Microplastics Degradation and Characterization Edited by Jacopo La Nasa Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Microplastics Degradation and Characterization Microplastics Degradation and Characterization Editor Jacopo La Nasa MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editor JacopoLaNasa DepartmentofChemistryand IndustrialChemistry UniversityofPisa Pisa Italy EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalPolymers (ISSN 2073-4360) (available at: www.mdpi.com/journal/polymers/special issues/microplastics degradation characterization). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-5266-8(Hbk) ISBN978-3-0365-5265-1(PDF) CoverimagecourtesyofJacopoLaNasa © 2022 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents Valter Castelvetro, Andrea Corti, Jacopo La Nasa, Francesca Modugno, Alessio Ceccarini andStefaniaGiannarellietal. PolymerIdentificationandSpecificAnalysis(PISA)ofMicroplasticTotalMassinSedimentsof the ProtectedMarineAreaoftheMeloriaShoals Reprintedfrom: Polymers2021,13,796,doi:10.3390/polym13050796 . . . . . . . . . . . . . . . . . 1 Sabiqah Tuan Anuar, Raad Shaher Altarawnah, Ahmad Ammarluddin Mohd Ali, Bai Qin Lee,WanMohdAfiqWanMohdKhalikandKuMohdKalkausarKuYusofetal. Utilizing Pyrolysis–Gas Chromatography/Mass Spectrometry for Monitoring and Analytical CharacterizationofMicroplasticsinPolychaeteWorms Reprintedfrom: Polymers2022,14,3054,doi:10.3390/polym14153054 . . . . . . . . . . . . . . . . 19 Solange Magalha˜es, Lu´ıs Alves, Anabela Romano, Bruno Medronho and Maria da Grac¸a Rasteiro ExtractionandCharacterizationofMicroplasticsfromPortugueseIndustrialEffluents Reprintedfrom: Polymers2022,14,2902,doi:10.3390/polym14142902 . . . . . . . . . . . . . . . . 33 Diego David Pinzon-Moreno, Isabel Rosali Maurate-Fernandez, Yury Flores-Valdeon, AntonyAlexanderNeciosup-PuicanandMarı´aVero´nicaCarranza-Oropeza Degradation of Hydrogels Based on Potassium and Sodium Polyacrylate by Ionic Interaction andItsInfluenceonWater Reprintedfrom: Polymers2022,14,2656,doi:10.3390/polym14132656 . . . . . . . . . . . . . . . . 45 LalitsudaPhutthimethakulandNutaSupakata PartialReplacementofMunicipalIncineratedBottomAshandPETPelletsasFineAggregatein CementMortars Reprintedfrom: Polymers2022,14,2597,doi:10.3390/polym14132597 . . . . . . . . . . . . . . . . 61 NguyenThaoNguyen,NguyenThiThanhNhon,HoTruongNamHai,NguyenDoanThien ChiandToThiHien Characteristics of Microplastics and Their Affiliated PAHs in Surface Water in Ho Chi Minh City,Vietnam Reprintedfrom: Polymers2022,14,2450,doi:10.3390/polym14122450 . . . . . . . . . . . . . . . . 79 Ilaria Savino, Claudia Campanale, Pasquale Trotti, Carmine Massarelli, Giuseppe Corriero andVitoFeliceUricchio Effects and Impacts of Different Oxidative Digestion Treatments on Virgin and Aged MicroplasticParticles Reprintedfrom: Polymers2022,14,1958,doi:10.3390/polym14101958 . . . . . . . . . . . . . . . . 99 Ba´rbara Abaroa-Pe´rez, Sara Ortiz-Montosa, Jose´ Joaqu´ın Herna´ndez-Brito and Daura Vega-Moreno Yellowing, Weathering and Degradation of Marine Pellets and Their Influence on the AdsorptionofChemicalPollutants Reprintedfrom: Polymers2022,14,1305,doi:10.3390/polym14071305 . . . . . . . . . . . . . . . . 121 MartinaMilolozˇa,KristinaBule,ViktorijaPrevaric´,MatijaCvetnic´,SˇimeUkic´andTomislav Bolancˇaetal. Assessment of the Influence of Size and Concentration on the Ecotoxicity of Microplastics to MicroalgaeScenedesmussp.,BacteriumPseudomonasputidaandYeastSaccharomycescerevisiae Reprintedfrom: Polymers2022,14,1246,doi:10.3390/polym14061246 . . . . . . . . . . . . . . . . 