TobesubmittedtotheAstrophysicalJournal PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 MICROLENSINGCONSTRAINTSON10−10M -SCALEPRIMORDIALBLACKHOLESFROMHIGH-CADENCE (cid:12) OBSERVATIONOFM31WITHHYPERSUPRIME-CAM HirokoNiikura1,2,MasahiroTakada1,NaokiYasuda1,RobertH.Lupton3,TakahiroSumi4,SurhudMore1,AnupreetaMore1, MasamuneOguri1,2,5,MasashiChiba6 TobesubmittedtotheAstrophysicalJournal ABSTRACT We use the Subaru Hyper Suprime-Cam (HSC) to conduct a high-cadence (2 min sampling) 7 hour long observation of the Andromeda galaxy (M31) to search for the microlensing magnification of stars in M31 7 duetointerveningprimordialblackholes(PBHs)inthehaloregionsoftheMilkyWay(MW)andM31. The 1 combinationofanapertureof8.2m,afield-of-viewof1.5degreediameter,andexcellentimagequality(∼0.6(cid:48)(cid:48)) 0 yieldsanidealdatasetforthemicrolensingsearch. IfPBHsinthemassrange M = [10−13,10−6]M make 2 PBH (cid:12) up a dominant contribution to dark matter (DM), the microlensing optical depth for a single star in M31 is n τ ∼ 10−4–10−7,owingtotheenormousvolumeandlargemasscontentbetweenM31andtheEarth. TheHSC a observation allows us to monitor more than tens of millions of stars in M31 and in this scenario we should J find many microlensing events. To test this hypothesis, we extensively use an image subtraction method to 9 efficientlyidentifycandidatevariableobjects,andthenmonitorthelightcurveofeachcandidatewiththehigh cadencedata.Althoughwesuccessfullyidentifyanumberofrealvariablestarssuchaseclipse/contactbinaries ] andstellarflares,wefindonlyonepossiblecandidateofPBHmicrolensingwhosegenuinenatureisyettobe O confirmed. WethenusethisresulttoderivethemoststringentupperboundsontheabundanceofPBHsinthe C massrange. Whencombinedwithotherobservationalconstraints,ourconstraintrulesoutalmostallthemass . scalesforthePBHDMscenariowhereallPBHsshareasinglemassscale. h Subjectheadings:darkmatter–gravitationallensing: micro–stars: blackholes p - o r 1. INTRODUCTION gravitational wave sources, recently detected by the LIGO- t Virgo collaboration (Abbott et al. 2016). The abundance of s Thenatureofdarkmatter(DM)remainshotlystudiedand a PBHs at different mass scales is constrained by various ob- debated both theoretically and observationally, and is one of [ servations except for a mass window of 1021–1024 g corre- 1 tihesehmavoestsiumggpeosrtteadntthpartobDlMemissinnonco-bsamryoolongicy,.nPorne-vreiolautsivsistutidc-, spondingto10−12–10−9M(cid:12) (seeCarretal.2016,forarecent review). Thus it is of critical importance to further explore v and interacts with ordinary matter only via gravity (Zwicky observationalconstraintsonthePBHabundanceforthismass 1 1937;Rubinetal.1978;Davisetal.1985;Cloweetal.2006; window. 5 Dodelson & Liguori 2006). Currently, unknown stable par- Gravitational microlensing has been used as a powerful 1 ticle(s) beyond the Standard Model of Particle Physics, so- 2 called Weakly Interacting Massive Particles (WIMPs), are methodtoprobeDMintheMilkyWay(MW)sincethethe- 0 considered as viable candidates (e.g. Jungman et al. 1996). oretical proposal in Paczynski (1986) (also see Griest et al. 1. However they have yet to be detected in either elastic scat- 1991; Roulet & Mollerach 1997; Wambsganss 2006). Mi- crolensing can be detected through the time-variable mag- 0 tering experiments or in collider experiments (e.g., Klasen nification of a background star when the lensing object and 7 et al. 2015). Primordial black holes (PBH), first proposed the background star move relative to each other on the sky. 1 by Zel’dovich & Novikov (1967) (also see Hawking 1971; Although massive compact halo objects (MACHOs) such as : Carr & Hawking 1974; Carr 1975), are also viable candi- v brown dwarfs are some of the most secure baryonic candi- dates for DM. PBHs can be formed by the gravitational col- i dates that behave like DM, the MACHO and EROS experi- X lapse of the Hubble patch in the radiation dominated era of ments ruled out the scenario that MACHOs of [10−9,10]M the Universe if a large overdensity of δ ∼ O(0.1) is injected (cid:12) r mass scales are a majority component of DM, because these a into the patch. It is also advocated that PBHs can be pro- experimentsdidnotfindasufficientnumberoftheMACHO genitorsofbinaryblackholes(Sasakietal.2016;Birdetal. microlensing events of stars in the Large Magellanic Cloud 2016; Kawasaki et al. 2016b; Inomata et al. 2016) that are (LMC) (Alcock et al. 2000; Bennett 2005; Tisserand et al. 2007;Wyrzykowskietal.2010). RecentlyGriestetal.(2014) 1KavliInstituteforthePhysicsandMathematicsoftheUniverse(WPI), (also see Griest et al. 2011) used the public 2-years Kepler TheUniversityofTokyoInstitutesforAdvancedStudy(UTIAS),TheUni- versityofTokyo,Chiba,277-8583,Japan data to search for the microlensing events from ∼ 105 stars 2PhysicsDepartment,TheUniversityofTokyo,Bunkyo,Tokyo113- in an open cluster at a distance of about 4 kpc and derived 0031,Japan newupperlimitsontheabundanceofPBHsof10−8M mass (cid:12) 3DepartmentofAstrophysicalSciences,PrincetonUniversity,Peyton scale. However, the Kepler data primarily has a cadence of Hall,PrincetonNJ08544USA 4DepartmentofEarthandSpaceScience,GraduateSchoolofScience, 30 min and the number of source stars (∼ 105) is relatively OsakaUniversity,Toyonaka,Osaka560-0043,Japan smallcomparedtothemicrolensingopticaldepth(τ∼10−7). 