ebook img

Microscopic Theory of Superconductivity PDF

65 Pages·01.071 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microscopic Theory of Superconductivity

MICROSCOPIC THEORY OF SUPERCONDUCTIVITY by Helmut Es hrig These le ture notes are dedi ated to the 60th birthday of Dierk Rainer who pioneered the systemati treatment of the low-energy s ale in the ele troni theory of ondensed matter. 2 Contents 1 The Solid as a Quantum Many-Body System 4 1.1 The CoulombHamiltonian of theSolid . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Redu edDensityMatri es andDensities . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Correlation Fun tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Green's Fun tions 13 2.1 Spe tral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Equation of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 ComplexTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 The Intera tionPi ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Wi k's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 FeynmanDiagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.7 The Self-Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8 Thermodynami Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Green's Fun tions in the Super ondu ting State 31 3.1 The Bogoliubov-Valatin Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 The NambuStru ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Green's Fun tions andVerti es for the Ele tron-Nu leon System . . . . . . . . . . . 35 4 Split-o(cid:11) of High-Energy Parts 39 4.1 Classi(cid:12) ation of Primary Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Migdal's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Leading OrderSelf-Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 The Low Energy Equations 46 5.1 The Quasi-Parti le Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 The Ele tron-Phonon Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 The Ele tron-Ele tron Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 Blo h Fun tionRepresentation on theFermiSurfa e . . . . . . . . . . . . . . . . . . 49 6 Strong Coupling Theory of the Transition Temperature 53 6.1 Linearization of Eliashberg's Equations. . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 The T Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 The DirtyLimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.4 The Cut-O(cid:11)Frequen y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7 Physi al Properties of the Super ondu ting State 59 7.1 Eliashberg's Non-LinearEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 The Quasiparti le Densityof States . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3 The Thermodynami Criti al Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3 Chapter 1 The Solid as a Quantum Many-Body System Physi sasaunifyings ien etendstotra eba kallempiri alphenomenatoasmallnumber offundamentalprin iples. Themi ros opi theoryofsuper ondu tivityisanex ellentexam- pleofasteadyseventyyearsprogresstowardsthisgoalwhi hisstillfurthergoingon. These le tures attempt at a on ise des ription of what has been a hieved so far in this dire tion for the understanding of the ele tron-phonon me hanism of super ondu tivity. We take as a staringpoint the non-relativisti Hamiltonian with Coulomb intera tionsof ele tronsand nu lei, although, stri tly speaking, this is alreadya model. However,relativisti