ebook img

Microlensing variability in the gravitationally lensed quasar Q2237+0305 = the Einstein Cross, I. Spectrophotometric monitoring with the VLT PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microlensing variability in the gravitationally lensed quasar Q2237+0305 = the Einstein Cross, I. Spectrophotometric monitoring with the VLT

Astronomy&Astrophysicsmanuscriptno.8703 (cid:13)c ESO2008 February1,2008 Microlensing variability in the gravitationally lensed quasar + ≡ ⋆ QSO 2237 0305 the Einstein Cross 8 0 0 I. Spectrophotometric monitoring with the VLT 2 n a A.Eigenbrod1,F.Courbin1,D.Sluse1,G.Meylan1,andE.Agol2 J 2 2 1 Laboratoired’Astrophysique,EcolePolytechniqueFe´de´raledeLausanne(EPFL),ObservatoiredeSauverny,1290Versoix,Switzerland 2 AstronomyDepartment,UniversityofWashington,Box351580,Seattle,WA98195,USA ] h Received...;accepted... p - o ABSTRACT r t s Wepresenttheresultsofthefirstlong-term(2.2years)spectroscopicmonitoringofagravitationallylensedquasar,namelytheEinsteinCross a QSO2237+0305. Thegoalofthispaperistopresenttheobservational factstobecomparedinfollow-uppaperswiththeoreticalmodelsto [ constraintheinnerstructureofthesourcequasar. 3 Wespatiallydeconvolve deepVLT/FORS1spectratoaccuratelyseparatethespectrumof thelensinggalaxy fromthespectraofthequasar v images.Accuratecross-calibrationofthe58observationsat31-epochfromOctober2004toDecember2006iscarriedoutwithnon-variable 8 foregroundstarsobservedsimultaneouslywiththequasar.Thequasarspectraarefurtherdecomposedintoacontinuumcomponentandseveral 2 broademissionlinestoinferthevariationsofthesespectralcomponents. 8 Wefindprominent microlensing eventsinthequasar imagesA andB,whileimagesCand Darealmost quiescent onatimescaleofafew 2 months. Thestrongest variationsareobserved inthecontinuum of imageA.Their amplitudeislargerintheblue(0.7mag) thaninthered . 9 (0.5mag),consistentwithmicrolensingofanaccretiondisk.Variationsintheintensityandprofileofthebroademissionlinesarealsoreported, 0 most prominently in the wings of the CIII] and center of the CIV emission lines. During a strong microlensing episode observed in June 7 2006inquasar imageA,thebroadcomponent oftheCIII]ismorehighlymagnifiedthanthenarrow component. Inaddition, theemission 0 lineswithhigherionizationpotentialsaremoremagnifiedthanthelineswithlowerionizationpotentials,consistentwiththeresultsobtained : v withreverberation mapping. Finally, wefind that the V-band differential extinction by the lens, between the quasar images, is inthe range i 0.1−0.3mag. X r Keywords.Gravitationallensing:quasar,microlensing—Quasars:general.Quasars:individualQSO2237+0305,EinsteinCross a 1. Introduction laysbetweenthe fourquasarimagesare ofthe orderof a day (Rixetal.1992,Wambsganss&Paczyn´ski1994),meaningthat The gravitational lens QSO 2237+0305, also known as intrinsic variability of the quasar can easily be distinguished “Huchra’s lens” or the “Einstein Cross”, was discovered by from microlensing events. In addition, the particularly small Huchra et al. (1985) during the Center for Astrophysics redshift of the lensing galaxy implies large tangential veloci- Redshift Survey. It consists of a z = 1.695 quasar gravita- s ties for the microlenses. Furthermorethe quasar images form tionallylensedintofourimagesarrangedinacrosslikepattern right in the bulge of the lens where the stellar density is the aroundthenucleusofaz =0.0394barredSabgalaxy.Theav- l highest.Thecombinationofthesepropertiesmakesmicrolens- erageprojecteddistance of the imagesfromthe lens centeris ingeventsverylikelyintheEinsteinCrossandveryrapid,with 0.9′′. timescalesofafewweekstoafewmonths.Indeed,Irwinetal. A few years after this discovery, Schneider et al. (1988) (1989)reportedsignificantbrightnessvariationsofthebright- andKent&Falco(1988)computedthefirstsimplemodelsof estquasarimageA,whichtheyinterpretedasthefirstdetection thesystem,leadingtotheconclusionthatthissystemwasvery everofmicrolensingintheimagesofamultiply-imagedquasar. promisingtostudymicrolensing.Indeed,thepredictedtimede- Sincethen,microlensingeventshavebeenobservedinsev- ⋆ Based on observations made withthe ESO-VLTUnit Telescope eral other gravitationally lensed quasars, and are expected to # 2 Kueyen (Cerro Paranal, Chile; Proposals 073.B-0243(A&B), occur in virtually any quadruply lensed quasar (Witt et al. 074.B-0270(A),075.B-0350(A),076.B-0197(A),177.B-0615(A&B), 1995). Probably the most compelling examplesof microlens- PI:F.Courbin). inglightcurvesaregivenbytheOpticalGravitationalLensing 