5ResearchCenterfortheEarlyUniverse,UniversityofTokyo,Tokyo With the aim of constraining the abundance of PBH with 113-0033,Japan massscales10−10M ,wehavecarriedoutahighcadenceob- (cid:12) 6Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980- servation of the Andromeda galaxy (M31), with the Subaru 8578,Japan 2 Niikuraetal. HyperSuprime-Cam(HSC),inordertosearchformicrolens- inSection6andpresentourconclusionsandsummaryinSec- ingeventsofM31starsbyinterveningPBHsinboththehalo tion7. regions of MW and M31. M31 is the largest spiral galaxy, nearesttotheMW,atadistanceofabout770kpc(thedistance 2. EVENTRATEOFPBHMICROLENSINGFORM31 modulusµ (cid:39) 24.4mag). EvenasinglenightofHSC/Subaru STARS datayieldsanidealdatasettosearchforthePBHmicrolensing InthissectionweestimateeventratesofPBHmicrolensing events. First, the 1.5 degree diameter field-of-view of HSC forastarinM31.Weextendtheformulationinpreviousstud- (Miyazaki et al. 2015) allows us to cover the entire region ies(Griestetal.1991;Alcocketal.1996;Kerinsetal.2001; of M31 covering both the bulge, disk and halo regions. The Riffeseretal.2006)tomicrolensingcasesduetoPBHsinthe 8.2mlargeapertureanditssuperbimagequality(0.6(cid:48)(cid:48)seeing) haloregionsofMWandM31forasourcestarinM31. allow us to detect fluxes from main sequence stars in M31, even with short exposure, here 90 sec exposure, because we 2.1. Microlensingbasics can reach to about 26 mag depth. This allows us to monitor a sufficiently large number of stars in M31 simultaneously. IfastarinM317andaforegroundPBHarealmostperfectly Secondly,the90secshortexposureandashort∼35secread- alignedalongtheline-of-sighttoanobserver,thestarismul- tiplyimagedduetostronggravitationallensing. Incasethese out time enable us to take data at an unprecedented cadence multipleimagesareunresolved,thefluxfromthestarappears of2min,whichallowsustosearchforPBHsofsmallermass magnified. When the source star and the lensing PBH are scales than done in Griest et al. (2014). Thirdly, there is a separated by an angle β on the sky, the total lensing magni- huge volume between M31 and the Earth, leading to a large fication,i.e. thesumofthemagnificationofthetwoimages, opticaldepthofPBHmicrolensingtoeachstarinM31aswe will show; τ ∼ 10−7–10−4 for PBHs in the mass range of is DMMPBHin(cid:39)the[1M0−W13,a1n0d−M6]M31(cid:12),haifloPs.BHHesnccoen,sbtyitumteonaitmoraijnogrimtyooref A= A1+A2 = √u2+2 , (1) u u2+4 thantenmillionstarsinM31,weshouldbeabletofindmany eventsofthePBHmicrolensingifPBHsexist. whereu≡(d×β)/R ,anddisthedistancetoalensingPBH. E However,theanalysisoftheobservationsisquitechalleng- TheEinsteinradiusR isdefinedas E ing. Since M31 is a dense star field and the counts in each 4GM D CCD pixel can be from multiple stars, we are in the regime R2 = PBH , (2) of having to deal with the microlensing effect on unresolved E c2 stars, i.e., pixel lensing (Crotts 1992; Baillon et al. 1993; where M isthePBHmass. Disthelensingweighteddis- PBH Gould1996)(alsoseeCalchiNovati2010,forareview).This tance,D≡d(1−d/d ),whered isthedistancetoasourcestar s s is one of the main reasons that the previous observational in M31, and d is the distance to the PBH. By plugging typi- efforts for the microlensing search towards M31 have been calvaluesoftheparameters,wecanfindthetypicalEinstein unsuccessful (Crotts & Tomaney 1996; Calchi Novati et al. radius: 2005;deJongetal.2006;Riffeseretal.2008;CalchiNovati etal.2009;Leeetal.2012;CalchiNovatietal.2014,andalso θ ≡ RE (cid:39)3×10−8arcsec(cid:32) MPBH (cid:33)1/2(cid:32) d (cid:33)−1/2 (3) see references therein). Another reason for the unsuccessful E d 10−8M 100kpc (cid:12) resultisthatthepreviousworksuseddatafromsmalleraper- where we assumed d = 770 kpc for distance to a star in ture telescopes, and the quality of the data is not as good as s our HSC/Subaru data. To tackle the pixel lensing problem, M31 and we assumed D ∼ d for simplicity, and employed M = 10−8M asaworkingexampleforthesakeofcom- wewillheavilyusetheimagesubtractiontechniquedescribed PBH (cid:12) parison with Griest et al. (2014). In the following analysis in Alard & Lupton (1998), which is fully integrated in the we will consider a wide range of PBH mass scales. The HSC pipeline (Bosch et al. in preparation). By subtracting thereferenceimagefromthetargetimage,wecanefficiently PBHlensingphenomenawesearchforareinthemicrolens- identifyvariablestarcandidatesthatpopupinthedifference ingregime;wecannotresolvetwolensedimageswithangular image. Thenbyrepeatingtheimagesubtractionfordifferent resolution of an optical telescope, and we can measure only thetotalmagnification. AsizeofastarinM31isviewedas images for multiple visits (188 visits for our case), we can measure the light curve of each candidate, which allows us R to efficiently search for microlensing candidates. In fact our θs (cid:39) ds (cid:39)5.8×10−9arcsec, (4) analysis finds many secure candidates of variable stars such s asstellarflaresandbinarysystems. if the source star has a similar size to the solar radius (R (cid:39) (cid:12) Thestructureofthispaperisasfollows. InSection2,after 6.96 × 1010 cm). Comparing with Eq. (3) we find that the abriefreviewofthemicrolensingphenomena,wefirstderive EinsteinradiusbecomessmallerthanthesourcesizeifPBH aneventrateformicrolensingduetotheinterveningPBHsfor mass MPBH ∼< 10−10M(cid:12) correspondingto MPBH ∼< 1023 g. We asinglestarinM31,byemployingahalomodelfortheMW discuss such lighter PBHs in Section 6, where we will take andM31.InSection3wedescribethedetailsofourdataanal- intoaccounttheeffectoffinitesourcesizeonthemicrolensing ysisincludingtheimagesubtractiontechnique,anddefinethe (Witt&Mao1994;Cieplak&Griest2013;Griestetal.2014). mastercatalogofvariablestarcandidates.InSection4wede- Since the PBH and the source star move relative to each scribe the selection criteria for microlensing events from the other on the sky, the lensing magnification varies with time, catalogofvariablestarcandidates.InSection5,weusethere- allowingustoidentifythestarasavariablesourceinadiffer- sulttoderiveanexperimentalupperboundontheabundance enceimagefromthecadenceobservation. Themicrolensing of PBHs as a function of PBH mass. We then discuss how different assumptions in our analysis affect the upper bound 7ThroughoutthispaperweassumethatasourcestarisinM31,notinthe MWhaloregion,becauseofthehighernumberdensityonthesky. MicrolensingConstraintsonPrimordialBlackHoleswithHSCObservationofM31 3 lightcurvehasacharacteristictimescalethatisneededfora 10 5 − lensingPBHtomoveacrosstheEinsteinradius: R tE ≡ vE, (5) 10−6 wherevistherelativevelocity. Assumingfiducialvaluesfor τ theseparameters,wecanestimatethetypicaltimescaleas 10 7 − (cid:32) M (cid:33)1/2(cid:32) d (cid:33)−1/2(cid:32) v (cid:33)−1 t (cid:39)34min PBH , E 10−8M 100kpc 200km/s (cid:12) (6) 10 8 whereweassumed v = 200km/sforthetypicalrelativeve- − 101 102 103 locity. Thusthemicrolensinglightcurveisexpectedtovary d[kpc] overseveraltensofminutes, andshouldbewellsampledby 10 7 our HSC observation. It should also be noted that a PBH − closer to the Earth gives a longer timescale light curve for afixedvelocity. Sincewecansafelyassumethattherelative 10 8 − velocitystaysconstantduringtheEinsteinradiuscrossing,the light curve should have a symmetric shape around the peak, whichwewillusetoeliminatefakecandidates. dτdd 10−9 2.2. Microlensingeventrate 10 10 − Here we estimate expected microlensing event rates from PBHs assuming that they consist of a significant fraction of 10 11 − DMintheMWandM31haloregions. 