2A97 aluminium alloys ....................................................... 90 4.2.1 Constituent intermetallic particles............................................................. 90 4.2.2 Crystallographic structure ......................................................................... 95 4.2.3 Dispersoids ................................................................................................ 99 4.2.4 The distribution of precipitates ............................................................... 100 4.2.5 Discussion ............................................................................................... 104 4.3 Conclusions .................................................................................................... 110 5 Corrosion Behaviour of AA2024-T351 Aluminium Alloy ............ 157 5.1 Corrosion behaviour of constituent intermetallic particles ............................ 157 5.1.1 General observation ................................................................................ 158 5.1.2 Corrosion behaviour of individual intermetallic particle ........................ 160 5.1.3 Corrosion behaviour of clustered intermetallic particles ........................ 168 5.1.4 Discussion ............................................................................................... 170 5.2 Stable localized corrosion............................................................................... 179 5.2.1 Electrochemical behaviour ...................................................................... 179 5.2.2 Intergranular corrosion ............................................................................ 181 5.2.3 Crystallographic corrosion ...................................................................... 194 5.2.4 Discussion ............................................................................................... 200 5.3 Conclusions .................................................................................................... 215 5.3.1 Corrosion behaviour of constituent intermetallic particles ..................... 215 3 5.3.2 Intergranular corrosion ............................................................................ 216 5.3.3 Crystallographic corrosion ...................................................................... 216 6 Corrosion Behaviour of 2A97 Aluminium Alloys .......................... 258 6.1 Corrosion behaviour of constituent intermetallic particles ............................ 258 6.1.1 General observation after 5 h immersion ................................................ 258 6.1.2 General observation after 20 h immersion .............................................. 260 6.2 Localized corrosion in 2A97 Al-Cu-Li alloys ................................................ 263 6.2.1 Electrochemical behaviour ...................................................................... 263 6.2.2 Localized corrosion in cold worked alloy ............................................... 264 6.2.3 Localized corrosion in naturally aged alloy ............................................ 269 6.2.4 Localized corrosion in artificially aged alloy.......................................... 276 6.2.5 Localized corrosion in cold worked and artificially aged alloy .............. 283 6.3 Discussion ...................................................................................................... 290 6.3.1 The influence of thermomechanical history on localized corrosion ....... 290 6.3.2 Corrosion propagation ............................................................................. 298 6.3.3 The influence of grain-stored energy on localized corrosion .................. 305 6.4 Conclusions .................................................................................................... 311 7 Conclusions and Suggestions for Further Work ........................... 351 7.1 Conclusions .................................................................................................... 351 7.1.1 AA2024-T351 aluminium alloy .............................................................. 351 7.1.2 2A97 aluminium alloys ........................................................................... 353 7.2 Suggestions for further work .......................................................................... 356 References ................................................................................................ 358 Word Counts: 93514 4 List of Figures Figure 3.1: Schematic diagram of the equipment set-up during electropolishing process. ......................................................................................................................................... 70 Figure 3.2: Schematic diagrams showing the sectioning process of ultramicrotomy (a) Trimming process by glass knives, (b) Sectioning process by the diamond knife. ........ 