133 v Claudia Cella, Rita La Spina, Dora Mehn, Francesco Fumagalli, Giacomo Ceccone and AndreaValsesiaetal. DetectingMicro-andNanoplasticsReleasedfromFoodPackaging: ChallengesandAnalytical Strategies Reprintedfrom: Polymers2022,14,1238,doi:10.3390/polym14061238 . . . . . . . . . . . . . . . . 153 Cristina De Monte, Marina Locritani, Silvia Merlino, Lucia Ricci, Agnese Pistolesi and SimonaBronco AnInSituExperimenttoEvaluatetheAgingandDegradationPhenomenaInducedbyMarine EnvironmentConditionsonCommercialPlasticGranules Reprintedfrom: Polymers2022,14,1111,doi:10.3390/polym14061111 . . . . . . . . . . . . . . . . 167 Chun-TingLin,Ming-ChihChiuandMei-HwaKuo AMini-ReviewofStrategiesforQuantifyingAnthropogenicActivitiesinMicroplasticStudies inAquaticEnvironments Reprintedfrom: Polymers2022,14,198,doi:10.3390/polym14010198 . . . . . . . . . . . . . . . . . 193 MehmetMuratMonkulandHakkıO.O¨zhan MicroplasticContaminationinSoils: AReviewfromGeotechnicalEngineeringView Reprintedfrom: Polymers2021,13,4129,doi:10.3390/polym13234129 . . . . . . . . . . . . . . . . 211 FranjaProsenc,PiaLeban,UrsˇkaSˇuntaandMojcaBavconKralj ExtractionandIdentificationofaWideRangeofMicroplasticPolymersinSoilandCompost Reprintedfrom: Polymers2021,13,4069,doi:10.3390/polym13234069 . . . . . . . . . . . . . . . . 235 SolaChoi,MiyeonKwon,Myung-JaParkandJuheaKim AnalysisofMicroplasticsReleasedfromPlainWovenClassifiedbyYarnTypesduringWashing andDrying Reprintedfrom: Polymers2021,13,2988,doi:10.3390/polym13172988 . . . . . . . . . . . . . . . . 251 GretaBiale,JacopoLaNasa,MarcoMattonai,AndreaCorti,VirginiaVinciguerraandValter Castelvetroetal. A Systematic Study on the Degradation Products Generated from Artificially Aged Microplastics Reprintedfrom: Polymers2021,13,1997,doi:10.3390/polym13121997 . . . . . . . . . . . . . . . . 263 Valeria Caponetti, Alexandra Mavridi-Printezi, Matteo Cingolani, Enrico Rampazzo, DamianoGenoveseandLucaProdietal. ASelectiveRatiometricFluorescentProbeforNo-WashDetectionofPVCMicroplastic Reprintedfrom: Polymers2021,13,1588,doi:10.3390/polym13101588 . . . . . . . . . . . . . . . . 287 Aranza Denisse Vital-Grappin, Maria Camila Ariza-Tarazona, Valeria Montserrat Luna-Herna´ndez, Juan Francisco Villarreal-Chiu, Juan Manuel Herna´ndez-Lo´pez and CristinaSiligardietal. The Role of the Reactive Species Involved in the Photocatalytic Degradation of HDPE MicroplasticsUsingC,N-TiO Powders 2 Reprintedfrom: Polymers2021,13,999,doi:10.3390/polym13070999 . . . . . . . . . . . . . . . . . 303 LukasMiksch,LarsGutowandReinhardSaborowski pH-StatTitration: ARapidAssayforEnzymaticDegradabilityofBio-BasedPolymers Reprintedfrom: Polymers2021,13,860,doi:10.3390/polym13060860 . . . . . . . . . . . . . . . . . 321 vi Benjamin O. Asamoah, Pauliina Salmi, Jukka Ra¨ty, Kalle Ryymin, Julia Talvitie and Anna K.Karjalainenetal. Optical Monitoring of Microplastics Filtrated from Wastewater Sludge and Suspended in Ethanol Reprintedfrom: Polymers2021,13,871,doi:10.3390/polym13060871 . . . . . . . . . . . . . . . . . 335 Benjamin O. Asamoah, Emilia Uurasja¨rvi, Jukka Ra¨ty, Arto Koistinen, Matthieu Roussey andKai-ErikPeiponen Towards the Development of Portable and In Situ Optical Devices for Detection of Micro-and NanoplasticsinWater: AReviewontheCurrentStatus Reprintedfrom: Polymers2021,13,730,doi:10.3390/polym13050730 . . . . . . . . . . . . . . . . . 349 HongxiaLi,JianqunYang,FengTian,XingjiLiandShangliDong StudyontheMicrostructureofPolyetherEtherKetoneFilmsIrradiatedwith170keVProtons byGrazingIncidenceSmallAngleX-rayScattering(GISAXS)Technology Reprintedfrom: Polymers2020,12,2717,doi:10.3390/polym12112717 . . . . . . . . . . . . . . . . 