kinemati s leading to mass orre tions,Darwin's onta t intera tion, spin-orbit oupling and spin-spin dipolar intera tion (in luding hyper(cid:12)ne intera tion with the nu lear spin) may later on be added as orre tion terms, and repla ement of the Coulomb intera tion by the relativisti photon ex hange or onsideration of internal nu lear degrees of freedom would pra ti ally not hange any of the onsidered results. The (cid:12)rst satisfa tory treatment of the theory starting from this Hamiltonian was given 1 byDierkRainer in1986,justintheyearofdis overyofhightemperaturesuper ondu tivity of the uprates, whi h latter has put a ompletely new and up to now essentially unsolved 2 problemforsu hatypeoftheory. Before1986,thetheoryofsuper ondu tivity wasin one way or the other led ba k to the use of the Fr(cid:127)ohli h Hamiltonian of ele trons and phonons, amodel Hamiltonian whi h annot be derivedfrommany-bodytheoryandwhi h hasto be used with aution by following ertain model re ipes. 1.1 The Coulomb Hamiltonian of the Solid As mentioned above, we take as the starting point the Hamiltonian H^ =t^+V^ee+V^en+V^nn+T^; (1.1) where XN 1 2 t^=(cid:0) (1.2) 2 i=1 2ri 1D. Rainer, in: D. F. Brewer (ed.), Progress in Low Temperature Physi s, vol. X, p. 371, Elsevier, Amsterdam1986. 2G.M.Eliashberg,Sov. Phys.-JETP11,696(1960);12,1000(1961). D.S alapino,in: R.D.Parks(ed.),Super ondu tivity,vol.1,p.449,Dekker,NewYork1969. 4 is the operator of the kineti energy of the N ele trons, 1XN 1 V^ee = (1.3) 2 jri(cid:0)rjj i6=j is the operator of the ele tron-ele tron intera tion, V^en =(cid:0)XN XM Zm (1.4) jri(cid:0)Rmj i=1m=1 P istheoperatoroftheintera tionoftheele tronswiththeM nu leiof hargesZm, mZm = N, V^nn = 1 XM ZmZn (1.5) 2 jRm(cid:0)Rnj m6=n is the operator of the nu leus-nu leus intera tion, and XM 1 2 T^=(cid:0) (1.6) m=12MmR2m is the operator of the kineti energy of the nu lei. We used natural atomi units mm 3 5 ~=jej=me =1a.u.; Mm (cid:17) (cid:25)10 (cid:1)(cid:1)(cid:1)10 ; me hTi (cid:0)1=2 (cid:0)2 (cid:25)hMi (cid:17)(cid:11); (cid:11)(cid:25)10 : (1.7) hti The last estimate is the result of the well known Born-Oppenheimer perturbation theory. The presen e of the small parameter (cid:11) will play a key role in all what follows. It allows to split theHamiltonian a ordingto H^ =H^0+H^1 intoazero-orderpartH^0 andthe rest. To 0 this end, referen e positions Rm of nu lei with a latti e spa ing a are introdu ed in su h a way that the nu lear displa ements um remain small all the time: (cid:18) (cid:19)2 0 humi Rm =Rm+um; (cid:24)(cid:11): (1.8) a In addition we hange the Hamiltonian into a grand anoni al one by adding a hemi al potentialtermfortheele trons. (Sin ethenu learwavefun tionsdopra ti allynotoverlap, their statisti s need not be taken into onsideration.) Then we have H^0 =t^+V^ee+V^en(R0m)+Vnn(R0m)(cid:0)(cid:22)N^; (1.9) whereVnn(R0m)isnowjusta onstantnumber,N^ istheoperatorofthenumberofele trons, and (cid:22) is the hemi al potential of the ele trons. The number of ele trons need not be (cid:12)xed P any more, instead mZm =hNi. The remainder part of the Hamiltonian is H^1 =T^+ÆV^nn+ÆV^en; ÆV^ =V^(Rm)(cid:0)V^(R0m): (1.10) It an further be expanded in powers of the um. Usuallythe R0m are hosentoformaregular rystallinelatti e. Then,ÆV^ mayalso on- tain terms with ertain ÆZm, hemi al defe ts, say. In on entrated alloys those terms may 5 not be small, and one of the subsequently made