ebook img

Microlocal Analysis, Sharp Spectral Asymptotics and Applications V: Applications to Quantum Theory and Miscellaneous Problems PDF

761 Pages·2019·7.963 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microlocal Analysis, Sharp Spectral Asymptotics and Applications V: Applications to Quantum Theory and Miscellaneous Problems

Victor Ivrii Microlocal Analysis, Sharp Spectral Asymptotics and Applications V Applications to Quantum Theory and Miscellaneous Problems Microlocal Analysis, Sharp Spectral Asymptotics and Applications V Victor Ivrii Microlocal Analysis, Sharp Spectral Asymptotics and Applications V Applications to Quantum Theory and Miscellaneous Problems 123 Victor Ivrii Department ofMathematics University of Toronto Toronto, ON,Canada ISBN978-3-030-30560-4 ISBN978-3-030-30561-1 (eBook) https://doi.org/10.1007/978-3-030-30561-1 MathematicsSubjectClassification(2010): 35P20,35S05,35S30,81V70 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The Problem of the Spectral Asymptotics, in particular the problem of the Asymptotic Distribution of the Eigenvalues, is one of the central problems in the Spectral Theory of Partial Differential Operators; moreover, it is very important for the General Theory of Partial Differential Operators. I started working in this domain in 1979 after R. Seeley [1] justified a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested me to try to prove Weyl’s conjecture. During the past almost 40 years I have not left the topic, although I had such intentions in 1985, when the methods I invented seemed to fail to provide the further progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new much wider horizons opened. So I can say that this book is the result of 40 years of work in the Theory of Spectral Asymptotics and related domains of Microlocal Analysis and Mathematical Physics (I started analysis of Propagation of singularities (which plays the crucial role in my approach to the spectral asymptotics) in 1975). This monograph consists of five volumes. This Volume II concludes the general theory. It consists of two parts. In the first one we develop methods of combining local asymptotics derived in Volume I, with estimates of the eigenvalue counting functions in the small domains (singular zone) derived by methods of functional analysis. In the second part we derive eigenvalue asymptotics which either follow directly from the general theory, or require applications of the developed methods (if the operator has singularities or degenerations, strong enough to affect the asymptotics). Victor Ivrii, Toronto, June 10, 2019. V Contents Preface V Introduction XX Part XI. Asymptotics of the Ground State Energy of Heavy Atoms and Molecules . . . . . XX Part XII. Articles . . . . . . . . . . . . . . . . . . XXIV XI Application to Multiparticle Quantum The- ory 1 25 No Magnetic Field Case 2 25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 25.1.1 Framework . . . . . . . . . . . . . . . . . . . . . 2 25.1.2 Problems to Consider . . . . . . . . . . . . . . . . 4 25.1.3 Thomas-Fermi Theory . . . . . . . . . . . . . . . 5 25.1.4 Main Results Sketched and Plan of the Chapter . 7 25.2 Reduction to Semiclassical Theory. . . . . . . . . . . . . 8 25.2.1 Lower Estimate . . . . . . . . . . . . . . . . . . . 9 25.2.2 Upper Estimate . . . . . . . . . . . . . . . . . . . 12 25.2.3 Remarks and Dirac Correction . . . . . . . . . . . 14 25.3 Thomas-Fermi Theory . . . . . . . . . . . . . . . . . . . 15 25.3.1 Existence . . . . . . . . . . . . . . . . . . . . . . 16 25.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . 18 25.4 Application of Semiclassical Methods . . . . . . . . . . . 23 25.4.1 Asymptotics of the Trace . . . . . . . . . . . . . . 23 25.4.2 Upper Estimate for E . . . . . . . . . . . . . . . . 26 Estimating |𝜆 −𝜈| . . . . . . . . . . . . . . . . 26 N VI CONTENTS VII Estimating D-Term . . . . . . . . . . . . . . . . . 29 Finally, a tTheorem . . . . . . . . . . . . . . . . . 31 25.4.3 Improved Asymptotics . . . . . . . . . . . . . . . 32 25.4.4 Corollaries and Discussion . . . . . . . . . . . . . 35 Estimates for D(𝜌 −𝜌𝖳𝖥,𝜌 −𝜌𝖳𝖥) . . . . . . . 35 𝝭 𝝭 Estimates for Distance between Nuclei in the Free Nuclei Model . . . . . . . . . . . . . . . 