0 100 200 300 400 500 600 700 800 We first need to assume a model for the spatial distribu- d[kpc] tionofDM(thereforePBHs)betweenM31andus(theEarth). HerewesimplyassumethattheDMdistributionineachhalo Figure1. Upper:TheopticaldepthofPBHmicrolensingeffectonasingle starinM31asafunctionofthedistancetoPBH,d,whichcanbeobtained regionofMWorM31followstheNFWprofile(Navarroetal. byintegratingtheintegrandinEq.(10)over[0,d],ratherthan[0,ds]. The 1997): opticaldepthisindependentofPBHmass,andweassumedNFWparameters ρ (r)= ρc , (7) tomodeltheDMdistributionineachoftheMWandM31haloregions,where NFW (r/r )(1+r/r )2 wedeterminedtheNFWparameterssoastoreproducetheirrotationcurves s s (seetextfordetails). Lower: Similarplot,butthefractionalcontributionof where r is the radius from the MW center or the M31 cen- PBHsatthedistance,d,totheopticaldepth. Notethatdinthex-axisisin linearscale.Theareaunderthiscurveuptodgivestheopticaldepthtodin ter, r is the scale radius and ρ is the central density pa- s c theupperplot. rameter. In this paper we adopt the halo model in Klypin et al. (2002): Mvir = 1012M(cid:12), ρc = 4.88 × 106 M(cid:12)/kpc3, whichweassumetobeequaltods =770kpcthroughoutthis and r = 21.5 kpc for MW, taken from Table 2 in the paper, paper. s while M = 1.6×1012M , ρ = 4.96×106 M /kpc3, and ByusingEqs.(7)-(9),wecancomputetheDMdensity,con- vir (cid:12) c (cid:12) r = 25 kpc for M31, taken from Table 3. Thus we assume tributed from both the MW and M31 halos, as a function of s a slightly larger DM content for the M31 halo than the MW thedistancetoPBH,d. halo. Dark matter profiles with these parameters have been AssumingthatPBHsmakeustheDMcontentbyaafrac- shown to fairly well reproduce the observed rotation curves tion,Ω /Ω ,wecancomputetheopticaldepthτforthe PBH DM forMWandM31,respectively. TheremightbeanextraDM microlensing of PBHs with mass M for a single star in PBH contributionintheinterveningspacebetweenMWandM31, M31. The optical depth is defined as the probability for a e.g. due to a filamentary structure bridging MW and M31. source star to be inside the Einstein radius of a foreground However,wedonotconsidersuchanunknowncontribution. PBH on the sky or equivalently the probability for the mag- ConsideraPBHatadistanced(kpc)fromtheEarthandin nificationofsourcefluxtobegreaterthanthatattheEinstein theangulardirectiontoM31, (l,b) = (121.2◦,−21.6◦)inthe radius,A≥1.34(Paczynski1986): GatadlaiscttainccceoRor⊕di=na8t.e5skypstcefmro.mAsthsuemMinWgtcheantttehre,wEearcthanisepxlparceesds τ= ΩPBH (cid:90) dsdd ρDM(d)πR2(d,M ). (10) the separationto thePBH fromthe MWcenter, r , in Ω M E PBH MW−PBH DM 0 PBH termsofthedistancefromtheEarth,d,as Here the mass density field of DM is given by the sum (cid:113) of NFW profiles for the MW and M31 halos: ρ (d) = rMW−PBH(d)= R2⊕−2R⊕dcos(l)cos(b)+d2. (8) ρ (d)+ρ (d). Notethat,becauseofR2D∝MM , NFW,MW NFW,M31 E PBH theopticaldepthisindependentofPBHmass. If we ignore the angular extent of M31 on the sky (which is In Fig. 1, we show the optical depth of PBH microlensing restrictedto1.5degreeindiameterforourstudy),thedistance forasinglestarinM31,calculatedusingtheaboveequation. tothePBHfromtheM31center,r ,isapproximately M31−PBH Here we have assumed that all the DM in the halo regions givenby, of MW and M31 is composed of PBHs, i.e., Ω /Ω = r (d)(cid:39)d −d, (9) PBH DM M31−PBH s 1. The optical depth for microlensing, τ ∼ 10−6, is larger whereweapproximatedthedistancetoasourcestarinM31to comparedtothattoLMCorastarclusterinMW(τ ∼ 10−7) bethesameasthedistancetothecenterofM31, D (cid:39) d , by an order of magnitude, due to the enormous volume and M31 s 4 Niikuraetal. abovegeometryisgivenbytˆ=2R cosθu /v. Thusthedif- E T r ferential rate of microlensing events, occurring per unit time scaletˆ,isgivenby dΓ Ω (cid:90) ds (cid:90) ∞ (cid:90) π/2 (cid:90) 2π ρ (d) = PBH dd dv dθ dα DM dtˆ Ω r M DM 0 0 −π/2 0 PBH (cid:34) (cid:35) (cid:32) (cid:33) u R v2 2R u cosθ × T E exp − r v2cosθ δ tˆ− E T .(14) πv2 v2 r D v c c r UsingtheDirac-deltafunctionidentity, (cid:32) (cid:33) (cid:32) (cid:33) 2R u cosθ 2R u cosθ v2 δ tˆ− E T =δ v − E T r , D v D r tˆ 2R u cosθ Figure2. AschematicillustrationofconfigurationsofalensingPBHanda r E T (15) sourcestarinM31inthelensplane,followingFig.4ofGriestetal.(1991). TheorbitofalensingPBH,aroundasourcestarinM31(placedattheorigin andintegratingoverαandvr,weobtain inthisfigure),isparameterizedasinthefigure,whichisusedtoderivethe microlensingeventrate(seetextfordetails). dΓ Ω (cid:90) ds (cid:90) π/2 ρ (d) (cid:34) v2(cid:35) = PBH dd dθ DM v4 exp − r , (16) dtˆ Ω M v2 r v2 large mass content between the Earth and M31. The PBHs DM 0 −π/2 PBH c c in each of the MW and M31 halos result in a roughly equal with v = 2R u cosθ/tˆ. One can rewrite this equation by r E T contribution to the optical depth to an M31 star. Although changing variable θ to the minimum impact u = u sinθ, (cid:113) min T there is an uncertainty in the DM density in the inner region suchthat,dθ=du / u2 −u2 . Thisresultsin ofMWorM31(atradii ∼< 10kpc)duetopoorly-understood min T min bgaivNreyenoxnttiimcweeesffceeascltteism,fotahrteeitcstholiengthrriatbtceuutifroovner.imsFiincrosrottlwleanergsmien.ogdeelvtehnetsvewloitchitya ddΓtˆ =2ΩΩPBH (cid:90) dsdd(cid:90) uT(cid:113)dumin MρDM(dv)2v4r exp(cid:34)−vv2r2(cid:35) , DM 0 0 u2 −u2 PBH c c