2 A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross Experiment (OGLE) (Woz´niak et al. 2000a, Udalski et al. coupled with quasar models and will be the subject of future 2006). Started in 1997, this project monitors regularly the papers. four quasar images of QSO 2237+0305, showing continuous microlensing-inducedvariationsinthelightcurves. Mostofthequasarmicrolensingstudiessofararebasedex- clusivelyonbroad-bandphotometricmonitoring(e.g.Woz´niak et al. 2000b; Schechter et al. 2003; Colley & Schild 2003). These observations, even though dominated by variations of the continuum,make itverydifficultto disentanglevariations in the continuum from variations in the broad emission lines (BELs). Both types of regions are affected by microlensing, butindifferentwaysdependingontheirsize. Microlensingofanextendedsourcecanoccurwhenitssize is smaller than or comparableto the Einstein radius of a star, i.e.oftheorderof1017cmor10−1pcinthecaseoftheEinstein Cross(Nemiroff1988;Schneider&Wambsganss1990).From reverberationmapping,the broadline region(BLR) was long estimated to be larger than this, of the order of 1018 cm or 1pc,henceleavinglittleroomforBELmicrolensing.However, more recent reverberation mapping studies revise this down- wards, to 1016 cm (Wandel et al. 1999, Kaspi et al. 2000), which is also consistent with the disk-wind model of Murray et al. (1995). Inspired by these numbers, Abajas et al. (2002) and Lewis & Ibata (2004) investigated BEL microlensing in furtherdetailandcomputedpossiblelineprofilevariationsfor variousBLRmodels. Fig.1. VLT/FORS1 field of view showing the lensed quasar Observations of significant continuum and BEL mi- QSO 2237+0305, along with the four PSF stars used to spa- crolensing have been reported in a number of systems tiallydeconvolvethespectra.Thesestarsarealsousedtocross- (QSO 2237+0305, Filippenko 1989, Lewis et al. 1998, calibratetheobservationsinfluxfromoneepochtoanotherand Wayth et al. 2005; HE 2149−2745, Burud et al. 2002a; tominimizetheeffectofskytransparency. HE 0435−1223, Wisotzki et al. 2003; H 1413+117, Chartas et al. 2004; SDSS J1004+4112, Richards et al. 2004; HE 1104−1805, Go´mez-A´lvarez 2004; HE 0047−1756, Wisotzki et al. 2004; SDSS J0924+0219, Eigenbrod et al. 2. Observations 2006a, Keeton et al. 2006 ; and RXJ 1131−1231, Sluse et al.2007).Thesefirstobservationalindicationsofmicrolensing WeacquiredourobservationswiththeFOcalReducerandlow can be turned into a powerfultool to probe the inner parts of dispersion Spectrograph (FORS1), mounted on Kueyen, the quasars, providedregular spectroscopic data can be obtained. Unit Telescope # 2 of the ESO Very Large Telescope (VLT) Several theoretical studies show how multiwavelength light located at Cerro Paranal (Chile). We performed our observa- curves can constrain the energy profile of the quasar accre- tionsinthemulti-objectspectroscopy(MOS)mode.Thisstrat- tion disk and also the absolute sizes of the line-emitting re- egy allowed us to get simultaneous observations of the main gions(e.g.,Agol&Krolik1999,Mineshige&Yonehara1999, target and of four stars used as reference point-spread func- Abajasetal.2002,Kochanek2004). tions(PSFs).Thesestarswereusedtospatiallydeconvolvethe In this paper we present the results of the first long-term spectra, as well as to perform accurate flux calibration of the spectrophotometricmonitoringoftheEinsteinCross.Thespec- targetspectrafromoneepochtoanother.Wechosethesestars tral variations of the four quasar images are followed under to be located as close as possible to QSO 2237+0305 and to sub-arcsecondseeingconditionswiththeVeryLargeTelescope have similar apparent magnitudes as the quasar images. The (VLT) of the European Southern Observatory for more than PSF stars # 1, 2, 3, and 4 have R-band magnitudes of 17.5, twoyears,fromOctober2004toDecember2006,withamean 17.0,15.5,and17.5mag,respectively.Fig.1showsthefieldof temporalsamplingofaboutonepointeverysecondweek.This viewofourobservations. firstpaperdescribestheobservations,themethodusedtosepa- We used the high-resolution collimator of FORS1 to ratethequasarspectrafromthatofthelensinggalaxy,andthe achievethebestpossiblespatialsamplingofthedata,i.e.0.1′′ mainobservationalresults.Simpleconsiderationsoftheprop- per pixel. With this resolution, we observed a maximum of 8 ertiesofmicrolensingcausticsandofthegeometryofthecen- objectssimultaneouslyoverafieldofviewof3.4′×3.4′.One tralpartsofthequasaralreadyallowustoinferinterestingcon- slit