71 Figure 3.3: Schematic diagram of the electrochemical cell for potentiodynamic polarization measurement in a de-aerated testing solution. ............................................ 72 Figure 4.1: Scanning electron micrographs of AA2024-T351 aluminium alloy surface (a) Mechanical polishing with 1 µm diamond paste, (b) OPS polishing. ........................... 112 Figure 4.2: Typical EDX spectra of constituent intermetallic particles (a) S-phase, (b) θ- phase, (c) α-phase without silicon, (d) α-phase with silicon. ........................................ 113 Figure 4.3: Typical Kikuchi patterns along with the corresponding indexed results of constituent intermetallic particles (a)-(b) S-phase, (c)-(d) θ-phase, (e) α-phase. .......... 114 Figure 4.4: Backscattered electron micrographs of different existence forms of S-phase and θ-phase intermetallic particles in AA2024-T351 aluminium alloy. ....................... 115 Figure 4.5: Typical S-phase and θ-phase intermetallic particle cluster (a) Backscattered electron micrograph, (b) Secondary electron micrograph, (c)-(d) Kikuchi pattern with its corresponding indexed result of θ-phase at point 1, (e)-(f) Kikuchi pattern with its corresponding indexed result of S-phase at point 2. ..................................................... 116 Figure 4.6: Backscattered electron micrographs of typical intermetallic particle clusters of S-phase and θ-phase particles in AA2024-T351 aluminium alloy. .......................... 117 Figure 4.7: (a) Scanning electron micrograph of a typical intermetallic particle cluster, (b) EDX maps, in the sequence of Al, Cu, Fe, Mn, Si and Mg..................................... 118 Figure 4.8: (a) Scanning electron micrograph of a typical intermetallic particle cluster, (b) EDX maps, in the sequence of Al, Cu, Mn, Si, Mg and Fe..................................... 119 Figure 4.9: Backscattered electron micrographs of typical α-phase intermetallic particles on the surface of AA2024-T351 aluminium alloy, existing individually and in cluster. ....................................................................................................................................... 120 Figure 4.10: (a) Typical scanning electron micrograph of individual α-phase intermetallic particles, (b) Corresponding EDX spectrum from point 1 in (a). ............ 121 Figure 4.11: Backscattered electron micrographs of typical α-phase intermetallic particle clusters in AA2024-T351 aluminium alloy...................................................... 122 Figure 4.12: (a) Scanning electron micrograph of a typical α-phase intermetallic particle cluster with well-defined shell-core structure, (b) EDX maps, in the sequence of Al, Cu, Mn, Si, Fe and Mg. ....................................................................................................... 123 Figure 4.13: (a) Scanning electron micrograph of a typical α-phase intermetallic particle cluster without well-defined shell-core structure, (b) EDX maps, in the sequence of Al, Cu, Mg, Fe, Mn and Si. ................................................................................................. 124 Figure 4.14: (a) HAADF micrograph of a typical region in the twin-jet electropolished AA2024-T351 aluminium alloy, (b)-(d) EDX spectra from points 1-3 in (a). ............. 125 Figure 4.15: Transmission electron micrographs of the twin-jet electropolished AA2024 aluminium alloy (a) Intermetallic particle cluster of S-phase and θ-phase, (b) Framed 5 area in (a) with increased magnification, (c) Corresponding diffraction pattern, (d) Individual θ-phase intermetallic particle, (e) Framed area in (d) at increased magnification, (f) Corresponding diffraction pattern, (g)-(h) Other typical linear crystallographic defects in θ-phase intermetallic particles. .......................................... 127 Figure 4.16: (a) Transmission electron micrograph of a typical α-phase intermetallic particle, (b) Increased magnification of framed area in (a). .......................................... 128 Figure 4.17: (a)-(b) Bright field TEM micrographs of AA2024-T351 aluminium alloy, (c) EDX spectrum of rod-like dispersoid, (d) EDX spectrum of round-shaped dispersoid. ....................................................................................................................................... 129 Figure 4.18: Typical scanning electron micrographs of dispersoid free zone around (a)- (b) Individual S-phase / θ-phase intermetallic particles, (c)-(d) Multi-phase particle and intermetallic particle cluster of S-phase and θ-phase. ................................................... 