377 vii polymers Article Polymer Identification and Specific Analysis (PISA) of Microplastic Total Mass in Sediments of the Protected Marine Area of the Meloria Shoals ValterCastelvetro1,2,* ,AndreaCorti1,2,JacopoLaNasa1 ,FrancescaModugno1,2,AlessioCeccarini1, StefaniaGiannarelli1 ,VirginiaVinciguerra1,2andMonicaBertoldo3,4 1 DepartmentofChemistryandIndustrialChemistry,UniversityofPisa,56124Pisa,Italy; [email protected](A.C.);[email protected](J.L.N.);[email protected](F.M.); [email protected](A.C.);[email protected](S.G.);[email protected](V.V.) 2 CISUP—CenterfortheIntegrationofScientificInstrumentsoftheUniversityofPisa,UniversityofPisa, 56124Pisa,Italy 3 DepartmentofChemical,PharmaceuticalandAgriculturalSciences,UniversityofFerrara,viaL.Borsari, 45121Ferrara,Italy;[email protected] 4 InstituteofOrganicSynthesisandPhotoreactivity,NationalResearchCouncilofItaly(ISOF-CNR), viaP.Gobetti101,40129Bologna,Italy * Correspondence:[email protected];Tel.:+39-0502219256 Abstract:Microplastics(MPs)quantificationinbenthicmarinesedimentsistypicallyperformedby time-consumingandmoderatelyaccuratemechanicalseparationandmicroscopydetection.Inthis paper,wedescribetheresultsofourinnovativePolymerIdentificationandSpecificAnalysis(PISA) Citation: Castelvetro,V.;Corti,A.; ofmicroplastictotalmass,previouslytestedoneitherlesscomplexsandybeachsedimentorless LaNasa,J.;Modugno,F.;Ceccarini, demanding(becauseofthehighMPscontent)wastewatertreatmentplantsludges,appliedtothe A.;Giannarelli,S.;Vinciguerra,V.; analysisofbenthicsedimentsfromasublittoralareanorth-westofLeghorn(Tuscany,Italy).Samples Bertoldo,M.PolymerIdentification werecollectedfromtwoshallowsitescharacterizedbycoarsedebrisinamixedseabedofPosidonia andSpecificAnalysis(PISA)of oceanica,andbyaveryfinesilty-organogenicsediment,respectively. Aftersievingat<2mmthe MicroplasticTotalMassinSediments sedimentwassequentiallyextractedwithselectiveorganicsolventsandthetwopolymerclasses oftheProtectedMarineAreaofthe polystyrene(PS)andpolyolefins(PEandPP)werequantifiedbypyrolysis-gaschromatography-mass MeloriaShoals.Polymers2021,13, spectrometry (Pyr-GC/MS). A contamination in the 8–65 ppm range by PS could be accurately 796. https://doi.org/10.3390/ detected.Acidhydrolysisontheextractedresiduetoachievetotaldepolymerizationofallnatural polym13050796 andsyntheticpolyamides,taggingofallaminatedspeciesinthehydrolysatewithafluorophore, AcademicEditor:VictorTcherdyntsev andreversed-phasehighperformanceliquidchromatography(HPLC)(RP-HPLC)analysis,allowed thequantificationwithinthe137–1523ppmrangeoftheindividualmassofcontaminatingnylon6 Received:7February2021 andnylon6,6,basedonthedetectedamountsoftherespectivemonomericamines6-aminohexanoic Accepted:2March2021 acid(AHA)andhexamethylenediamine(HMDA).Finally,alkalinehydrolysisoftheresiduefrom Published:5March2021 acidhydrolysisfollowedbyRP-HPLCanalysisofthepurifiedhydrolysateshowedcontaminationby polyethyleneterephthalate(PET)inthe12.1–2.7ppmrange,basedonthecontentofitscomonomer, Publisher’sNote:MDPIstaysneutral terephthalicacid. withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffil- Keywords:microplastics;marinesediment;pet;nylon6;nylon6,6;reversed-phaseHPLC;polyolefin; iations. polystyrene;Pyr-GC/MS;polymerdegradation Copyright: © 2021 by the authors. 1. Introduction Licensee MDPI, Basel, Switzerland. Plasticmicroparticles,commonlyreferredtoasmicroplastics(MPs),eitherderiving This article is an open access article fromtheenvironmentaldegradationoflargerplasticwasteitems[1–3]ordirectlyreleased distributed under the terms and asprimarymicroparticles(microbeads,textilemicrofibers)inwastewaters,areaclassof conditionsoftheCreativeCommons pollutantsdetectedinvirtuallyallnaturalenvironments,fromoceanstoinlandwaters[4], Attribution(CCBY)license(https:// soils and even as airborne material [5], reaching such remote areas as the Arctic and creativecommons.org/licenses/by/ 