was alignedalongtwo ofthe quasarimagesandfourslits straintsonthequasarenergyprofileintheEinsteinCross. werecenteredonforegroundPSFstars.Weplacedtheremain- The full analysis of our monitoring data, still being ac- ingslits onemptyskyregionsandusedthemto carryoutsky quired at the VLT, requires detailed microlensing simulations subtractionofthequasardata. A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross 3 1" Table1.Journaloftheobservationstakenon31epochs. B ID CivilDate HJD Mask Seeing[′′] Airmass C 1 13−10−2004 3292 1 0.86 1.204 1 14−10−2004 3293 2 0.87 1.221 2 14−11−2004 3324 1 0.75 1.184 2 14−11−2004 3324 2 0.68 1.305 mask 2 3 01−12−2004 3341 1 0.88 1.355 D 3 01−12−2004 3341 2 0.94 1.609 4 15−12−2004 3355 1 0.99 1.712 N 4 16−12−2004 3356 2 0.90 1.817 A 5 11−05−2005 3502 1 0.87 1.568 mask 1 5 12−05−2005 3503 2 0.51 1.389 6 01−06−2005 3523 1 0.63 1.342 E 6 01−06−2005 3523 2 0.64 1.224 7 01−07−2005 3553 1 0.57 1.153 8 14−07−2005 3566 1 0.89 1.620 Fig.2. FORS1 R-band acquisition image of QSO 2237+0305 9 06−08−2005 3589 1 0.51 1.135 takenonepoch# 12(12−09−2005).Theslits usedinthe two 9 06−08−2005 3589 2 0.61 1.173 masksareshown.Theirwidthis0.7′′.ThePositionAngle(PA) 10 15−08−2005 3598 1 0.86 1.140 ofmask1isPA=+56.5◦andthatofmask2isPA=+68.5◦. 11 25−08−2005 3608 1 0.49 1.261 11 25−08−2005 3608 2 0.54 1.461 12 12−09−2005 3626 1 0.70 1.535 12 12−09−2005 3626 2 0.69 1.341 13 27−09−2005 3641 1 0.92 1.480 13 27−09−2005 3641 2 0.73 1.281 Two masks were designed to observe the two pairs of 14 01−10−2005 3645 1 0.78 1.281 quasar images. The PSF stars in both masks were the same. 14 01−10−2005 3645 2 0.87 1.156 Fig.2showstheslitpositioningwithrespecttoourtarget.The 15 11−10−2005 3655 1 0.57 1.140 first mask was aligned on quasar images A and D, while the 15 11−10−2005 3655 2 0.66 1.134 second was aligned on images B and C. The masks were ro- 16 21−10−2005 3665 1 0.70 1.215 tated to position angles that avoid clipping of any quasar im- 16 21−10−2005 3665 2 0.74 1.156 age.Thisismandatorytocarryoutspatialdeconvolutionofthe 17 11−11−2005 3686 1 0.90 1.137 spectra. 17 11−11−2005 3686 2 0.90 1.185 18 24−11−2005 3699 1 0.78 1.265 Our observing sequences consisted of a short acquisition 18 24−11−2005 3699 2 0.90 1.443 image, an “image-through-slit” check, followed by a consec- 19 06−12−2005 3711 1 1.10 1.720 utive deep spectroscopic exposure. All individual exposures 19 06−12−2005 3711 2 1.09 1.445 were 1620 s long. We list the journal of our observations in 20 24−05−2006 3880 1 0.87 1.709 Table 1. The mean seeing during the three observing seasons 20 24−05−2006 3880 2 0.90 1.443 was0.8′′.Wechoseaslitwidthof0.7′′,approximatelymatch- 21 16−06−2006 3903 1 0.66 1.213 ing the seeing and much smaller than the mean separation of 21 16−06−2006 3903 2 0.51 1.155 1.4′′between the quasar images. This is mandatory to avoid 22 20−06−2006 3907 1 0.64 1.286 contaminationofanimagebytheothers. 22 20−06−2006 3907 2 0.58 1.189 23 27−06−2006 3914 1 0.41 1.145 WeusedtheG300VgrismincombinationwiththeGG375 23 27−06−2006 3914 2 0.50 1.133 order sorting filter. For our slit width, the spectral resolution 24 27−07−2006 3944 1 0.74 1.316 was ∆λ = 15 Å, as measured from the FWHM of night-sky 24 27−07−2006 3944 2 0.76 1.204 emissionlines,andtheresolvingpowerwasR = λ/∆λ ≃ 400 25 03−08−2006 3951 1 0.73 1.246 atthecentralwavelengthλ = 5900Å.Theusefulwavelength 25 03−08−2006 3951 2 0.65 1.169 rangewas3900 <λ< 8200Åwithascaleof2.69Åperpixel 26 13−10−2006 4022 1 0.59 1.176 inthespectraldirection.Thisconfigurationfavorsspectralcov- 26 13−10−2006 4022 2 0.52 1.300 erageratherthanspectralresolution,allowingustofollowthe 27 28−10−2006 4037 1 0.57 1.148 continuumover a broad spectral range, starting with the very 27 28−10−2006 4037 2 0.53 1.138 blue portion of the optical spectrum. Even so and in spite of 28 10−11−2006 4050 1 0.89 1.515 28 10−11−2006 4050 2 0.88 1.323 R=400,adetailedprofileoftheBELisstillaccessible. 29 27−11−2006 4067 1 0.87 1.255 We also observed spectrophotometric standard stars 29 27−11−2006 4067 2 0.92 1.391 (GD 108, HD 49798, LTT 377, LTT 1020, LTT 1788, and 30 19−12−2006 4089 2 1.04 2.125 LTT7987)toremovetheresponseofthetelescope,CCD,and 31 22−12−2006 4092 1 0.80 2.018 grism.Wedidtherelativecalibrationbetweentheepochsusing 31 23−12−2006 4093 2 0.76 2.248 thePSFstars(seeformoredetailsEigenbrodetal.2006a). 