130 Figure 4.19: (a)-(b) Bright field and dark field STEM micrographs of a triple grain boundary joint, (c)-(d) Typical EDX line-scan results along line 1 and line 2 in (a), (e)- (f) Bright field TEM micrograph of a relatively clean grain boundary and the corresponding EDX line-scan result, (g)-(h) HAADF micrograph of grain boundary and the corresponding EDX line-scan result, revealing the presence of Mg segregation, (i)-(j) HAADF micrograph of grain boundary and the corresponding EDX line-scan result, revealing the presence of Cu and Mg segregations. ...................................................... 132 Figure 4.20: (a) Crystallographic orientation distribution map in Euler’s colours, (b) Misorientation distribution map, (c) Grain boundary misorientation distribution map, (d) Histogram of grain boundary misorientation distribution, (e) Grain-stored energy distribution map in grey scale, with yellow lines applied to represent HAGBs, (f) The distribution of Schmidt factors in AA2024-T351 aluminium alloy. ............................. 133 Figure 4.21: Scanning electron micrographs of (a) 2A97-T3, (b) 2A97-T4, (c) 2A97-T6 and (d) 2A97-T8 aluminium alloys after mechanical polishing to 1 µm. ..................... 134 Figure 4.22: Scanning electron micrographs and EDX spectra in 2A97-T3 aluminium alloy (a)-(d) Typical intermetallic particles in 2A97-T3 aluminium alloy in different existing forms, (e)-(f) Typical EDX spectra of intermetallic particles in 2A97-T3 aluminium alloy. ........................................................................................................... 135 Figure 4.23: Scanning electron micrographs of intermetallic particles in 2A97-T3 aluminium alloy and corresponding EDX maps (a)-(b) Typical intermetallic particles in 2A97-T3 alloy along with the corresponding EDX maps, in the sequence of Al, Cu, Fe, Mn, Ag, Mg and Zn, (c)-(d) Another typical intermetallic particles in 2A97-T3 alloy along with the corresponding EDX maps, in the sequence of Al, Cu, Fe, Mn, Ag, Zn and Mg. ......................................................................................................................... 137 Figure 4.24: Scanning electron micrographs and EDX spectra in 2A97-T4 aluminium alloy (a)-(d) Typical intermetallic particles in 2A97-T4 aluminium alloy in different existing forms, (e)-(f) Typical EDX spectra of intermetallic particles in 2A97-T4 aluminium alloy. ........................................................................................................... 138 Figure 4.25: EDX maps of intermetallic particles in 2A97-T4 aluminium alloy (a) EDX maps of intermetallic particles shown in Figure 4.24 (c), in the sequence of Al, Cu, Fe, Mn, Ag, Mg, Ba and Zn, (b) EDX maps of intermetallic particles shown in Figure 4.24 (d), in the sequence of Al, Cu, Fe, Mn, Ag, Mg, Ba and Zn. ........................................ 139 6 Figure 4.26: Scanning electron micrographs and EDX spectra in 2A97-T6 aluminium alloy (a)-(b) Typical intermetallic particles in 2A97-T6 aluminium alloy in different existing forms, (c)-(d) Typical EDX spectra of intermetallic particles in 2A97-T6 aluminium alloy. ........................................................................................................... 140 Figure 4.27: Scanning electron micrograph of intermetallic particles in 2A97-T6 aluminium alloy and EDX maps (a) EDX maps for intermetallic particles shown in Figure 4.26 (b), in the sequence of Al, Cu, Fe, Mn, Zn, Ag, Ca and Mg, (b) Typical intermetallic particles in 2A97-T6 aluminium alloy, (c) EDX maps for intermetallic particles shown in (b), in the sequence of Al, Cu, Fe, Mn, Mg, Ag, Ca and Zn. .......... 141 Figure 4.28: Scanning electron micrographs and EDX spectra in 2A97-T8 aluminium alloy (a)-(b) Typical intermetallic particles in 2A97-T8 aluminium alloy in different existing forms, (c)-(d) Typical EDX spectra of intermetallic particles in 2A97-T8 aluminium alloy. ........................................................................................................... 142 Figure 4.29: EDX maps of intermetallic particles in 2A97-T8 aluminium alloy (a) EDX maps for the intermetallic particles shown in Figure 4.28 (a), in the sequence of Al, Ag, Cu, Mg, Mn, Fe and Zn, (b) EDX maps for the intermetallic particles shown in Figure 4.28 (b), in the sequence of Al, Ag, Cu, Mg, Mn, Fe and Zn. ...................................... 143 Figure 4.30: Backscattered electron micrographs, revealing the grain orientation distribution in (a) 2A97-T3, (b) 2A97-T4, (c) 2A97-T6 and (d) 2A97-T8 aluminium alloys. ............................................................................................................................ 