approximations may be ome questionable in that dirty limit. Anyhow it may then be helpful to repla e V^en(R0m) in H^0 by the real part of a self- onsistent oherent potential of the alloy. Additional,possiblytime-dependenttermsaretobeaddedtotheHamiltonian,ifexternal (cid:12)elds, in parti ular ele tromagneti d , a , or photoni (cid:12)elds, are applied to the solid. The time evolution of a wavefun tion state (cid:9)(t) is given by i (cid:9)(t)=H^(cid:9)(t); (cid:9)(0)=(cid:9)0; or (cid:9)(t)=e(cid:0)itH^(cid:9)0: (1.11) t However,neither anthe wavefun tionofasolidbe measurednor anthesolidbeprepared or happen to be in a wavefun tion state. For instan e the time (cid:1)t needed to prepare a system in a stationary state is (cid:1)t (cid:24) ~=(cid:1)E, where (cid:1)E is the distan e to the neighboring stationarystatesin energy. Fora pie e of a solidof one ubi entimeter, say, this time is a huge number of orders of magnitude larger than the age of our universe... In reality, a solid is alwaysin some statisti al state X X (cid:26)^= j(cid:9)(cid:11)ip(cid:11)h(cid:9)(cid:11)j; p(cid:11) =1: (1.12) (cid:11) (cid:11) For instan e, in thermal equilibrium at temperature T and hemi al potential (cid:22) of the ele trons,thestatisti alstateisamixtureofeigenstatesofthegrand anoni alHamiltonian: e(cid:0)(cid:12)(E(cid:11)(cid:0)(cid:22)N(cid:11)) 1 H^j(cid:9)(cid:11)i=j(cid:9)(cid:11)i(E(cid:11)(cid:0)(cid:22)N(cid:11)); p(cid:11) = P(cid:11)e(cid:0)(cid:12)(E(cid:11)(cid:0)(cid:22)N(cid:11)); (cid:12) = kBT; (1.13) whi h may be shortly expressed as (cid:0)1 (cid:0)(cid:12)H^ (cid:0)(cid:12)H^ (cid:26)^=Z e ; Z =tre : (1.14) (cid:0)(cid:12)H^ The tra e in the last expression means the tra e of the operator e , that is, the s alar multipli ation ofthe rightside ofits representationof type(1.12)toits left side. Generally, a fun tion f(A^) of an operator A^ is understood in the spe tral sense to be X f(A^)= j(cid:9)aif(a)h(cid:9)aj where A^j(cid:9)ai=j(cid:9)aia (1.15) a and the j(cid:9)ai form a omplete set. The ele trons are fermions, and their wavefun tions depend on their position ve tor ri andspinvariablesi whi hlatter anonlytakeontwovalues("and#,say). Wewill ombine them into a ompound variable Z Z X 3 xi (cid:17)(ri; si); dxi (cid:17) d ri: (1.16) si The nu lei may have half-integer or integer spin; however, as already mentioned, we need not onsider their statisti s and will suppress their spin ompletely. That means, the total wavefun tionmust be antisymmetri with respe t to ele tron permutation, but need not to have any symmetry with respe t to permutation of nu lei: (cid:9)(:::;xi;:::;xj;:::;R1;:::;RM;t)=(cid:0)(cid:9)(:::;xj;:::;xi;:::;R1;:::;RM;t): (1.17) Toa ountfortheele troni symmetry,themost onvenientwayistheuseofthema hinery of(cid:12)eld quantization. Ele tron(cid:12)eld operators ^(x) areintrodu edwhi hobeythe anoni al anti ommutation relations [ ^(x); ^(x0)℄ =[ ^y(x); ^y(x0)℄ =0; [ ^(x); ^y(x0)℄ =Æ(x(cid:0)x0)(cid:17)Æss0Æ(r(cid:0)r0): (1.18) + + + 6 With their help, a position and spin eigenstate of N ele trons is reated out of the va uum state ji as ^y(x1)(cid:1)(cid:1)(cid:1) ^y(xN)ji; (1.19) and the value of the wavefun tion of the general N-ele tron state j(cid:9)(t)i is obtained by proje tion on that position and spin eigenstate: (cid:9)(x1;:::;xN;t)=hj ^(xN)(cid:1)(cid:1)(cid:1) ^(x1)j(cid:9)(t)i: (1.20) The ele troni parts of the Hamiltonian in that (cid:12)eld quantization representationare Z (cid:18) (cid:19) 2 t^(cid:0)(cid:22)N^ = dx ^y(x) (cid:0)1  (cid:0)(cid:22) ^(x); (1.21) 2r2 Z V^ee = 12 dxdx0 ^y(x) ^y(x0)jr(cid:0)1r0j ^(x0) ^(x); (1.22) V^en =(cid:0) XM Z dx ^y(x) Zm ^(x): (1.23) jRm(cid:0)rj m=1 Thenu learpositionve torsRm oftheS hr(cid:127)odingerrepresentation(positionrepresentation) will o asionally be repla ed by general operators R^m leaving open the representation of the nu lear part of the quantum state. 