4 A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross Fig.3.SpectraofthefourPSFstars.Thespectraineachpanel Fig.4.Fluxcorrectionfordifferentepochswithrespecttothe correspond to different observing epochs, chosen to span the reference epoch # 2 (14−11−2004). Each panel corresponds fulllengthofthemonitoring.TheIDsoftheobservingepochs, to one of the 4 PSF stars visible in Fig. 3. In each panel, the as given in Table 1, are indicated. The differences in flux are dotted line shows the ratio of the spectrum of one PSF star mainlydueto thepresenceofthinclouds.Thepurposeofus- takenatagivenepochandthespectrumofthesamestartaken ingthesestarsasfluxcross-calibratorsispreciselytoeliminate atthe referenceepoch# 2.The curvesare polynomialsfitting thesedifferences,bothinintensityandshape. thedata.Importantly,thecorrectionderivedatagivenepochis aboutthesameforthefourstars.Themeanofthesefourcurves isusedtocorrectthespectraoftheEinsteinCrossimages.The small parts of the spectra with strong atmospheric absorption Finally,itisworthemphasizingthatallourVLTdataused are masked. The different spectral ranges are due to different in the present paper were obtained in service mode, without clippingsofthespectrabytheedgesoftheCCD. whichthisprojectwouldhavebeenimpossible. 3. Dataanalysis 3.1.Reduction We removedthe sky backgroundin a differentway in the spectra ofthe PSF stars andin those ofthe gravitationallens. The data reduction followed the same proceduredescribed in ForthePSFstars,whicharesmallcomparedwiththeslitlength detailinEigenbrodetal.(2006b).Wecarriedoutthestandard (19′′), we used the IRAF task background. This task fits a bias subtraction and flat field correction of the spectra using secondorderChebyshevpolynomialinthespatialdirectionto IRAF1.Weobtainedthewavelengthcalibrationfromthespec- the areas of the spectrum that are not illuminated by the ob- trumofhelium-argonlamps.Allspectra,fortheobjectandfor ject, and subtracts it from the data. As the lensing galaxy in thePSFstarswerecalibratedintwodimensions. QSO2237+0305islargerthantheslitlength,thisprocedureis Only one single exposure was taken per mask and per notapplicable.Instead,we used the slits positionedonempty epoch.For thisreason,the usualcosmic-rayrejectionscheme skyregionsoftheFORS1fieldofview,andlocatednexttothe applied to multiple images could not be applied. Instead, we gravitationallens.Theskywasfittedtotheseslitsandremoved used the L. A. Cosmic algorithm (van Dokkum 2001), that fromtheslitcontainingtheimagesofQSO2237+0305. can handle single images. We visually inspected the cosmic- ray corrected images to check that no data pixel was affected bytheprocess,especiallyintheemissionlinesandinthedata 3.2.Fluxcross-calibration withthebestseeing. Once the cosmic raysand sky backgroundwere removed,we 1 IRAF is distributed by the National Optical Astronomy applied a flux cross-calibrationof the spectra as described by Observatories,whichareoperatedbytheAssociationofUniversities Eigenbrodetal.(2006a),usingthefourPSFstars.Thespectra for Research in Astronomy, Inc., under cooperative agreement with of these stars are shown in Fig. 3 for five different observing theNationalScienceFoundation. epochs.Ourobservationsshowthatthesestarsarenonvariable. A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross 5 Fig.7. Deconvolved and extracted 1D-spectra of the lensing Fig.8. Example of a spectral decomposition. The top panel galaxy. The two panels correspond to the two MOS masks. shows the two extracted spectra for the images A and D for The shaded areas are the envelopescontaining all the spectra theobservationstakenonepoch#25(03−08−2006)withmask of the lens obtained with the corresponding mask. The thick 1.Theextractedspectrumofthelensinggalaxy,inthebottom black lines are the means. Note the small scatter between the panel, shows no trace of contamination by the quasar BELs. twospectra. Forclarity,wehavemultipliedthefluxofimageDbyafactor oftwo. Wecreatedaratiospectrumforeachstar,i.e.wedividedthe spectrumofthestarbythespectrumofthesamestarforacho- 3.3.Deconvolution senreferenceexposure.Wechoseepoch#2(14−11−2004)as our reference exposure because of the excellent weather con- The lensing galaxy in QSO 2237+0305 is bright. Its ditions at this particular epoch for both seeing and sky trans- central parts have a surface brightness of approximately parency.Thecomputationofthesefluxratioswasdoneforall 18 mag/arcsec2 in the R band, which is comparable to the four stars in each exposureand we checked the compatibility quasarimages. Hencestudyingmicrolensingvariationsofthe oftheresponsecurvesderivedwiththefourdifferentstarsare