ebook img

Micromechanics of Materials, with Applications PDF

723 Pages·2018·19.547 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Micromechanics of Materials, with Applications

Solid Mechanics and Its Applications Mark Kachanov Igor Sevostianov Micromechanics of Materials, with Applications Solid Mechanics and Its Applications Volume 249 Series editors J. R. Barber, Ann Arbor, USA Anders Klarbring, Linköping, Sweden Founding editor G. M. L. Gladwell, Waterloo, ON, Canada Aims and Scope of the Series Thefundamentalquestionsarisinginmechanicsare:Why?,How?,andHowmuch? The aim of this series is to provide lucid accounts written by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. Themedianlevelofpresentationistothefirstyeargraduatestudent.Sometexts aremonographs defining thecurrentstateofthe field; othersareaccessibletofinal year undergraduates; but essentially the emphasis is on readability and clarity. More information about this series at http://www.springer.com/series/6557 Mark Kachanov Igor Sevostianov (cid:129) Micromechanics of Materials, with Applications 123 Mark Kachanov Igor Sevostianov Department ofMechanical Engineering Department ofMechanical andAerospace TuftsUniversity Engineering Medford, MA NewMexico State University USA LasCruces, NM USA ISSN 0925-0042 ISSN 2214-7764 (electronic) Solid MechanicsandIts Applications ISBN978-3-319-76203-6 ISBN978-3-319-76204-3 (eBook) https://doi.org/10.1007/978-3-319-76204-3 LibraryofCongressControlNumber:2018933462 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Amodelshouldbeassimpleaspossiblebutnotsimpler. AlbertEinstein Micromechanics studies materials that are heterogeneous at microscale. They can be both man-made (composites, metals, concrete, and foams) and naturally occurring(crackedorporous rocks, bone, andice). Thegoal ofmicromechanicsis to relate the physical behavior of such materials—in particular, their overall (effective) properties—to the microstructure (geometric arrangement of the con- stituents and their properties). Developmentsinmicromechanicswerestarted byleadingscientists ofthetime, such as Maxwell (in the context of effective conductivity of heterogeneous mate- rials)andEinstein(theviscosityofsuspensions).Inthecontextofsolidmechanics, developments started in 1950s–1960s, in particular, in works of Hill and Eshelby. Amicromechanicshasnowgrownintoalargefield;withanumberofmonographs and reviews published. We mention in particular the following books and collec- tions of reviews: Christensen (1979), Mura (1987), Suquet (1997) Nemat-Nasser and Hori (1999), Markov and Prziosi (2000), Torquato (2002), Milton (2004), Dormieux, Condo, and Ulm (2006), Qu and Cherkaoui (2006), Kanaun and Levin (2008), Böhm (2010), Dvorak (2013), Kushch (2013), and Kachanov and Sevostianov (2013). The developments appear to have been pursued by two different communities resulting in two large branches of micromechanics: (cid:129) Solid mechanics. Fundamental results on inhomogeneity problems, bounding the effective properties, the mechanics of interactions have been obtained. Substantial limitations, however, hinder their applications to materials science; among them, geometries of inhomogeneities are too idealized (mostly, ellip- soids); bounds are too wide and apply mostly to the isotropic materials; (cid:129) Materials science. Applications to specific materials involve “irregular” microstructures (inhomogeneity shapes do not resemble ellipsoids); the very problem of their quantitative characterization is challenging. At the same time, v vi Preface sufficiently simple relations that reflect specifics of the microstructure are nee- ded. This has given rise to various empirical relations, their range of applica- bility not always being clear. The present book addresses this “weak link” and aims at narrowing the gap between the two communities to the extent possible. It covers recent results on quantitative modeling of “irregular” microstructures. Chapters 2–6 give a thorough presentation of the theoretical fundamentals supplemented, to some extent, by numerical studies. We note, to this end, that