36 25.5 Negatively Charged sSystems . . . . . . . . . . . . . . . 38 25.5.1 Estimates of the Correlation Function . . . . . . . 38 25.5.2 Excessive Negative Charge . . . . . . . . . . . . . 43 25.5.3 Estimate for Ionization Energy . . . . . . . . . . 47 25.6 Positively Charged sSystems . . . . . . . . . . . . . . . . 48 25.6.1 Estimate from above for Ionization Energy . . . . 48 25.6.2 Estimate from below for Ionization Energy . . . . 51 25.6.3 Estimate for Excessive Positive Charge . . . . . . 60 25.AAppendices . . . . . . . . . . . . . . . . . . . . . . . . . 64 25.A.1 Electrostatic Inequalities . . . . . . . . . . . . . . 64 25.A.2 Hamiltonian Trajectories . . . . . . . . . . . . . . 65 25.A.3 Some Spectral Function Estimates. . . . . . . . . 66 26 The Case of External Magnetic Field 68 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 68 26.1.1 Framework . . . . . . . . . . . . . . . . . . . . . 68 26.1.2 Problems to Consider . . . . . . . . . . . . . . . . 69 26.1.3 Magnetic Thomas-Fermi Theory . . . . . . . . . . 71 26.1.4 Main Results Sketched and Plan of the Chapter . 72 26.2 Magnetic Thomas-Fermi Theory . . . . . . . . . . . . . . 74 26.2.1 Framework and Existence . . . . . . . . . . . . . 74 26.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . 76 26.2.3 Positive Ions . . . . . . . . . . . . . . . . . . . . . 82 26.3 Applying Semiclassical Methods: M =1 . . . . . . . . . 85 26.3.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . 85 Total Charge . . . . . . . . . . . . . . . . . . . . 86 Semiclassical D-Term . . . . . . . . . . . . . . . . 88 |𝜆 −𝜈| and Another D-Term . . . . . . . . . . . 90 N Trace . . . . . . . . . . . . . . . . . . . . . . . . . 91 Discussion . . . . . . . . . . . . . . . . . . . . . . 92 26.3.2 Smooth Approximation . . . . . . . . . . . . . . . 93 VIII CONTENTS Trivial Arguments . . . . . . . . . . . . . . . . . 93 Formal Expansion . . . . . . . . . . . . . . . . . . 96 Expansion: Justification . . . . . . . . . . . . . . 98 26.3.3 Rough Approximation . . . . . . . . . . . . . . . 100 Properties of Mollification . . . . . . . . . . . . . 100 Charge Term . . . . . . . . . . . . . . . . . . . . 102 Trace Term . . . . . . . . . . . . . . . . . . . . . 105 Semiclassical D-Term: Local Theory . . . . . . . 108 Semiclassical D-Term: Global Theory . . . . . . . 111 26.4 Applying Semiclassical Methods: M ≥2 . . . . . . . . . 113 26.4.1 Scaling Functions in Zone 𝒳 . . . . . . . . . . . 113 𝟤 26.4.2 Zone 𝒳 : Semiclassical N-Term . . . . . . . . . . 118 𝟤 26.4.3 Zone 𝒳 : Semiclassical D-Term . . . . . . . . . . 122 𝟤 26.4.4 Semiclassical T-Term . . . . . . . . . . . . . . . . 125 Semiclassical T-Term: Zone 𝒳 Extended . . . . . 125 𝟣 Semiclassical T-Term: Zone 𝒳 . . . . . . . . . . 127 𝟤 26.4.5 Zone 𝒳 . . . . . . . . . . . . . . . . . . . . . . . 131 𝟥 26.5 Semiclassical Analysis in the Boundary Strip for M ≥2 . 131 26.5.1 Properties of W𝖳𝖥 if N =Z . . . . . . . . . . . . 132 B 26.5.2 Analysis in the Boundary Strip 𝒴 for N ≥Z . . . 137 26.5.3 Analysis in the Boundary Strip 𝒴 for N <Z . . . 140 𝟦 Case B ≥(Z −N)𝟥 . . . . . . . . . . . . . . . . . 140 + 𝟦 Case B ≤(Z −N)𝟥 . . . . . . . . . . . . . . . . . 145 + 26.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . 146 26.6 Ground State Energy . . . . . . . . . . . . . . . . . . . . 147 26.6.1 Lower Estimates . . . . . . . . . . . . . . . . . . 147 26.6.2 Upper Estimate: General Scheme . . . . . . . . . 149 26.6.3 Upper Estimate as M =1 . . . . . . . . . . . . . 149 Estimate for |𝜆 −𝜈| . . . . . . . . . . . . . . . . 149 N Estimate for D-Terms . . . . . . . . . . . . . . . . 151 Summary . . . . . . . . . . . . . . . . . . . . . . 152 26.6.4 Upper Estimate as M ≥2 . . . . . . . . . . . . . 153 Estimate for |𝜆 −𝜈| . . . . . . . . . . . . . . . . 153 N Estimate for D-Terms for Almost Neutral Systems 156 EstimateforD-TermsforPositivelyChargedSystems 158 Summary . . . . . . . . . . . . . . . . . . . . . . 163 26.7 Negatively Charged Systems . . . . . . . . . . . . . . . . 164 CONTENTS IX 26.7.1 Estimates of the Correlation Function . . . . . . . 165 26.7.2 Excessive Negative Charge . . . . . . . . . . . . . 166 26.7.3 Estimate for Ionization Energy . . . . . . . . . . 