4.0/). Antarctica [6,7]. The ubiquitous presence of MPs, and likely so also of their ultimate 1 Polymers2021,13,796 products of further degradation into sub-micrometer sized particles (nanoplastics) [8], alongwithincipientevidenceoftheiradverseinteractionwithlivingorganisms[9],has stimulatedincreasingresearcheffortsaimedatunderstandingtheirtransport,distribution andfate[10–12]. Duetotheirsmallsizemicroplasticcanbeingestedbyvariousorganisms atalltrophiclevels,andincreasingscientificevidencehighlightsthepossibilityoftheir transferintoanimaltissueandupthefoodchainreachinghumans[13,14]. Themostcommonsyntheticpolymersinplasticwastearepolyolefins(polypropy- lene, PP, high density polyethylene, HDPE, and low-density polyethylene, LDPE) and polystyrene(PS),widelyusedinpackagingandsingle-usedisposableitemssuchastable- ware;polyester(mainlypolyethyleneterephthalate,PET,usedforbeveragebottles,packag- ingandasstapletextilefiber)andpolyamides(oftenreferredtoaccordingtothetradename nylons)representanadditionalsignificantfractionofMPspollution. Inthecaseofpoly- olefins,theenvironmentaldegradationprocessesaremainlyascribedtophoto-oxidation, resultinginoxygenpickupduetofreeradicalreactionswithcascadeeffectseventuallylead- ingtopolymerchainfragmentationandinsertionofoxidizedfunctionalgroups(carbonyls, carboxyl,hydroxyl,etc.)[15]. Suchchemicaltransformationsbearseveralconsequences: (i)theinitiallyhighmolecularweightisreducedandthepolymericmaterialbecomesmore brittle, promoting progressive fragmentation into increasingly smaller particles; (ii) its densityandhydrophilicityincreasealongwithsurfacepolarityandreactivity,enhancing adsorption/absorptionoflowmolecularweightorganic(includingtoxicpolycyclicaro- matichydrocarbons,PAHs,andpolychlorinatedbiphenyls,PCBs)andinorganic(heavy metals)environmentalpollutants;(iii)increasedwettabilityandspecificsurfaceareafa- cilitatebiofoulingandadhesioninorganicparticulate,alloftheabovepromotingsinking downthewatercolumnanddepositioninbothshoreandbenthicsediments[16–19]. Ithas beenestimatedthatlessthan1%ofthe5–12milliontonsperyearofplasticsenteringthe oceansstaysafloatforalongtime,theremainingfractionreachingtheseabedeitherina veryshorttime(thisisthecaseoflargeritemsofhigherdensityplasticssuchase.g.,PETor low-densitypolymerswithinorganicfillers)oroverlongerperiodsregardlessoftheinitial densitybecauseoftheabovementioneddegradationandfoulingphenomena[12,20,21]. Here we report the results of the application of our recently developed analytical protocol to the quantitative determination of the total mass content of a well-defined set of microplastics [22], hereafter Polymer Identification and Specific Analysis (PISA), in benthic marine sediments. The PISA protocol provides accurate quantitative (total massofthecontaminatingMPsinthesedimentsample,withseparatequantificationfor eachpolymertype,asspecifiedbelow)andqualitative(typeofpolymer)informationwith sensitivitiesordersofmagnitudehigherthanthoseattainablewiththegeneralmethodology mostcommonlyadoptedsofarbyresearchersworldwide. Themethodsdescribedinthe literature,basedonMPsseparationfromthesedimentbyflotationinahighdensitysaline solution(NaCl,NaI,Natungstate,etc.) followedbyquantificationandcharacterization typicallybymeansofopticalmicroscopyandmicro-spectroscopytechniques[23],may sufferfrominaccuracyduetotheunderestimationcausedbythemisseddetectionofMPs belowthemeshsizeofthefilteringdevice,andtotheoverestimationcausedbyresidual biogenicandinorganiccontaminatingmaterial. Inparticular, thePISAprotocolallows quantification of the total mass of MPs, regardless of their size and morphology, that areconstitutedbythefollowingpolymers: polyolefins,PS,PET,andthetwopolyamides