144 Figure 4.31: EBSD analysis of 2A97-T3 aluminium alloy (a) IPFZ map, (b) Grain boundary misorientation distribution map with black lines and grey lines representing HAGBs and LAGBs, (c) Histogram of grain boundary misorientation distribution in 2A97-T3 aluminium alloy, (d) Grain-stored energy distribution in grey scale. ........... 145 Figure 4.32: EBSD analysis of 2A97-T8 aluminium alloy (a) IPFZ map, (b) Grain boundary misorientation distribution map with black lines and grey lines representing HAGBs and LAGBs, (c) Histogram of grain boundary misorientation distribution in 2A97-T8 aluminium alloy, (d) Grain-stored energy distribution in grey scale. ........... 146 Figure 4.33: EBSD analysis of 2A97-T4 aluminium alloy (a) IPFZ map, (b) Grain boundary misorientation distribution map with black lines and grey lines representing HAGBs and LAGBs, (c) Histogram of grain boundary misorientation distribution in 2A97-T4 aluminium alloy, (d) Grain-stored energy distribution in grey scale. ........... 147 Figure 4.34: EBSD analysis of 2A97-T6 aluminium alloy (a) IPFZ map, (b) Grain boundary misorientation distribution map with black lines and grey lines representing HAGBs and LAGBs, (c) Histogram of grain boundary misorientation distribution in 2A97-T6 aluminium alloy, (d) Grain-stored energy distribution in grey scale. ........... 148 Figure 4.35: HAADF micrographs of 2A97 Al-Cu-Li alloys, revealing the distribution of dispersoids in (a) T3 alloy, (b) T4 alloy, (c) T6 alloy, (d) T8 alloy and typical EDX spectra of the dispersoids: (e) Al-Cu-Mn dispersoid and (f) Al-Zr dispersoid. ............ 149 Figure 4.36: (a) Ultra-high resolution SEM micrograph, (b)-(d) HAADF micrographs at different magnifications of 2A97-T3 alloy. .................................................................. 150 Figure 4.37: (a) Ultra-high resolution SEM micrograph of a grain boundary junction in 2A97-T4 alloy, (b) Grain boundary A-A in (a) at higher magnification, (c)-(d) Bright field TEM micrographs of typical grain boundaries in 2A97-T4 alloy. ....................... 151 7 Figure 4.38: HAADF micrographs of 2A97-T4 alloy, revealing the heterogeneous distribution of precipitates in the alloy matrix. ............................................................. 152 Figure 4.39: (a) Bright field TEM micrograph of 2A97-T6 alloy, (b) HAADF micrograph of 2A97-T6 alloy, (c) High resolution TEM micrograph of the needle- shaped precipitate, with FFT result inset, (d) HAADF micrograph, revealing the heterogeneous distribution of precipitates in the 2A97-T6 alloy matrix. ..................... 153 Figure 4.40: (a) HAADF micrograph of 2A97-T6 alloy, (b) Bright field TEM micrograph of a typical grain boundary in 2A97-T6 alloy, (c)-(d) Ultra-high resolution SEM micrographs of 2A97-T6 alloy. ........................................................................... 154 Figure 4.41: (a) Bright field TEM micrograph of 2A97-T8 alloy, (b) High resolution TEM micrograph of the needle-shaped precipitate, with FFT result inset, (c) Ultra-high resolution SEM micrograph, (d)-(e) Bright field TEM micrographs of a typical grain boundary at different tilting angles, (f) HAADF micrograph of a triple joint of grain boundaries in 2A97-T8 alloy. ....................................................................................... 155 Figure 5.1: Scanning electron micrographs of AA2024-T351 aluminium alloy surface (a) General view before the immersion, (b) General view after the immersion for 30 min, (c)-(d) Stable localized corrosion site of marked area in (b) at increased magnification. ....................................................................................................................................... 218 Figure 5.2: Scanning electron micrographs and corresponding EDX spectra (a) General view before the immersion, (b) General view after the immersion for 30 min, (c) EDX spectrum before the immersion of particle A, (d) EDX spectrum before the immersion of particle B, (e) High resolution SEM micrograph after the immersion of particle A, (f) High resolution SEM micrograph after the immersion of particle B, (g) EDX spectrum after the immersion of particle A, (h) EDX spectrum after the immersion of particle B. ....................................................................................................................................... 220 Figure 5.3: Scanning electron micrographs of a typical S-phase particle after 30 min immersion in a 3.5 wt. % NaCl solution (a) Secondary electron micrograph, (b) Backscattered electron micrograph, (c)-(d) Typical areas in the S-phase particle at higher magnifications. ................................................................................................... 