quasarimagesrequiresveryaccuratedeblending. compatible(seeFig.4).Ifnot,werejectedoneoramaximum Inordertocarryoutthischallengingtask,weusedthespec- of two ofthe PSF stars. This canhappenin some exceptional tralversionoftheMCSdeconvolutionalgorithm(Magainetal. cases, e.g.whenthealignmentbetweenthestar andtheslitis 1998,Courbinetal.2000),whichusesthespatialinformation not optimaland generatesa color gradientin the spectrum of containedinthespectraofthePSFstars.Thealgorithmsharp- themisalignedobject.Asidefromthisinstrumentaleffect,the ens the spectra in the spatial direction, and also decomposes observations show no trace of intrinsic variability of the PSF themintoa“point-sourcechannel”containingthespectraofthe stars. two quasarimages,andan “extendedchannel”containingthe Aftercheckingthatthecorrectionspectraobtainedforthe spectrumofeverythingintheimagethatisnotapointsource, four stars were very similar, we computed their mean, which inthiscase,thespectrumofthelensinggalaxy.InFig.5,weil- wetookasthecorrectiontobeappliedtothegravitationallens. lustratetheprocessandthedifferentoutputs.InFig.7,weshow The high stability of the corrections across the field demon- howsimilarthespectraofthelensinggalaxyare,extractedei- strates that all residual chromatic slit losses due to the atmo- ther from two different masks or from data taken at different sphericrefractionarefully corrected.Thiscorrectionis eased epochs, henceillustrating the robustnessof the deconvolution bythefactthat:(1)thepositionangleofthemasksisthesame technique.InFig.8, we givean exampleofdecompositionof forthequasarimagesandforthePSF stars(i.e.thePSFclip- thedataintothequasarandlensspectraafterintegratingalong ping is the same for the target and the reference stars); (2) the spatial direction. The lensing galaxy spectrum shows no weavoidobservationsatlargeairmasses(i.e.neverlargerthan traceoftheresidualquasarBELs.Evenwhenthecontrastbe- 2.5);and(3)theatmosphericrefractioncorrectoronFORS1is tween the quasar and the galaxy is particularly large, the de- veryefficient. compositionisaccurate.Forexample,theCaIIH+Kdoubletin 6 A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross Fig.5. Left: portion of the VLT 2D-spectrum of quasar images D and A, taken on epoch # 25 (03−08−2006),on which are indicatedthemainspectralfeaturesofeitherthequasarsorthelens.Centerleft:spatiallydeconvolvedspectrum.Thetwoquasar images are very well separated. Center right: spectrum of the lensing galaxy alone. Right: residual map of the deconvolution aftersubtractionofthequasarandlensspectra.Notethattheresidualsare displayedwithmuchnarrowercutsthanthoseused in the other panels. The darkest and brightest pixels correspond to −3σ and +3σ respectively. No significant residuals of the spectralfeaturesarevisible. Fig.6. DeconvolvedandextractedspectraofquasarimageAforfiveobservingepochs.Chromaticvariationsinthespectraare conspicuouswiththebluepartofthespectrabeingmoremagnifiedthantheredpart. thelensspectrumiswellvisible,inspiteofthepresenceofthe 3.4.Cross-checkwiththeOGLE-IIIlightcurves strongquasarCIVemissioninthesamewavelengthrange. After reduction and spatial deconvolution, we obtained the extracted spectra of quasar images A and D on 30 different A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross 7 ofimageD.However,asidefromthisshift,theagreementbe- tweentheOGLEphotometryandourintegratedVLTspectrais alsoverygoodforimageD. 4. Multi-componentdecomposition Different emission features are known to be produced in re- gionsofdifferentcharacteristicsizes.Asmicrolensingmagni- ficationvariesonshortspatialscales,sourcesofdifferentsizes are magnified by differing amounts (e.g. Wambsganss et al. 1990).Emissionfeaturesfromsmallerregionsofthesourceare morehighlyvariableduetomicrolensingthanfeaturesemitted in more extended regions. In order to study the variation of eachspectralfeatureindependently,weneedtodecomposethe spectraintotheirindividualcomponents. 4.1.Method Inouranalysisofthe1-Dspectraofthefourquasarimages,we follow the multi-component decomposition (MCD) approach (Wills et al. 1985, Dietrich et al. 2003) implementedin Sluse etal.