distributionofDMinthehaloregions. Wesimplyassumean T min isotropic Maxwellian velocity distribution for DM particles (17) (cid:113) (e.g.Jungmanetal.1996): wherev = 2R u2 −u2 /tˆ. Tocomputetheeventratedue r E T min (cid:34) (cid:35) 1 |v|2 toPBHsinboththehaloregionsofMWandM31,wesumthe f(v;r)d3v= exp − d3v (11) contributions, dΓ = dΓ +dΓ . Aswedescribedabove, π3/2v (r)3 v (r)2 MW M31 c c wecanexpressthecentricradiusofeachhalo,r,enteringinto where V (r) is the velocity dispersion at radius r from the v (r),intermsofthedistancetothelensingPBH,d;r=r(d). halo c MWorM31center. ForV (r),weassumethatitisgivenas Unlessexplicitlystated,wewillemployu =1asourdefault halo T (cid:114) choice. GM (<r) Fig.3showstheexpectedeventrateforthePBHmicrolens- v (r)= NFW , (12) c r ing, computed using Eq. (17). Here we show the event rate as a function of the full-width-half-maximum (FWHM) where M (< r) is the interior mass within radius NFW timescaleofthelightcurve,whichmatchesoursearchofmi- r from the halo center, defined as M (< r) = NFW crolensing events from the real HSC data. If a PBH is in 4πρsr3s[ln(1+c)−c/(1+c)],wherec = r/rs foreachofthe the mass range M = [10−12,10−7]M (cid:39) 2×[1021,1026] g, MWandM31halos. (cid:12) it causes the microlensing event that has a typical timescale WestartfromthegeometryandvariablesshowninFig.4of in the range of [10−1,1] hour. The lighter or heavier PBHs Griestetal.(1991)andtheirEq.(10)(seeFig.2),whichgives tend to cause a shorter or longer timescale event. The event theratedΓofPBHsenteringavolumeelementalongtheline- rateisquitehighupto10−4foramicrolensingtimescalewith of-sightwheretheycancausemicrolensingforasinglestarin [0.1,1]hours. Thatis,ifwetakeabout10hoursobservation M31: and observe 108 stars at once for each exposure, we expect Ω ρ (d)u R (cid:34) v2(cid:35) many events up to 104 events (because 10−4 × 10 [hour] × dΓ= ΩPBH MDM πTv2E exp −vr2 v2r cosθdvrdθdddα. 0.1[hour] (cid:39) 104),assumingthatsuchPBHsconstituteama- DM PBH c c jorityofDMintheinterveningspacebridgingMWandM31. (13) TherightfigureshowsthatthePBHsintheM31haloregion Here n (d) is the number density of PBHs at the distance PBH give a slightly larger contribution to the event rate, because d from the Earth, v is the velocity of the PBH in the lens r we assumed a larger halo mass for M31 than that of MW. plane, θ is the angle at which the PBH enters the volume Thus the high-cadence HSC observation of M31 is suitable element, and α is an angle with respect to an arbitrary di- forsearchingformicrolensingeventsofPBHs. rection in the lens plane, as shown in Fig. 2. Microlensing events are identified if they have a given threshold magni- 2.3. LightCurvecharacterizationinpixellensingregime fication A at peak. This threshold magnification defines a T thresholdimpactparameterwithrespecttotheEinsteinradius Aswedescribedabove,thetimescaleforthePBHandM31 ofaPBH,u = R /R . ComparedtoGriestetal.(1991),we star microlensing system is typically several tens of minutes T T E havefurtherignoredmotionsofsourcestarsforsimplicity,i.e. for a PBH with 10−8M . However, there is an observational (cid:12) v = 0. Theparametersvaryintherangeofθ ∈ [−π/2,π/2], challenge. Since the M31 region is such a dense star field, t α∈[0,2π],v =[0,∞). fluxes from multiple stars are overlapped in each CCD pixel r Thetimescaleforthemicrolensingeventdescribedbythe (0.17(cid:48)(cid:48)pixelscaleforHSC/Subaru).Inotherwordsindividual MicrolensingConstraintsonPrimordialBlackHoleswithHSCObservationofM31 5 r] r] u u ho10−2 ho10−5 hour/10−3 10−121M0−(cid:12)11M hour/ ar/10−4 10−(cid:12)10M ar/10−6 10−8M(cid:12) ts/st10−5 (cid:12)10−9M(cid:12) ts/st even10−6 10−8M(cid:12) even10−7 MW M31 [ [ rate10−7 10−7M rate vent10−180−2 10−1 100 101(cid:12) vent10−180−2 10−1 100 101 E t [hours] E t [hours] FWHM FWHM Figure3. ThedifferentialeventrateofPBHmicrolensingforasingleM31star(Eq.17);therateperunitobservationtime(hour),perasinglesourcestarin M31,andperunittimescaleofthemicrolensinglightcurve(hour)forPBHsofagivenmassscale.HereweassumedthatalltheDMintheMWandM31halo regionsismadeofPBHs;ΩPBH/ΩDM =1. Thex-axisisthefull-width-half-maximum(FWHM)timescaleofmicrolensinglightcurve. Thelighterorheavier PBHhasashorterorlongertimescaleofmicrolensinglightcurve.TherightpanelshowstherelativecontributiontothemicrolensingeventrateduetoPBHsin eitherMWorM31haloregion,forthecaseofMPBH=10−8M(cid:12). starsarenotresolvedevenwiththeSubaruangularresolution toasourcestaronthesky,whereu istheimpactparameter min (about 0.6(cid:48)(cid:48) for the seeing size). Hence we cannot identify relativetotheEinsteinradiusR (u isdimension-less).The E min which individual star in M31 is strongly lensed by a PBH, secondoneisthetimescaleofthelightcurve,whichdepends even if it occurs. Such a microlensing of unresolved stars on the Einstein radius as well as the transverse velocity of falls in the “pixel microlensing” regime (Gould 1996) (also thePBHmovingacrossthesky. Forthetimescaleparameter seeCalchiNovati2010,forareview). weusetheFWHMtimescaleofthemicrolensinglightcurve, To identify microlensing events in the pixel microlensing t ,insteadoft ,definedas FWHM E regime requires elaborate data reduction techniques. In this paper,weusetheimagesubtractionorimagedifferencetech- A(cid:18)tFWHM(cid:19)−1≡ A0−1. (19) nique first described in Alard & Lupton (1998). The image 2 2 difference technique allows us to search for variable objects Thusthelightcurveofmicrolensingcanbefullymodeledby includingcandidatestarsthatundergomicrolensingbyPBHs. thethreeparameters,F ,u andt . Inthefollowingwe 0 min FWHM Inbrief,startingwiththetimesequencedNexpimagesofM31, willusethethreeparameterswhenperformingafittingofthe theanalysisproceedsasfollows. (i)Wegenerateareference microlensingmodeltotheobservedlightcurveofmicrolens- imagebyco-addingsomeofthebest-seeingimagesinorderto ing candidate in the image difference. Note that the use of gainahighersignal-to-noise. Nextwesubtractthisreference t ,insteadoft ,givesslightlylessdegenerateconstraints FWHM E imagefromeachofthe Nexp imagesaftercarefullymatching