computational studies play useful role in micromechanics: they allow direct veri- fication of various theoretical models. They cannot, however, fully replace theo- retical models: without them, predictions for those microstructures that have not been examined computationally are not fully clear. Chapter 7—the largest in the book—is devoted to applications of microme- chanics to specific materials having complex microstructures (sprayed coatings, bone, geomaterials, composites, foams, and ceramics). It demonstrates the possi- bilities offered by micromechanics and, in particular, by some of the recent advances. The book is aimed at broad audience that includes the materials science com- munity. The presentation is kept as simple as possible. A reader is expected to be familiar with basics of continuum mechanics; a summary of background results is given in Chap. 1. Medford, USA Mark Kachanov Las Cruces, USA Igor Sevostianov Contents 1 Background Results on Elasticity and Conductivity . . . . . . . . . . . . . 1 1.1 Basic Equations of Linear Elasticity. Elastic Symmetries. . . . . . . 1 1.2 Energy Principles of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Virtual Changes of State. . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 The Principle of Virtual Displacements . . . . . . . . . . . . . 11 1.2.3 The Principle of Virtual Forces. . . . . . . . . . . . . . . . . . . 12 1.2.4 The Principle of Stationarity of Potential Energy of an Elastic Solid . . . . . . . . . . . . . . . . . . . . . . 13 1.2.5 The Principle of Stationarity of Complementary Energy of an Elastic Solid . . . . . . . . . . . . . . . . . . . . . . 15 1.3 Approximate Symmetries of the Elastic Properties . . . . . . . . . . . 16 1.4 A Summary of Algebra of Fourth-Rank Tensors. . . . . . . . . . . . . 22 1.4.1 Isotropic Fourth-Rank Tensors . . . . . . . . . . . . . . . . . . . 24 1.4.2 Anisotropic Fourth-Rank Tensors . . . . . . . . . . . . . . . . . 25 1.4.3 Transversely Isotropic Tensors . . . . . . . . . . . . . . . . . . . 26 1.4.4 Averaging of Tensors nn and nnnn Over Orientations in Simplest Cases of Orientation Distribution. . . . . . . . . 28 1.4.5 Orthotropic Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5 Thermal and Electric Conductivity: Fourier and Ohm’s Laws . . . 32 1.6 Green’s Tensors in Elasticity and Conductivity and Their Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.6.1 General Representation of Green’s Tensor in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.6.2 Isotropic Elastic Material . . . . . . . . . . . . . . . . . . . . . . . 37 1.6.3 Transversely Isotropic Elastic Material . . . . . . . . . . . . . 38 1.6.4 Green’s Tensor for a Monoclinic Material, in the Plane of Elastic Symmetry and in the Direction Normal to It. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.6.5 Cubic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 1.6.6 Two-Dimensional Anisotropic Elastic Material. . . . . . . . 52 1.6.7 Derivatives of Green’s Tensor. . . . . . . . . . . . . . . . . . . . 56 1.6.8 Green’s Function in the Conductivity Problem. . . . . . . . 58 1.7 Dipoles, Moments, and Multipole Expansions in Elasticity and Conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1.7.1 System of Forces Distributed in Small Volume . . . . . . . 61 1.7.2 Dipole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.7.3 Center of Dilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1.7.4 Force Couple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1.7.5 Center of Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.7.6 Multipole Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 66 1.8 Stress Intensity Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 1.9 General Thermodynamics Framework for Transition from Microscale to Macroscopic Constitutive Equations (Rice’s Formalism) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1.10 MathematicalAnalogiesBetweenElastostaticsandSteady-State Heat Flux. Conductivity Analogues of Stress Intensity Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 1.11 Discontinuities of the Elastic and Thermal Fields at Interfaces of Two Different Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 1.11.1 Stress Discontinuities in the Elasticity Problem . . . . . . . 83 1.11.2 Flux Discontinuities in the Conductivity Problem. . . . . . 86 2 Quantitative Characterization of Microstructures in the Context of Effective Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.1 Representative Volume Element (RVE) and Related Issues. . . . . 90 2.1.1 Hill’s Condition. Homogeneous Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.1.2 Averages Over Volume and Their Relation to Quantities Accessible on Its Boundary. . . . . . . . . . . . . . 93 2.1.3 Volumes Smaller than RVE . . . . . . . . . . . . . . . . . . . . . 98 2.2 The Concept of Proper Microstructural Parameters . . . . . . . . . . . 103 2.3 The Simplest Microstructural Parameters and Their Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2.4 Microstructural Parameters Are Rooted in the Non-interaction Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.5 Property Contribution Tensors of Inhomogeneities . . . . . . . . . . . 110 2.6 Hill’s Comparison (Modification) Theorem and Its Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.7 Microstructural Parameters Are Different for Different Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 2.8 Benefits of Identifying the Proper Microstructural Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Contents ix 2.9 On the “Fabric” Tensor Approach . . . . . . . . . . . . . . . . . . . . . . . 121 2.10 Summary on Microstructural Characterization. . . . . . . . . . . . . . . 125 3 Inclusion and Inhomogeneity in an Infinite Space (Eshelby Problems). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.1 The First and the Second Eshelby Problems. . . . . . . . . . . . . . . . 127 3.1.1 The Eigenstrain Problem (The First Eshelby Problem). . . . . . . . . . . . . . . . . . . . . 128 3.1.2 The Inhomogeneity Problem (The Second Eshelby Problem). . . . . . . . . . . . . . . . . . . 133 3.1.3 Eshelby Theorem for the Ellipsoidal Domain. . . . . . . . . 134 3.1.4 Extension of the Eshelby Theorem to Nonlinear Ellipsoidal Inhomogeneities . . . . . . . . . . . . . . . . . . . . . 138 3.2 Elastic Fields Outside Inhomogeneities and Inclusions . . . . . . . . 141 3.2.1 Stress Concentrations at Boundary of an Inhomogeneity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.2.2 External Fields in the Inclusion (Eigenstrain) Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.2.3 Connection Between Inclusion- and Inhomogeneity- Generated Elastic Fields . . . . . . . . . . . . . . . . . . . . . . . . 145 3.2.4 Far-Field Asymptotics of Elastic Fields of Inhomogeneities and Its Relation to the Effective Elastic Properties. The Multipole Expansion . . . . . . . . . 146 3.2.5 Shape Dependence of the Far-Field: Inhomogeneity VersusInclusion.Far-FieldofanInclusionofArbitrary Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3.3 Ellipsoidal Inhomogeneities and Inclusions in the Isotropic Matrix: Special Cases of Ellipsoid Geometry . . . . . . . . . . . . . . . 155 3.4 Spheroidal Inhomogeneity Embedded in a Transversely Isotropic Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3.5 Non-ellipsoidal Inclusion in Isotropic Material (First Eshelby Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.5.1 Eshelby Tensor for a Cuboid (Rectangular Parallelepiped) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.5.2 Eshelby Tensor for Polyhedra. . . . . . . . . . . . . . . . . . . . 173 3.5.3 Eshelby Tensor for a Supersphere. . . . . . . . . . . . . . . . . 174 3.5.4 Eshelby Tensor for a Torus. . . . . . . . . . . . . . . . . . . . . . 176 3.6 Eshelby Problem for Conductivity . . . . . . . . . . . . . . . . . . . . . . . 178 3.6.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . 179 3.6.2 Ellipsoidal Inhomogeneity . . . . . . . . . . . . . . . . . . . . . . 181 3.6.3 Ellipsoidal Inhomogeneity in an Isotropic Matrix. . . . . . 182 3.6.4 Ellipsoidal Inhomogeneity Arbitrarily Oriented in an Orthotropic Matrix. . . . . . . . . . . . . . . . . . . . . . . . 183

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.