(2007).Thismethodisappliedtotherest-framespectra, Fig.9. OGLE-IIIlightcurves(Udalskiet al. 2006) of allfour assuming they are the superposition of (1) a power law con- quasar images from April 2004 to December 2006 (dots), tinuum, (2) a pseudo-continuum due to the merging of FeII compared with the photometry derived by integrating our and FeIIIemission blends, and(3) an emission spectrumdue VLT spectra through the OGLE V-band (dark triangles). The totheotherindividualBELs.Weconsiderthefollowingemis- 1−sigma error bars correspond to the photon noise in the sionlines:CIVλ1549,HeIIλ1640,OIII]λ1664,AlIIλ1671, spectrum. We shift the OGLE-III light curve of image D by AlIIIλ1857,SiIII]λ1892,CIII]λ1909,andMgIIλ2798.All −0.5 mag with respect to the published values. The bottom thesefeaturesarefittedsimultaneouslytothedatausingastan- paneldisplaystheseeingvaluesforeachobservations. dard least-square minimization with a Levenberg-Marquardt based algorithm adapted from the Numerical Recipes (Press etal.1986). In the first step, we identify the underlying nonstellar epochs, and of B and C on 28 different epochs. Several ex- power-law continuum from spectral windows that are free tracted spectra of image A are shown in Fig.6. As a sanity (or almost free) of contributions from the other components, check,wecomparedourresultswiththeOGLE-IIIphotomet- namelythe ironpseudo-continuumandthe BELs. We use the ric monitoring of QSO 2237+0305(Udalski et al. 2006). We windows 1680 ≤ λ ≤ 1710 Å and 3020 ≤ λ ≤ 3080 Å. integrated our quasar spectra in the corresponding V-band to AftervisualinspectionoftheirontemplatesbyVestergaardet estimate, from the spectra, the photometric light curves as if al.(2001),wedonotexpectsignificantironemissioninthese they were obtained from imaging. In Fig. 9, we compare our windows. magnitudeestimateswiththeactualOGLE-IIImeasurements. We characterize the spectral continuum (measured in the The overall agreement is very good for images A, B, and C. restframe)withapowerlaw fν ∝ναν,whichtranslatesinwave- For image D, we have to shift the OGLE-III light curve by lengthto fλ ∝λαλ withtherelationαν =−(2+αλ),i.e. −0.5 mag with respect to the published values. Interestingly, thisshiftisnotneededwhenwe compareourresultswiththe λ αλ λ −(2+αν) f = f = f previousOGLEdatafromtheprovisionalcalibrationpresented λ 0 λ ! 0 λ ! 0 0 intheyears2004−2006.ThepreviousOGLEdataalsoagreed with the photometryof Koptelovaet al. (2005). Thischanged whereλ =2000Åandwhereα isthecommonlyusedcanon- 0 ν whenUdalskietal.(2006)reviewedtheircalibrationandgave icalpowerindex. image D a larger magnitude of approximately0.5 mag. They Next,wefittheBELswithGaussianprofiles.Weconsider stated that the steep rise of brightness of image D at the end asumofthreeprofilestofittheabsorptionfeatureintheCIV of the 2000 OGLE-II season leaded to an overestimate of the emissionline.TwoprofilesareusedfortheCIII]lineandone extrapolatedmagnitudeforthe beginningof the 2001OGLE- single profile is used to fit simultaneouslythe OIII] and AlII III season. But this is now discrepant with the photometry of lines. All other BELs are fitted with one single profile. We Koptelovaetal.(2005).Wethinkthatthenewextrapolationof then subtract the BELs and the continuum from the spectra. thelightcurveofimageDfromtheendofseason2000tothe Weconsidertheresidualsascomingfromtheemissionblends beginning of season 2001 might be uncertain, leading to the of FeIIandFeIII.Hencetheaveragedandnormalizedresidu- observedshiftbetweenourdataandtheOGLE-IIIlightcurve alsoverallepochsdefineourfirstironpseudo-continuumtem- 8 A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross Fig.10.Multi-componentdecompositionofthespectrumofthebrightestquasarimage,A,takenonepoch#2(14−11−2004). The upper panelsshow the detailed spectral decompositionof the BELs, while the middle paneldisplays the entire spectrum. The continuum is indicated as a dotted curve. The Gaussian lines and iron pseudo-continuumtemplates are shown below the spectrum.Thebottompanelistheresidualforeachpixelnormalizedbythephotonnoiseperpixel(i.e.they-axisistheresidual fluxinunitsofσ). Fig.11.Left:ExamplesoflightcurvesforthequasarimageA.Theintegratedfluxforthecontinuum,theHeII,andCIII]BELs aregivenfromtoptobottom.Thecontinuumisintegratedovertheentireavailablewavelengthrange.Ineachpanel,wefitascaled version(solidline)oftheOGLE-IIIlightcurve(Udalskietal.2006).ThisnicelyillustratesthattheBELsvarysimultaneously andproportionallytothe continuum.Right:variabilityofthebest-fitparametersα and f ofthecontinuum(see Section4.1). A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross 9 imagesAandB,indicatingthatsignificantmicrolensingevents occuredinthesetwoimages. Inaccuratealignmentofthequasarimagesintheslitofthe spectrograph is a possible instrumental effect that can mimic