ontheparameters(Gondolo1999). their point spread functions (PSFs) as described in Alard & Lupton (1998). (ii) We search for candidate variable objects 3. DATAANALYSISANDOBJECTSELECTION thatshowupinthedifferenceimage. Inreality, iftheimage subtraction is imperfect, the difference image would contain 3.1. Observations many fake candidates, as we will discuss further. (iii) Once The HSC camera has 104 science detectors with a pixel secure variable objects are detected, we determine the posi- scaleof0.17(cid:48)(cid:48) (Miyazakietal.2015). The1.5degreediame- tion (RA and dec) of each variable object in the difference terFoVofHSCenablesustocovertheentireregionofM31, image. WeperformPSFphotometryforeachvariablecandi- fromtheinnerbulgetotheouterdiskandhaloregionswitha dateusingthePSFcentertobeatthepositionofthecandidate singlepointing. Thepointingiscenteredatthecoordinatesof inthedifferenceimage. ByrepeatingthePSFphotometryin theM31centralregion: (RA,dec)=(00h42m44.420s,+41d eachdifferenceimageoftheNexpimages,wecanmeasurethe 16m10.1s). Wedonotperformanyditheringbetweendiffer- light curve of the candidate as a function of the observation entexposuresinordertocomparestarsinthesameCCDchip, time. whichmakestheimagedifferencesomewhateasier.However, Thelightcurveofamicrolensingeventobtainedusingthe in reality the HSC/Subaru system has some subtle inaccura- PSF flux in the difference image at time t, obtained as de- ciesinitsauto-guidanceand/orpointingsystem. Thisresults scribedabove,canbeexpressedas in variations in the pointings of different exposures, typical ∆F(t)= F [A(t)−A(t )], (18) variationsrangefromfewtoafewtensofpixels. 0 ref Fig.4showstheconfigurationofthe104CCDchipsrela- where ∆F(t) is the differential flux of the star at time t rela- tive to the image of M31 on the sky. The white-color boxes tivetothereferenceimage,F istheintrinsicflux,A(t)isthe denotelocationsofHSC“patches”,whichareconvenienttes- 0 lensing magnification at t and A(t ) is the magnification at sellations of the HSC FoV. The image subtraction and the ref the time of the reference image, t . In the above equation, search of microlensing events will be done on a patch-by- ref ∆F(t) is a direct observable, and others (F ,A(t),A(t )) are patchbasis. Thepatcheslabeled“patch-D1”,“patch-D2”and 0 ref parametersthathavetobemodeled. “patch-H” denote the regions that represent inner and outer As can be seen from Eq. (1), the light curve for the mi- disk regions (-D1 and -D2) and a halo (-H) region, respec- crolensingofapointsourcebyapointmasscanbecharacter- tively. Theserepresentativeregionswillbeusedtoshowhow izedbytwoparameters. Thefirstparameteristhemaximum theresultsvaryinthedifferentregions. amplification A = A(u ) when the lensing PBH is closest Our observations were conducted on November 23, 2014 0 min 6 Niikuraetal. patch-D2 patch-H patch-D1 Figure4. ThebackgroundimageofM31showsconfigurationof104CCDchipsoftheSubaru/HSCcamera.Thewhite-colorgridsaretheHSC“patch”regions. Thepatcheslabeledas“patch-D1”,“patch-D2”and“patch-H”aretakenfromrepresentativeregionsofthediskregionclosertothecentralbulge,theouterdisk regionandthehaloregion,respectively,whichareoftenusedtoshowexampleresultsofourdataprocessinginthemaintext. Thedark-blueregionsarethe patchesweexcludefromourdataanalysisduetotoodensestarfields,wherefluxesfromstarsaresaturatedandthedataarenotproperlyanalyzed. 1.6 light curve for each variable object. The total exposure time was 90 seconds on source and about 35 seconds were spent 1.4 for readout on average. The weather was excellent for most 1.2 of our observation as can be seen from Fig. 5, which shows eeing1.0 hoouwrotbhseersveaetiinogn.FTWheHsMeeicnhgasnigzeedwwasitbhettitmerethfaronm0.7th(cid:48)(cid:48)efostramrtoosft s 0.8 oftheobservationperiod,withabestseeingFWHMofabout 0.4(cid:48)(cid:48) at t ∼ 10,000 sec (2.8hours). However, theseeing got 0.6 worsethan1(cid:48)(cid:48)towardstheendofourobservation.Weexclude 0.4 6 exposures which had seeing FWHM worse than 1.2(cid:48)(cid:48) and 0 5000 10000 15000 20000 25000 time[sec] usetheremaining188exposuresforourscienceanalysis. Wealsousetheg-andr-banddata,whichweretakendur- Figure5. ThePSFFWHM(seeingsize)ofeachexposure(90secexposure ingthecommissioningrunonJune16and17in2013,respec- each)asafunctionoftimet[sec]fromthestartofourobservation.Wetook tively,inordertoobtaincolorinformationofstarsaswellasto theimagesofM31regionevery2min(90secexposureplusabout35sec forreadout),andhave188exposuresintotal. Theredpointsshowthe10 testavariabilityofcandidatesatdifferentepochs. Theg-band best-seeingimages(∼ 0.45(cid:48)(cid:48))fromwhichthereferenceimage,usedforthe data consist of 5×120 sec exposures and 5×30 sec expo- imagedifference,wasconstructed. suresintotal, whilether-banddataconsistsof10×120sec exposures. whichwasadarknight,adayafterthenewmoon.Intotal,we acquired194exposuresofM31withtheHSCr-bandfilter8, 3.2. DatareductionandSampleselection fortheperiodofabout7hours,untiltheelevationofM31fell 3.2.1. Standarddataprocessing belowabout30degrees. Wecarriedouttheobservationswith acadenceof2minutes,whichallowsustodenselysamplethe We performed basic standard data reduction with the ded- icated software package for HSC, hscPipe (version 3.8.6; 8 See http://www.naoj.org/Projects/HSC/forobservers.html alsoseeBoschetal.inpreparation),whichisbeingdeveloped fortheHSCfiltersystem basedontheLargeSynopticSurveyTelescopesoftwarepack- MicrolensingConstraintsonPrimordialBlackHoleswithHSCObservationofM31 7 age(Ivezicetal.2008;Axelrodetal.2010;Juric´ etal.2015) (Eq.18). 