1.2 Redu ed Density Matri es and Densities Inthisse tionwesuppressthenu learvariablesforthesakeofbrevityand onsiderele troni stateslike(1.20)with the nu learpositions(cid:12)xed,at valuesRm, say. Wealreadymentioned the uselessness of the N-parti le wavefun tion in its full glory. Indeed, pra ti ally all for real measurements relevant operators onsist of terms depending on a few of the parti le variablesoron simple ombinationsof them only. Typi alexamples arethe operators(1.2{ 1.4)ortheir(cid:12)eld-quantized ounterparts(1.21{1.23). Theoperators(1.4)and(1.2)arelo al P and quasi-lo al, resp., examples of a general single-parti le operator A^1 = iA1(x0i;xi): 0 0 XM Zm Ven(xi;xi)=v(ri)Æ(xi (cid:0)xi); v(r)=(cid:0) ; (1.24) jr(cid:0)Rmj m=1 0 1 0 2 Æs0isi 2Æ(ri0(cid:0)ri) t(xi;xi)=(cid:0) Æ(xi(cid:0)xi) 2 =(cid:0) 2 : (1.25) 2 ri 2 ri It is easily seen that the expe tation value of a single-parti le operator in the wavefun tion state (1.20) at time t is obtained alreadywith the help of the single-parti ledensity matrix of that state, Z 0 (cid:3) 0 n1(xjx;t)=N dx2(cid:1)(cid:1)(cid:1)dxN (cid:9)(x;x2;:::;xN;t)(cid:9) (x;x2;:::;xN;t); (1.26) as Z 0 0 0 hA1it = dxdx n1(xjx ;t)A1(x;x)=tr(n1A1): (1.27) P If n1;(cid:11) is the single parti le density matrix of the state j(cid:9)(cid:11)i, then n1 = (cid:11) p(cid:11)n1;(cid:11) is the single-parti le density matrix of the statisti al state (1.12). The expe tation value of the lo al operator V^en an even be obtained with the parti le density n1(x;t)=n1(xjx;t) (1.28) 7 only. The ele tron-ele tron intera tion operator (1.3) is a lo al example of a general two- P parti le operator A^2 =(1=2) ijA2(x0i;x0j;xi;xj): 0 0 0 0 Æ(xi(cid:0)xi)Æ(xj (cid:0)xj) Vee(xi;xj;xi;xj)= : (1.29) jri(cid:0)rjj Its expe tation value, Z 0 0 0 0 0 0 hA2it = dx1dx2dx1dx2n2(x1;x2jx1;x2;t)A2(x1;x2;x1;x2)=tr(n2A2); (1.30) isobtainedwiththehelpofthetwo-parti ledensitymatrixn2 whi hinawavefun tionstate is de(cid:12)ned as (cid:18) (cid:19)Z 0 0 N (cid:3) 0 0 n2(x1;x2jx1;x2;t)= dx3(cid:1)(cid:1)(cid:1)dxN(cid:9)(x1;x2;x3;:::;xN;t)(cid:9) (x1;x2;x3;:::;xN;t) 2 (1.31) andinastatisti alstateanalogouston1. Again,theexpe tationvalueofV^ee analreadybe obtainedwiththehelpofthetwo-parti ledensityn2(x1;x2;t)=2!n2(x1;x2jx1;x2;t)whi h is the probability to (cid:12)nd one parti le at x1 (no matter whi h one) and one parti le at x2. It is learhow these onstru tions anbe ontinued up to the N-parti ledensity matrix 0 0 nN =hx1;:::;xNj(cid:26)^(t)jx1;:::;xNi with (cid:26)^from (1.12). In (cid:12)eld quantization one has Z A^1 = dx0dx ^y(x0)A1(x0;x) ^(x); (1.32) Z A^2 = 1 dx01dx02dx1dx2 ^y(x01) ^y(x02)A2(x01;x02;x1;x2) ^(x2) ^(x1) (1.33) 2 and n1(xjx0;t)=h ^y(x0) ^(x)it (cid:17)tr((cid:26)^ ^y(x0) ^(x)); (1.34) n2(x1;x2jx01;x02;t)=h ^y(x01) ^y(x02) ^(x2) ^(x1)it (cid:17)tr((cid:26)^ ^y(x01) ^y(x02) ^(x2) ^(x1)): (1.35) It is immediately seen that (1.27) and (1.30) hold true with these expressions. In most ases the knowledge of n1 and n2 would suÆ e to determine the relevant ex- perimental quantities. These redu ed density matri es depend on a few variablesinstead of 23 the(cid:24)10 variablesonwhi hthe N-parti lewavefun tionofasoliddepends. However,the time dependen e of the redu ed density matri es annot be determined in any dire t way. Instead of a losed set of dynami al equations one (cid:12)nds himself with an open system of a quantum BBGKY hierar hystru ture. 1.3 Correlation Fun tions UptohereweusedtheS hro(cid:127)dinger pi tureofquantumtheoryinwhi hthequantumstates j(cid:9)(t)i are time-dependent and des ribe the quantum dynami s by yielding time-dependent expe tation values hAit = h(cid:9)(t)jA^j(cid:9)(t)i of time-independent operators A^. By inserting (1.11) for (cid:9)(t): hAit =h(cid:9)(t)jA^j(cid:9)(t)i=h(cid:9)0jeitH^A^e(cid:0)itH^j(cid:9)0i; (1.36) it is immediately seen that the dynami s is likewise des ribed by time-dependent operators A^(t)=eitH^A^e(cid:0)itH^ (1.37) 8 andtime-independent quantumstatesj(cid:9)0i. Thisisthe Heisenberg pi ture. (Forthesakeof ompleteness of the argument given note that it holds for any matrix element h(cid:8)jA^j(cid:9)i, not just for the expe tation value.) Thesamereasoningappliestothetimeevolutionofanexpe tationvaluewithastatisti al state (1.12): hAit =tr(cid:0)(cid:26)^(t)A^(cid:1)=tr(cid:0)e(cid:0)itH^(cid:26)^eitH^A^(cid:1)=tr(cid:0)(cid:26)^eitH^A^e(cid:0)itH^(cid:1)=tr(cid:0)(cid:26)^A^(t)(cid:1): (1.38) The time dependen e of the statisti al operator (cid:26)^follows dire tly from (1.12, 1.11). Sin e this operator des ribes a state and not an observable, its time-dependen e is reversed to (1.37)andappearsintheS hr(cid:127)odingerpi turewhile(cid:26)^istimeindependentintheHeisenberg pi ture. The transition between both pi tures is provided by the invarian e of the tra e of a produ t under y li permutations of the fa tors. From (1.37) and (1.38) it is readily seen that A is onservedif its operator A^ ommutes with H^. A more demo rati interpretation of the relations (1.36) and (1.38) is by giving the exponentiated operators an independent physi al meaning as members of a family of time- evolution operators with algebrai group property, where the operator of evolution from time t1 to time t2 is U^(t2;t1)=e(cid:0)i(t2(cid:0)t1)H^; U^(t3;t2)U^(t2;t1)=U^(t3;t1): (1.39) (Sin e the sequen e of the onventional appli ation to the right of a produ t of operators is from right to left, the `time arrow of formulas in this ontext' is also from right to left.) Then, (1.36) is ast into hAit =h(cid:9)(0)jU^(0;t)A^U^(t;0)j(cid:9)(0)i=h(cid:9)(t0)jU^(t0;t)A^U^(t;t0)j(cid:9)(t0)i; (1.40) whi h reads: The system was prepared in the quantum state (cid:9) at time t0 (or 0), evolved freely to time t when a measuring devi e A was applied, and the average result of this appli ation is obtained by rewinding the manipulated state ba k to time t0 (or 0) and proje ting it onto the initial state. Thelatterinterpretationimmediatelyallowsforthedes riptionofmoregeneralpro esses as for instan e h(cid:9)(t0)jU^(t0;t2) ^(x2)U^(t2;t1) ^y(x1)U^(t1;t0)j(cid:9)(t0)i= =h(cid:9)(t0)jU^(t0;t2) ^(x2)U^(t2;t0)U^(t0;t1) ^y(x1)U^(t1;t0)j(cid:9)(t0)i= =h(cid:9)(t0)j ^(x2t2) ^y(x1t1)j(cid:9)(t0)i: In the system prepared at time t0 an additional parti le is tried to be reated at position r1 with z-axisspin proje tion s1, at time t1, then a parti le at r2;s2 is tried to be removed at time t2, and the resulting state is