171 26.8 Positively Charged Systems . . . . . . . . . . . . . . . . 177 26.8.1 Upper Estimate for Ionization Energy: M =1 . . 177 26.8.2 Lower Estimate for Ionization Energy: M =1 . . 182 26.8.3 Estimates for Ionization Energy: M ≥2 . . . . . 191 26.8.4 Free Nuclei Model . . . . . . . . . . . . . . . . . 192 Preliminary Arguments . . . . . . . . . . . . . . . 192 Minimal Distance . . . . . . . . . . . . . . . . . . 193 Estimate of Excessive Positive Charge . . . . . . 196 Estimate for Excessive Negative Charge and Ioniza- tion Energy . . . . . . . . . . . . . . . . 198 26.AAppendices . . . . . . . . . . . . . . . . . . . . . . . . . 198 26.A.1 Electrostatic Inequalities . . . . . . . . . . . . . . 198 26.A.2 Very Strong Magnetic Field Case . . . . . . . . . 203 26.A.3 Riemann Sums and Integrals . . . . . . . . . . . . 204 26.A.4 Some Spectral Function Estimates. . . . . . . . . 205 26.A.5 Zhislin’s Theorem for Constant Magnetic Field. . 206 27 The Case of Self-Generated Magnetic Field 208 27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 208 27.2 Local Semiclassical Trace Asymptotics . . . . . . . . . . 210 27.2.1 Toy-Model . . . . . . . . . . . . . . . . . . . . . . 210 Statement of the Problem . . . . . . . . . . . . . 210 Preliminary Analysis . . . . . . . . . . . . . . . . 211 Estimates . . . . . . . . . . . . . . . . . . . . . . 214 27.2.2 Microlocal Analysis Unleashed . . . . . . . . . . . 217 Sharp Estimates . . . . . . . . . . . . . . . . . . 217 Application . . . . . . . . . . . . . . . . . . . . . 222 Classical Dynamics and Sharper Estimates . . . . 225 27.2.3 Local Theory . . . . . . . . . . . . . . . . . . . . 228 Localization and Estimate from above . . . . . . 228 Estimate from below . . . . . . . . . . . . . . . . 231 27.2.4 Rescaling . . . . . . . . . . . . . . . . . . . . . . 233 Case 𝜅≤1 . . . . . . . . . . . . . . . . . . . . . 234 Case 1≤𝜅≤h−𝟣 . . . . . . . . . . . . . . . . . . 236 X CONTENTS 27.3 Global Trace Asymptotics in the Case of Coulomb-Like Singularities . . . . . . . . . . . . . . . . . . . . . . . . . 238 27.3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . 238 27.3.2 Estimates to a Minimizer . . . . . . . . . . . . . . 239 Preliminary Analysis . . . . . . . . . . . . . . . . 239 Estimates to a Minimizer. I . . . . . . . . . . . . 241 Estimates to a Minimizer. II . . . . . . . . . . . . 244 Estimates to a Minimizer. III . . . . . . . . . . . 246 27.3.3 Basic Trace Estimates . . . . . . . . . . . . . . . 248 27.3.4 Improved Trace Estimates . . . . . . . . . . . . . 251 Improved Tauberian Estimates . . . . . . . . . . 251 Improved Weyl eEstimates . . . . . . . . . . . . . 253 27.3.5 Single Singularity . . . . . . . . . . . . . . . . . . 255 Coulomb Potential . . . . . . . . . . . . . . . . . 255 Main Theorem . . . . . . . . . . . . . . . . . . . 260 27.3.6 Several Singularities . . . . . . . . . . . . . . . . 261 Decoupling of Singularities . . . . . . . . . . . . . 261 Main Results . . . . . . . . . . . . . . . . . . . . 264 Problems and Remarks . . . . . . . . . . . . . . . 265 27.4 Asymptotics of the Ground State Energy . . . . . . . . . 265 27.4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . 265 27.4.2 Lower Estimate . . . . . . . . . . . . . . . . . . . 267 27.4.3 Upper Estimate . . . . . . . . . . . . . . . . . . . 270 27.4.4 Main Theorems . . . . . . . . . . . . . . . . . . . 272 27.4.5 Free Nuclei Model . . . . . . . . . . . . . . . . . 274 27.5 Miscellaneous Problems. . . . . . . . . . . . . . . . . . . 276 27.5.1 Excessive Negative Charge . . . . . . . . . . . . . 276 27.5.2 Estimates for iIonization Energy . . . . . . . . . . 277 27.5.3 Free Nuclei Model: Excessive Positive Charge . . 278 27.AAppendices . . . . . . . . . . . . . . . . . . . . . . . . . 279 27.A.1 Minimizers and Ground States . . . . . . . . . . . 279 27.A.2 Zhislin’s Theorem . . . . . . . . . . . . . . . . . . 280 27.A.3 L. Erdo¨s–J. P. Solovej’s Lemma . . . . . . . . . . 280 28 The Case of Combined Magnetic Field 284 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 284 28.1.1 Plan of the Chapter. . . . . . . . . . . . . . . . . 285 28.1.2 Unfinished Business . . . . . . . . . . . . . . . . . 285

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.