9. Thispipelineperformsanumberofcommontaskssuchas Inordertomakeamastercatalogofvariableobjectcandi- biassubtraction,flatfieldingwithdomeflats,coadding,astro- dates, we constructed 63 target images by co-adding 3 time- metricandphotometriccalibrations,aswellassourcedetec- consecutive images from the original 188 exposure images. tionandmeasurements. A typical limiting magnitude is about 26 mag (5σ for point After these basic data processing steps, we subtract the sources),andevenbetterforimageswhereseeingisgood(see backgroundcontaminationfromlightdiffusionofatmosphere below). Whensubtractingthereferenceimagefromeachtar- and/or unknown scattered light. However the background getimage,theAlard&Luptonalgorithmusesaspace-varying subtraction is quite challenging for the M31 region, because convolutionkerneltomatchthePSFsoftwoimages. Theop- thereisnoblankregionandeveryCCDchipistosomeextent timalconvolutionkernelisderivedbyminimizingthediffer- contaminated by unresolved, diffuse stellar light. To tackle encebetweenconvolvedPSFsoftwoimages. Avariableob- this problem, we first divide each CCD chip into different ject,whichhasafluxchangebetweenthetwoimages,shows meshes(thedefaultsubdivisionisdoneinto64meshesineach upinthedifferenceimage. CCDchip).Wethenemployahigher-orderpolynomialfitting Fig.6showstheresultoftheimagesubtractionperformed to estimate a smooth background over different meshes. We by the pipeline. Even for a dense star region in M31, the employeda10-thorderpolynomialfittingfortheCCDchips pipeline properly subtracts the reference from the target im- aroundthebulgeregion,whichareparticularlydensestarre- age, by matching the PSFs and astrometry. A point source gions. ForotherCCDchips,weusea6-thorderpolynomial which undergoes a change in its flux shows up in the differ- fitting scheme. However, we found residual systematic ef- enceimage,asseenintherightpanel. Inthiscase,thecandi- fects in the background subtraction, so we will further use dateappearsasablack-colorpointsourcemeaninganegative additionalcorrectionforphotometryofthedifferenceimage, flux, because it has a fainter flux in the target image than in aswewilldiscusslater. thereferenceimage. Forourstudy,accuratePSFmeasurementsandaccurateas- Wedetectobjectsinthedifferenceimageeachofwhichis trometric solutions are crucial, because those allow for an definedfromalocalminimumormaximuminthedifference accurate subtraction of different images. The pipeline first image,whereweused5σforthePSFmagnitudeasdetection identifiesbrighteststarobjects(S/N ∼> 50)tocharacterizethe threshold. Thepipelinealsomeasuresthecenterofeachob- PSFanddoaninitialastrometricandphotometriccalibration. jectandthesizeandellipticityfromthesecondmoments. In From this initial bright object catalog, we select star candi- thisprocesswediscardedobjectsthathaveill-definedcenter, datesinthesizeandmagnitudeplaneforPSFestimation(see asaturatedpixel(s)inthedifferenceand/ororiginalimageor Bosch et al. for details). The selected stars are fed into the if the objects are placed at a position within 50 pixels from PSFExpackage(Bertin2011)todeterminethePSFasafunc- theCCDedge. tion of positions in each CCD chip. The functional form of thePSFmodelisthenativepixelbasisandweuseasecond- 3.2.3. PSFphotometryandmastercatalogofvariablestar candidates orderpolynomialperCCDchipforinterpolation. Forthede- termination of the astrometry, we used a 30 sec calibration Foreachvariablestarcandidate,weobtainPSFphotometry imagethatwetookatthebeginningofourobservation,where inthedifferenceimagetoquantifythechangeofflux. Weal- brightstarsarelesssaturated. Weobtainanastrometrysolu- lownegativePSFfluxesforcandidatesthathavefainterfluxin tion after every 11 images, 30 sec calibration frame plus 10 thetargetimagethaninthereferenceimage.Sincethephoton time-consecutivescienceexposures,bymatchingthecatalog countsineachCCDpixelisgenerallycontaminatedbymulti- of stars to the Pan-STARRS1 system (Schlafly et al. 2012; plestarsinmostoftheM31regions,weoftenfindaresidual Tonry et al. 2012; Magnier et al. 2013). The HSC pipeline coherent background (large-scale modulated background) in provides us with a useful feature, the so-called “hscMap”, eachdifferenceimage,duetoimperfectbackgroundsubtrac- which defines a conversion of the celestial sphere to the flat tionintheoriginalimage. Toavoidcontaminationfromsuch coordinatesystem,“hscMapcoordinate”,basedonatessella- a residual background, we first measure the spatially con- tion of the sky. In Fig. 4 the white-color regions denote the stantbackgroundfromthemedianofcountsin41×41pixels hscMap“patch”regions. Weperformimagedifferencesepa- aroundeachobjectinthepostage-stampimage,andthensub- rately on each patch. Due to too many saturated stars in the tract this background from the image. Then we perform the bulge region and M101, we exclude the patches, marked by PSF-photometry counts in ADU units taking the PSF center darkbluecolor,fromthefollowinganalysis. tobeatthecandidatecenter. Hereafterwesometimesreferto PSFmagnitudeinthedifferenceimageas“PSFcounts”. The 3.2.2. ImagesubtractionandObjectdetection pipelinealsoestimatesnoiseineachpixelassumingtheback- Inordertofindvariableobjects, weemploythedifference ground limit (Poisson noise), and gives an estimation of the image technique developed in Alard & Lupton (1998) (also noiseforthePSFphotometry(seeequations14and15forthe seeAlard2000),whichisintegratedintotheHSCpipeline.To similardefinitioninMandelbaumetal.2014). However, the dothis,wefirstgeneratedthe“reference”imagebyco-adding noiseestimationinvolvesanon-trivialpropagationofPoisson 10best-seeingimagesamongthe188exposureimages,where noise in the image difference procedures, so we will use an- the10imagesarenottime-consecutive(mostofthe10images otherestimateforthePSFphotometryerrorineachpatch,as arefromimagesaroundabout3hoursfromthebeginningof describedbelow. the observation, as shown in Fig. 5). We use the mean of In the following we focus on the PSF photometry counts the10imagesastheobservationtimeofthereferenceimage, in ADU units in the difference image, rather than the mag- t , which is needed to model the microlensing light curve nitude, becauseitisthedirectobservable. However, wewill ref alsoneedtoinferthemagnitudeofeachcandidate;forexam- 9 Also see http://www.astro.princeton.edu/˜rhl/photo-lite. ple,toestimatetheluminosityfunctionofsourcestarsineach pdffordetailsofthealgorithmusedinthepipeline. magnitudebinortoplotthelightcurveofvariablestarcandi- 8 Niikuraetal. Figure6. Anexampleoftheimagesubtractiontechniqueweusefortheanalysisinthispaper.Theleft-panelimageisthereferenceimagewhichwasconstructed