222 Figure 5.4: Transmission electron micrographs and corresponding diffraction pattern of an ultramicrotomed foil of AA2024-T351 alloy after the immersion in a 3.5 wt. % NaCl solution for 1 minute (a) General view, (b)-(c) At increased magnifications, (d) Diffraction pattern of the de-alloyed area in the S-phase particle. ............................... 223 Figure 5.5: (a)-(b) Scanning electron micrographs of a typical θ-phase particle after the immersion in a 3.5 wt. % NaCl solution for 30 min followed by GDOS to clean the alloy surface after the immersion, (c)-(d) Scanning electron micrographs of typical θ- phase particles after the immersion for 2 hours. ........................................................... 224 Figure 5.6: Scanning electron micrographs of typical de-alloyed θ-phase particles with banding structures (a)-(b) A severely de-alloyed θ-phase particle at different magnifications, (c)-(d) Typical θ-phase particles with mild de-alloying, (e)-(f) Cross sections of a typical de-alloyed θ-phase particle generated using focussed ion beam. . 225 Figure 5.7: Transmission electron micrographs and corresponding diffraction pattern of a de-alloyed θ-phase particle (a) General view, (b) Corresponding diffraction pattern with indexed results, (c) Increased magnification, (d) High resolution TEM micrograph 8 displaying the linear defects, inset: corresponding FFT result, in consistent with diffraction pattern. ......................................................................................................... 226 Figure 5.8: (a) HAADF micrograph of a de-alloyed θ-phase particle, (b) HAADF micrograph of typical ligaments in the de-alloyed θ-phase particle, with the corresponding EDX copper map inset, (c) High resolution HAADF micrograph of the linear crystallographic defects marked in (a), with the corresponding FFT results inset, revealing the crystallographic orientation, (d) HAADF micrograph of the typical ligaments in the de-alloyed θ-phase particle, with the orientations marked. ................ 227 Figure 5.9: Scanning electron micrographs of Al-Cu-Fe-Mn intermetallic particles after the immersion in a 3.5 wt. % NaCl solution for (a) 2 hours, (b) 24 hours. ................... 228 Figure 5.10: Typical Al-Cu-Fe-Mn intermetallic particles after the immersion for 24 hours (a)-(b) SEM micrographs of a typical Al-Cu-Fe-Mn intermetallic particle, (c)-(d) SEM micrographs of another typical Al-Cu-Fe-Mn intermetallic particle, (e) EDX maps of the Al-Cu-Fe-Mn intermetallic particle shown in (c)-(d), in the sequence of Al, Cu, Fe, Mn, Mg and O. ........................................................................................................ 229 Figure 5.11: Scanning electron micrographs of Al-Cu-Fe-Mn intermetallic particles after 24 hours immersion with gentle polishing to remove the corrosion product layer (a)-(b) Typical Al-Cu-Fe-Mn intermetallic particles with linear de-alloyed bands, (c)-(d) A typical Al-Cu-Fe-Mn intermetallic particle with linear de-alloyed bands at different magnifications. .............................................................................................................. 230 Figure 5.12: (a) Scanning electron micrograph of a typical intermetallic particle cluster prior to the immersion testing, (b)-(e) EDX spectra corresponding to points 1-4 shown in (a), (f)-(i) Kikuchi patterns along with the corresponding indexed results from point 1 and point 3, (j) Scanning electron micrograph of the intermetallic particle cluster after the immersion for 30 min. ............................................................................................. 231 Figure 5.13: (a) Scanning electron micrograph of the intermetallic particle cluster prior to the immersion testing, (b)-(d) EDX spectra corresponding to points 1-3 shown in (a), (e)-(g) Kikuchi patterns along with the corresponding indexed results from points 1-3 in shown in (a), (h) Scanning electron micrograph of the intermetallic particle cluster after 30 min immersion, (i)-(j) EDX spectra of point 1 and point 3 shown in (h). ............... 234 Figure 5.14: Scanning electron micrographs of intermetallic particle clusters after 2 hours immersion in a 3.5 wt. % NaCl solution (a) General view, (b)-(d) Typical clusters. ....................................................................................................................................... 235 Figure 5.15: (a) Scanning electron micrograph of an attacked intermetallic particle cluster after 2 hours immersion in a 3.5 wt. % NaCl solution, (b) EDX maps of the intermetallic particle cluster shown in (a), in the sequence of Al, Cu, O, Mn, Fe and Mg. ....................................................................................................................................... 