nylon6(polycaprolactame,thehomopolymerofAHA)andnylon6,6(copolymerofHMDA, withadipicacid)[24]. Thesearealsothemaincommoditypolymersand,notincidentally, arealsoconsideredtobethemainmacro-andmicroplasticmarinepollutants. Although techniques similar to those comprised in the PISA protocol have been described,theydonotincludethecompletesetofrelevantpolymers;inparticular,pressur- izedsolventextraction[25]isquiteeffectiveforpolyolefinsandotherpolymerssolublein commonsolvents(mainlyPSandothervinylpolymers)butmissesPETandpolyamides thatarethemostabundantmicroplasticsfromsynthetictextilefibers,whileapreviously describeddepolymerizationofPETfollowedbyhighperformanceliquidchromatography 2 Polymers2021,13,796 (HPLC)coupledwithmassspectrometry[26]doesnotincludepolyamides. Ontheother hand,athermoanalyticalmethodbasedontheaccuratequantificationofthetotalcarbon contentfromsyntheticpolymersrecentlyproposedbyJ.Linetal.[27],besideslosingthe informationonsizeandshapeasinthePISAprotocol,doesnotallowspecificationofthe typeofpolymericmaterialsinthecontaminatingMPsandonlyprovidesanestimation ofthetotalamountofmicroplasticsduetothedifferentfractionalcarboncontentineach polymertype. Thebenthicsedimentsamplesanalyzedinthepresentworkwerecollectedintwo close locations of the sublittoral southern Ligurian Sea close to the harbor of Leghorn andtheestuaryoftheArnoriver,Italy,andinparticularwithintheshoalsoftheMeloria protectedmarineareaandinnearbyshallowcoastalwaters,respectively. Thesediments weresievedat2mmmeshandthensubmittedtoasequenceoffractionalsolventextrac- tionswithrefluxingdichloromethane(DCM)andxylene(Xy)asselectivesolventsforPS andpolyolefins,respectively[28],followedbysequentialhydrolyticdepolymerizationof polyamides,underacidicconditions,andofPET,underalkalineconditions. Althoughthe extractedpolyolefinsandPSarequantifiedbygravimetryandpyrolysis-GC/MS,thetotal contentofnylon6,nylon6,6,andPETarecalculatedfromthequantitativeanalysis,by reversed-phaseHPLC,oftheirrespectivemonomers: thetwoaminesAHAandHMDA aftertaggingwithafluorophore[29],andterephthalicacid(TPA)[30]. Differentlyfromthe previouslyreportedexamplesinwhichthisprocedure(orpartofit)hadbeentestedon lesscomplexsandybeachsedimentorlessdemanding(becauseofthehighMPscontent) wastewatertreatmentplantsludges,thisisthefirstreportonthePISAprocedureforthe detectionandquantificationofMPsinbenthicsediments. 2. MaterialsandMethods 2.1. SedimentSampling Benthic(bottom)marinesedimentsampleswerecollectedinfoursitesofrelatively shallowwatersofthecontinentalshelfintheLigurianSeaalongthenortherncoastline of Tuscany, Italy (Table 1). The sampling was performed on 3 July 2018, using a single corer10cmindiameter. Aftercollection,thetop~5cmofthesedimentwasplacedinglass flaskswithmetallidandthenair-driedinalaminarflowhoodinthelabandstoredin ◦ afridgeat2 C.Thesubsequentanalyseswereperformedinsecondhalfof2020. Care wastakenastoavoidcontaminationfromairborneandotherenvironmentalMPs;forthis purpose,allglasswarewasrinsedwiththegivensolvent(previouslyfilteredon0.45μm poresizemembrane)priortouse; allopensurfacesofsolutionsandsolidsamplesand extractswerekeptcoveredwithaluminumfoilsthroughoutthevariousmanipulations exceptduringtheactualoperationsandtransfer;personalprotectiveequipmentincluded cottonprotectivecoats. Table1.Sampleacronymsandrelevantsamplingsitescoordinatesanddepth. Depth Sample Acronym Geolocalization (m) ◦ (cid:3) 43 3250.0”N 43.547219lat. Meloria1 MEL1 ◦ (cid:3) 3 10 1308.2”E 10.218944lon. ◦ (cid:3) 43 331,02”N 43.5502778lat. Meloria2 MEL2 ◦ (cid:3) 4 10 134,03”E 10.2177778lon. ◦ (cid:3) 43 355,21”N 43.5847778lat. Calambrone1 CAL1 ◦ (cid:3) 20 10 172,34”E 10.2839722lon. ◦ (cid:3) 43 369,67”N 43.6026944lat. Tirrenia-Calambrone2 CAL2 ◦ (cid:3) 17 10 167,80”E 10.2688333lon. 3