byco-addingthe10best-seeingdata,withtypicalseeingof0.45(cid:48)(cid:48)(seeFig.5).Thesizeoftheimageis222×356pixels(correspondingtoabout0.63sq.arcmin), whichistakenfrom“patch-D2”inFig.4.Themiddlepanelisthetargetimage(coaddedimageof3exposures)whoseseeingsizeis0.8(cid:48)(cid:48).Therightpanelshows thedifferenceimage,showingthatthepipelineproperlysubtractsthetwoimagesevenforsuchadensestarregionandavariablestarcandidateshowsupatthe center. Inthiscase,thecandidateobjectappearsasanegativefluxinthedifferenceimage,becausetheobjecthasafainterfluxinthetargetimagethaninthe referenceimage. dates in units of the magnitude. In this case we estimate the 3.2.4. Lightcurvemeasurement magnitudeofanobjectinthei-thtargetimage,m,basedon i Once each candidate is identified, we measure the PSF mi =−2.5log(cid:32)CdiffF,i+Cref(cid:33), (20) ctooumnetsasiunreeathcehloigfhtthceu6rv3edwiffitehrean6cemiimnargeesos.lutTiohnis,aaslloawfusnucs- 0,i tionoftimefromthebeginningtotheendofour7hourlong where Cdiff,i is the PSF flux for the object in the difference observations. In order to restore the highest time resolution imageofthei-thtargetimage,C isthePSFfluxoftheref- of our data, we then used each of 188 exposures and mea- erenceimageattheobjectpositiorenf,andF isthezero-point suredthePSFcountsineachofthe188differenceimagethat 0,i flux in the i-th image. Note that the counts of the reference was made by subtracting the reference image (the coadded image C can be contaminated by fluxes from neighboring image of 10 best-seeing exposures) from every single expo- ref stars,sotheabovemagnitudemightnotbeaccurate. sure. Hereweusedthesamepositionofcandidateasusedin Fromtheinitialcatalogconstructedfromthe5σcandidates the63images. Inthiswaywemeasurethelightcurveofthe from the 63 coadded images, we prune it down to a master objectwith2mintimeresolution. catalog of “secure” variable star candidates by applying the Fig. 8 shows the light curves for examples of real vari- followingcriteria: able stars. Note that we converted the PSF counts of each candidate in the difference image to the magnitude based on • PSF magnitude threshold – A candidate should have Eq.(20). However,themagnitudemightbecontaminatedby a PSF magnitude, with a detection significance of 5σ fluxesfromblendedstarssurroundingthecandidatestar. This or higher (including a negative flux), in any of the 63 demonstrates our ability to properly sample the light curves differenceimages. withhightimeresolution. Thusthefigureshowsthatthedif- ferenceimagetechniqueworkswellandcanidentifyvariable • Minimum size – The size of the candidate should be starcandidatesaswellasmeasuretheirlightcurves. greaterthan0.75timesthePSFsizeofeachdifference Fig. 9 shows the distribution of secure variable star candi- image. datesdetectedinouranalysisovertheHSCfield-of-view,for candidateswithmagnitudesm ≤ 24 and25magintheleft r • Maximum size – The size of the candidate should be and right panel, respectively. To estimate the magnitude of smallerthan1.25timesthePSFsize. eachcandidate,weusedthePSFmagnitudeofthecandidate inthereferenceimage. Basedontheshapeofthelightcurve • Roundness–Thecandidateshouldhavearoundshape. for each candidate, we visually classified the candidates in Werequireourcandidatestohaveanaxisratiogreater different types of variable stars; i) stellar flares, ii) eclipsing than0.75,asthePSFdoesnotshowextremeaxisratios. or contact binary systems, iii) asteroids (moving object), iv) Cepheidvariablesifthecandidatesappeartohavealongerpe- • PSF shape – We impose that the shape of an ob- riod than our observation duration (7 hours), and v) “fakes”. ject should be consistent with the PSF shape. The Here fakes are those candidates which show time variability residual image, obtained by subtracting a scaled PSF onlywhentheseeingconditionsareasgoodas ∼< 0.6(cid:48)(cid:48).Since model from the candidate image in the difference im- such good-seeing data is deeper as found from Figs. 5 and age, should be within 3σ for the cumulative deviation 10,weseemtofindRR-Lyraetypevariableswhoseapparent overpixelsinsidethePSFaperture. magnitudes would be around r ∼ 25 mag. When the seeing getsworse,thesestarscannotbereliablyseeninthedifference Fig. 7 shows examples of objects that pass or fail the above image. SinceRR-LyraestarsshouldexistintheM31region, criteria. Note that the above conditions are broad enough in we think the “fake” stars are good candidates for RR-Lyrae orderforusnottomissarealcandidateofmicrolensingifit stars. Thefigureshowsthatouranalysissuccessfullyenables exists. Wemakeamastercatalogofvariablestarcandidates to find variable stars across the disk and halo regions. The fromobjectsthatpassalltheaboveconditionsaswellasare totalnumberofcandidatesare1,334and2,740form ≤ 24 detected in the image difference at least twice in the 63 dif- and25mag,respectively. r ference images at the same position within 2 pixels. These criteriaresultin15,571candidatesofvariableobjects,which 4. STATISTICSANDSELECTIONCRITERIA isourmastercatalogofvariablestarcandidates. MicrolensingConstraintsonPrimordialBlackHoleswithHSCObservationofM31 9 Figure7. Examplesofdetectedobjectsinthedifferenceimage, whichpassordonotpasstheselectioncriteriatodefineamastercatalogofvariablestar candidates(seetextfordetails). Eachpanelshows4postage-stampimages: theleftmostimageisthereferenceimage(thecoaddedimageof10best-seeing exposures),the2ndleftisthetargetimage(thecoaddedimageof3time-consecutiveexposures),the3rdimageisthedifferenceimagebetweenthereferenceand targetimages,andtherightmostimageistheresidualimageaftersubtractingthebest-fitPSFimagefromthedifferenceimageattheobjectposition. Thetwo objectsintoprawaresuccessfulcandidatesthatpassedalltheselectioncriteria:theleft-panelobjecthasabrighterfluxinthetargetimagethaninthereference image,whiletheright-panelobjecthasafainterflux(thereforeappearasablack-colorimagewithnegativeflux). Thelower-rowobjectsareremovedfromthe catalogaftertheselectioncriteria.TheobjectsinthemiddlerowareexcludedbecausetheobjectiseithersmallerorlargerthanthePSFsize.Theleftobjectin thebottomrowisexcludedbecauseithasatoolargeellipticitythanPSF.Therightobjectisexcludedbecauseoftoolargeresidualimage. 