236 Figure 5.16: Electrochemical measurement of AA2024-T351 aluminium alloy in a 3.5 wt. % NaCl solution (a) Voltage-current density curve during the anodic polarization, Scanning electron micrographs of the AA2024-T351 aluminium alloy after anodic polarization, (b) Plan-view, (c)-(e) Cross section at various magnifications. ............... 237 Figure 5.17: Optical micrographs of AA2024-T351 aluminum alloy at different stages during the immersion testing (a) At the beginning of the immersion in a 3.5 wt. % NaCl solution, (b) After 30 min immersion in a 3.5 wt. % NaCl solution, (c) Moving to 9 deionized water after 30 min immersion in NaCl solution, (d) After 30 min immersion in deionized water. ........................................................................................................ 238 Figure 5.18: Scanning electron micrographs of typical stable localized corrosion sites in AA2024-T351 aluminium alloy after the immersion in a 3.5 wt. % NaCl solution for 30 min followed by the immersion in deionized water for another 30 min (a) Plan-view, (b) Tilted 30°, (c) Cross section with an attacked intermetallic particle intersected the alloy surface, (d) Attacked intermetallic particle in (c) at higher magnification; Other typical cross sections after the identical immersion testing, (e) Cross section with an attacked intermetallic particle buried beneath alloy surface, (f) Cross section with no attacked intermetallic particle beneath alloy surface. .................................................................. 239 Figure 5.19: Scanning electron micrographs of typical cross sections at stable localized corrosion sites in AA2024-T351 aluminium alloy after the immersion in a 3.5 wt. % NaCl solution for 30 min. ............................................................................................. 240 Figure 5.20: Scanning electron micrographs of typical cross sections at stable localized corrosion sites in AA2024-T351 aluminium alloy after the immersion in a 3.5 wt. % NaCl solution for 60 min. ............................................................................................. 240 Figure 5.21: 3D volumetric reconstruction of a typical stable localized corrosion site of AA2024-T351 aluminium alloy after the immersion in a 3.5 wt. % NaCl solution followed by deionized water, with selective transparency applied to alloy matrix, and red and yellow applied to represent intermetallic particles and corrosion product, respectively. .................................................................................................................. 241 Figure 5.22: Scanning electron micrographs of AA2024 alloy surface (a)-(c) After the immersion in a 3.5 wt. % NaCl solution for 40 min followed by the immersion in 3.5 wt. % NaCl solution with 10-4 M copper chloride as addition for another 40 min, (d)-(f) After the immersion in a 3.5 wt. % NaCl solution for 40 min followed by the immersion in deionized water with 10-4 M copper chloride as addition for another 40 min, (g)-(j) After the immersion in a 3.5 wt. % NaCl solution for 40 min followed by the immersion in deionized water for another 40 min, then the specimen was immersed in 0.01 M copper chloride solution for 5 seconds. ........................................................................ 242 Figure 5.23: TEM analysis of an intergranular corrosion filament in AA2024-T351 alloy after the immersion in a 3.5 wt. % NaCl solution for 30 min followed by deionized water for another 30 min (a) Bright field TEM micrograph, (b) HAADF micrograph, (c)-(d) EDX spectra from point 1, point 2 and point 3 in (b), (e) EDX line-scan result along line 1 in (b), (f) The copper EELS map of the corrosion front shown in (b), (g) High resolution TEM micrograph. Inset: fast Fourier transform of the framed region, indicating Al Cu phase. ................................................................................................. 244 2 Figure 5.24: Typical HAADF micrographs of attacked grain boundaries along with the intergranular corrosion front in AA2024-T351 aluminium alloy after the immersion in a 3.5 wt. % NaCl solution for (a)-(b) 1 hour, (c)-(d) 8 hours. ......................................... 245 Figure 5.25: (a) HAADF micrograph of AA2024-T351 aluminium alloy after alkaline etching, (b) Cathodic polarization curves for as-received and alkaline-etched AA2024- T351 alloy in de-aerated 3.5 wt. % NaCl (with HCl to pH=3) testing solution with a scanning rate of 1 mV/s. ............................................................................................... 246 10

Description:
5 Corrosion Behaviour of AA2024-T351 Aluminium Alloy 157 property.pdf), in any relevant Thesis restriction declarations deposited in the Following the introductory chapter, literature review about composed of Al, Cu, Fe and Mn evident along with some trace alloying elements, i.e..
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.