rewound to time t0 where it is proje ted onto the initial state. Here, the (cid:12)eld operators are not observables (they are not Hermitian), they provide transitions with a hange in parti le number, and the square of this double-time orrelation fun tion is the probability that the system is found ba k in the initial state after the des ribed sequen e of manipulations has been performed. There are kinemati onstraintstothosetransitionsbe auseofthe(anti-)symmetryofthewavefun tion,when e the phrase `is tried to'. In most appli ations (cid:9)(t0) is assumed to be a stationarystate, and then the referen e time t0 is irrelevant. It may also be a (stationary) statisti al state, and the (cid:12)nal de(cid:12)nition of the orresponding double-time orrelation fun tion is C>(x2t2;x1t1)(cid:17)(cid:0)ih ^(x2t2) ^y(x1t1)i; t2 >t1; h(cid:1)(cid:1)(cid:1)i=h(cid:9)j(cid:1)(cid:1)(cid:1)j(cid:9)i or tr((cid:26)^(cid:1)(cid:1)(cid:1)): (1.41) 9 (The fa tor (cid:0)i is onvention for later onvenien e.) A related pro ess of interest would be, (cid:12)rst at time t1 to try to remove a parti le from r1;s1 and,atalatertimet2,totrytoaddaparti leatr2;s2,expe tingthesystemtoreturn to the (time evolved without perturbation) initial state. The probability of this pro ess is another double-time orrelation fun tion C<(x1t1;x2t2)(cid:17)ih ^y(x2t2) ^(x1t1)i; t2 >t1: (1.42) (The supers ripts > and < symbolize the dire tion of in reasing time in the arguments of C.) Note that the Heisenberg (cid:12)eld operators ^(xt)=eitH^ ^(x)e(cid:0)itH^ (1.43) 0 fordi(cid:11)erent timestandt donotanymoreobeysimpleanti ommutationrelationsas(1.18), 0 whi h still hold at equal times t=t. Comparisonwith (1.34, 1.28) immediately reveal < 0 0 < C (xt;xt)=in1(xjx;t); C (xt;xt)=in1(x;t): (1.44) Correlation fun tions of (cid:12)eld operators are generalizations of redu ed density matri es. In order to illustrate the kind of additional information ontained in double-time orre- lationfun tions,we onsideramodelofintera tion-freeele tronsinaboxofvolumeV with periodi boundary onditions, H^ =t^(cid:0)(cid:22)N^: (1.45) In the ground state, plane-waveorbitals 1 ik(cid:1)r (cid:30)k(cid:27)(r;s)= p e Æ(cid:27)s; (cid:27) =";# (1.46) V 2 1=3 2 2 are o upied for jkj(cid:20)kF =(3(cid:25) n1) , (cid:15)=k =2(cid:20)(cid:15)F =(cid:22)=kF=2. All plane-wave orbitals with arbitrary k ompatible with the boundary onditions and for both values (cid:27) form a omplete set of orbitals, hen e X X ^(x)= (cid:30)k(cid:27)(x) ^k(cid:27); ^y(x)= ^yk(cid:27)(cid:30)(cid:3)k(cid:27)(x); (1.47) k(cid:27) k(cid:27) y where the ^k(cid:27) and ^k(cid:27) are destru tion and reation operators,resp., of orbitals (cid:30)k(cid:27). > Now, C is easily al ulated from (1.41): XX > (cid:3) y C (x2t2;x1t1)=(cid:0)i (cid:30)k(cid:27)(x2)(cid:30)k0(cid:27)0(x1)h ^k(cid:27)(t2) ^k0(cid:27)0(t1)i= k(cid:27) k0(cid:27)0 (cid:0)iÆs1s2 kX>kF ik(cid:1)(r2(cid:0)r1) y = V e h ^ks1(t2) ^ks1(t1)i= k (cid:0)iÆs1s2 kX>kF ik(cid:1)(r2(cid:0)r1) it2H^ (cid:0)i(t2(cid:0)t1)H^ y (cid:0)it1H^ = V e he ^ks1e ^ks1e i= k (cid:0)iÆs1s2 kX>kF ik(cid:1)(r2(cid:0)r1) it2E0 (cid:0)i(t2(cid:0)t1)(E0+(cid:15)k(cid:0)(cid:22)) (cid:0)it1E0 = e e e e = V k = (cid:0)iÆs1s2 kX>kFeik(cid:1)(r2(cid:0)r1)(cid:0)i((cid:15)k(cid:0)(cid:22))(t2(cid:0)t1) = V k Z1 Æs1s2 X d! > ik(cid:1)(r2(cid:0)r1)(cid:0)i!(t2(cid:0)t1) = Cs1(k!)e : V 2(cid:25) k (cid:0)1 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.