microlensing changes in the spectral slope of the quasar im- ages.Indeed,smallclippingofoneofthequasarimageswould lead to a stronger flux loss at the bluer wavelengths, hence producing a color gradient in the spectrum and a decrease in themeasuredvalueα .Wehavecheckedallthe“through-slit” ν imagestakenbeforeeachspectrum.Notonlydotheseimages showthatthealignmentiscorrect,butitisalsoveryeasilyre- produciblefromoneepochto another,evenwhenthe FORS1 hasbeendismountedfromandremountedonthetelescope. Wehavealsocheckedthatourfittingproceduredoesnotin- troduceanyspuriouscorrelationbetweenα and f .Wecheck ν 0 this by using simulated spectra. In order to do that we take a referencespectrumforeachquasarimageandsubtractitscon- tinuum. We then take random pairs of (α , f ) parameters so ν 0 that the α vs. f plane is well sampled. We chose 400 such ν 0 pairs and create the corresponding continuum to be added to the reference spectrum. The decomposition procedure is then run on the 400 spectra. We find no correlation at all between Fig.12. Correlation between the intensity f0 and slope αν of the measured αν and f0. In addition, the parameters used to the continuum spectra for all four quasar images. The points build the simulated spectra are almost perfectly recovered by are connected chronologically. The first observation epoch is thedecompositionprocedure. marked by a star and the last one by a square. The correla- Weconcludethatgenuinechromaticvariationsarepresent tion is obviousin images A and B spanning a broad range of inthecontinuumofallimagesofQSO2237+0305.Theeffect spectral slopes. In these two images, an increase in intensity ismostpronouncedin imageA duringthelastobservingsea- isaccompaniedbyanincreaseinsteepness,i.e.whenaquasar son, and in image B at the beginning of our monitoring. We imagegetsbrighter,italsogetsbluer. showinthefollowingthattheseobservedvariationsare,inad- dition,wellcompatiblewiththeOGLE-IIIsingle-bandphoto- metricobservations. plate.Wecanthenproceediterativelybyincludingthispseudo- 5. MicrolensingvariabilityintheOGLE-III continuumiron template in the fitting procedureand rerun it. photometry Thisgivesa better fitting ofthe emissionlines anddefinesan The photometric variations in most gravitationally-lensed improvedironpseudo-continuumtemplate.Afterfiveofthese quasarsaredominatedbytheintrinsicvariationsofthequasar, iterations, typically the fitting does not change significantly typically of the order of 0.5 − 1.5 mag, hence making them anymore. Fig. 10 shows an example of the fitting decompo- usefultomeasurethetimedelaysbetweenthe quasarimages. sitiondescribedabove. Microlensingvariationsareusuallysmaller,intherange0.05− 0.1 mag (e.g. the lensed quasarsB 1600+434by Burud et al. 4.2.Results 2000; RX J0911+0551by Hjorth et al. 2002; SBS 1520+530 by Burud et al. 2002b; FBQ 0951+2635 by Jakobsson et al. The lightcurvesfor the continuumand for the emission lines 2005). can be constructed from the above multi-component decom- The Einstein Cross is differentfrom this generalbehavior position. We show in Fig. 11 an example of variation in the in two ways:(1)the time delaysbetweeneachpairof images brightestquasarimage,A,forthecontinuumandfortwoBELs. areexpectedtobeoftheorderofoneday,hardlymeasurable, Theerrorbarsgivethephotonnoise,integratedoverthecorre- and(2) themicrolensingvariationsdominatethe lightcurves. sponding wavelength range. In the right panel of Fig. 11, we Forthesetworeasons,microlensingcanbefairlywellisolated show the variability of the continuum in intensity, f , and in in each quasar image, because it acts differently on the four 0 slope,α ,forthe4quasarimages.Itisimmediatelyclearthat sightlines. ν the continuum variations with the largest amplitude are ob- Toseparatetheintrinsicfluxvariationsofthequasarfrom served in image A, betweenHJD = 3600and 3900 days, and the microlensing ones, we perform a polynomial fit to the inimageBbetweenHJD=3300and3500days.Thesevaria- OGLE-III light curves (Udalski et al. 2006) of Fig. 9. This tionsareaccompaniedbyanincreaseinsteepness,i.e.whena simple and fully analytical method has been developed by quasarimagegetsbrighter,italsogetsbluer.Thisisparticularly Kochaneketal.(2006),andisalsodescribedbyVuissozetal. obviousinFig.12,where f andα arestronglycorrelatedfor (2007).Inthepresentapplication,thevariationsofeachquasar 0 ν 10 A.Eigenbrodetal.:MicrolensingvariabilityintheEinsteinCross cover the simulated intrinsic light curve of the quasar with a typicalerroroflessthan0.1mag.Thevariationsofmorethan 0.4 mag, shown in Fig. 13, both for microlensing and quasar variations, are well above the error estimated from the simu- latedlightcurves.Inoursimulations,weadoptthesamepho- tometricerrorbarsas inthe lightcurvesofallquasarimages, i.e. there-scalingofthe errorbarsdescribedaboveinthereal data is taken into account. If, on the contrary,we adopt error barsthatfollowthephotonnoise,thefittingprocedureconsid- ersthehighestsignal-to-noiselightcurveastheintrinsicquasar lightcurve. The light curve most affected by microlensing is that of imageB,withapeak-to-peakamplitudeofmorethan0.7mag over 3 years. The other quasar images show microlensing- inducedvariationsofupto0.4mag,withquasarimageAhav- ingasharpeventduringthelastobservingseason.Theintrinsic quasarlightcurvedisplaysavariationofabout0.4mag. Thepolynomialdecompositionofthelightcurvesarecom- patiblewiththespectroscopicresults.QuasarimagesAandB, whichhavethelargestmicrolensingcontributioninFig.13,re- spectivelyatHJD∼3500daysandHJD∼3900days,alsohave asharpriseinα atthesameepochs. ν Fig.13. Decomposition of the OGLE-III photometric light curves(Udalskiet al. 2006) of the quasar images, into intrin- 6. Microlensingvariabilityinthespectra sicquasarvariationsandmicrolensing-inducedvariations(see Section5).Theintrinsicvariationsareshownatthebottomof Chromatic variationsof the continuumof images A and B of the figure as a continuous line, while the pure microlensing QSO2237+0305areclearlyseeninourdata.Inaddition,dif- variations are the data points. The curves are shifted arbitrar- ferential magnification of the continuum with respect to the ily alongthe y-axisforclarity.Thetickmarksat the topshow BELsisalsoseeninallfourquasarimages.Sucheffectshave theepochsofourobservations. alreadybeenobservedbyLewisetal.(1998)andWaythetal. (2005),butonlyfordataovertwoepochs.OurVLTspectraal- lowustofollowthevariationsovertwofullyears,providedthe intrinsicvariationsofthequasarareremoved. imagearemodeledasasumoftwoLegendrepolynomials:one polynomialiscommontoallfourquasarimagesandrepresents 6.1.ContinuumandBELsrelativemagnifications the intrinsic variations of the source while a second polyno- mial,differentforeachquasarimage,representstheadditional SincethetimedelaysinQSO2237+0305arenegligible,taking microlensingvariations.Indoingso,werescaletheOGLE-III theratiobetweentheabovequantitiesinpairsofquasarimages errorbarsofeachimagebyafactorequaltothefluxratiobe- cancelstheintrinsicvariations.LetF(t)betheintrinsicsource tweeneachimageandimageC. Thisrescalingsuppressesthe flux,andM,µ bethemacroandmicrolensing-magnifications i i potentialproblemexistingifthefittingprocedureconsidersthe ofquasarimagei,respectively.Theobservedfluxratiobetween variation of image A (with the highest signal-to-noise) as the imagesiand jattimetisthen: intrinsicvariationofthequasar.Thechosenorderofthepoly- µ(t) M F(t) µ(t)M nomialis7fortheintrinsicvariation,and10forthemicrolens- Rij(t)= µi(t) Mi F(t) e−(τi−τj) = µi(t)Mi e−(τi−τj) . (1) ingvariation.Higherorderpolynomialsdonotsignificantlyim- j j j j provethefit.TheresultsaredisplayedinFig.13,wherethein- The extinction e−τi remains constant in time and is rela- trinsicvariationofthesourcerecoveredbythesimultaneousfit tivelysimilarinallfourquasarimagesasweshowinSec.6.3. isshowntogetherwiththepuremicrolensingvariations. Hence,it is notexpectedto stronglyaffectour resultsandwe We check theefficiencyofour methodbygeneratingarti- will neglect it in the following. The macromagnifications Mi ficial light curves and then using the above polynomial fit to arebestestimatedinthemid-IRandradiodomain(Falcoetal. recovertheintrinsicandmicrolensinglightcurves.Thesearti- 1996,Agoletal.2000).Atthesewavelengths,thesourcesize ficial lightcurvesare generatedin the same way as described is much largerthan the typicalspatialscale in the microcaus- in Eigenbrod et al. (2005), and are composed of an intrinsic ticsnetwork,henceleavingitfairlyunaffectedbymicrolensing light curve to which we add microlensing fluctuations. Both (i.e. µi = 1). By multiplyingRij by Mj/Mi, using the mid-IR arecreatedinarandomwalkmanner(i.e.notfrompolynomi- observations,we find the pure-microlensingmagnificationra- als). They are constructed to match the variability properties tios: oftheactuallightcurves,i.e.theirtimescaleandamplitudeof µ(t) r (t)= i . (2) variation(forfurtherdetailsseeEigenbrodetal.2005).Were- ij µ (t) j

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.