20.5 21.0 21.1 21.0 21.2 21.3 ag21.5 ag21.4 m m 21.5 22.0 21.6 21.7 22.5 21.8 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 time[sec] time[sec] 21 21.7 22 21.8 23 21.9 ag24 ag22.0 m m 25 22.1 26 22.2 27 22.3 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 time[sec] time[sec] Figure8. Examplesoflightcurvesforrealvariablestarsidentifiedinourmethod. Thegreen-circledatapointsshowthelightcurvesampledbyouroriginal dataof2minsamplingrate,whilethered-trianglepointsarethelightcurvemeasuredfromthecoaddeddataof3time-consecutiveexposures(therefore6min cadence)(seetextfordetails). Upperleft: candidatestellarflare. Whenconvertingthemagnitudefromthecountsinthedifferenceimageateachobservation time,weusedEq.(20).Notethattheestimatedmagnitudemightbecontaminatedbyfluxesofneighboringstarsinthereferenceimage.Upperright:candidate contactbinarystars. Lowerleft: theeclipsebinarysystem,whichisprobablyasystemofwhitedwarfandbrowndwarf,becauseonestar(whitedwarf)hasa totaleclipseoverabout10minduration,andthentheeclipsehasabout3hoursperiod. Lowerright:candidatevariablestar,whichhasalongerperiodthanour observationduration(7hours). Giventhecatalogofvariablestarcandidateseachofwhich shapes,itiscrucialtoproperlyestimatethephotometryerror has its measured light curve, we now search for secure can- inthelightcurvemeasurement. However,accuratephotome- didatesofPBHmicrolensing. Inthissectionwedescribeour tryfordensestarregionsinM31ischallenging. Toovercome selectioncriteriatodiscriminatethemicrolensingeventfrom thisdifficulty,weusethefollowingapproachtoobtainacon- othervariables. servative estimate of the error. The pipeline performs image subtraction on each patch basis (as denoted by white-color 4.1. Photometricerrorsofthelightcurvemeasurement square regions in Fig. 4). For a given difference image, we randomly select 1,000 points in each patch region, and then Ourprimarytooltosearchforvariableobjectsinthedense star regions of M31 is the use of the image difference tech- perform PSF photometry at each random point in the same manner as that for the variable star candidates. In selecting nique,aswehaveshown.Torobustlysearchforsecurecandi- randompoints,weavoidedregionscorrespondingtobadCCD datesofPBHmicrolensingthathavetheexpectedlightcurve 10 Niikuraetal. fakes(inc. RR-Lyraecand.) fakes(inc. RR-Lyraecand.) Cepheidvariable Cepheidvariable asteroid asteroid stellarflare stellarflare eclipsingbinary eclipsingbinary contactbinary contactbinary Figure9. Distributionofsecurevariablestarcandidates,detectedfromouranalysisusingtheimagedifferencetechnique.Thedifferentsymbolsdenotedifferent typesofcandidatesclassifiedbasedontheshapesoftheirlightcurves.Hereweexcludeothernon-securecandidatesthatareCCDartifactsandfakeeventsnear totheCCDedgeorbrightstars.Theleftpanelshowsthedistributionforthecandidateswithmagnitudesmr≤24mag,whiletherightpanelshowsthecandidates atmr≤25mag.Thenumberofcandidatesare1,334and2,740,respectively. 23.5 surement in the difference image, estimated based on the above method. The shape of the photometric error appears 24.0 to correlate with the seeing conditions in Fig. 5. The figure de24.5 showsthatmostofourdatareachesadepthof26magorso u thankstothe8.2mlargeapertureofSubaru. t ni g25.0 ma 4.2. Microlensingmodelfittothelightcurvedata old25.5 Here we describe our selection procedure for PBH mi- h s crolensing events from the candidates. The unique part of er26.0 h our study is the the high cadence for the light curve of each t 5 sigma candidate,sampledbyevery2minoverabout7hours. How- 26.5 3 sigma everthemonitoringofeachlightcurveislimitedbyaduration 27.0 of7hours. Ifamicrolensingeventhasalongertimeduration 0 5000 10000 15000 20000 25000 than7hours,wecannotidentifysuchacandidate.Weusethe time[sec] statisticsinTable1toquantifythecharacteristicsofeachlight Figure10. Thephotometricerrorusedforthelightcurvemeasurementin curve. Ourselectionprocedureforthecandidatesaresumma- thedifferenceimage;werandomlyselect1,000pointsinthedifferenceim- rizedinTable2. Wewilldescribeeachoftheselectionsteps ageofagivenpatch(hereshownforthepatch-D2inFig.4),measurethe indetail. PSFphotometryateachrandompoint,andthenestimatethevarianceofthe As we described, we start with the master catalog of vari- PSFphotometries(seetextfordetails). Thesquaresymbolsshowthe3-or 5-sigmaphotometricerrorsestimatedfromthevariancewhenusingthedif- able star candidates, which contains 15,571 candidates, to ferenceimagesconstructedfromthecoaddedimagesof3exposures, asa search for microlensing events. Our level 1 requirement is functionofobservationtime. Thecirclesymbols,connectedbytheline,are thatacandidateeventshouldhavea“bump”initslightcurve, theresultsforeachexposure. Althoughweusethephotometricerrorinthe definedas3time-consecutivefluxchangeseachofwhichhas ADUcountsforafittingofthemicrolensingmodeltothelightcurve,wehere convertthecountstothemagnitudeforillustrativeconvenience. asignal-to-noiseratiogreaterthan5σinthedifferenceimage; ∆C ≥ 5σ, where the subscript i denotes the i-th difference i i pixelsorneartheCCDchipedges. Wethenestimatethevari- image(attheobservationtimeti). Thiscriterialeavesuswith ance from those 1,000 PSF magnitudes, repeat the variance 11,703candidatesoverallthepatches. estimationinthedifferenceimageforeveryobservationtime, Nextwefittheobservedlightcurvesofeachcandidatewith and use the variance as a 1σ photometry error in the light amodeldescribingtheexpectedmicrolensinglightcurve. As curve measurement at the observation time. The photomet- wedescribedinSection2.3,thelightcurveofamicrolensing ricerrorestimatedinthiswaywouldincludeacontamination inthedifferenceimageisgivenas fromvariouseffectssuchasalarge-scaleresidualbackground ∆C(t)=C [A(t)−A(t )], (21) duetoanimperfectbackgroundsubtraction. Wefindthatthe i 0 i ref photometric error is larger than the error estimated from the whereC isthePSF-photometrycountsofanunlensedimage 0 pipelineatthecandidateposition, whichislocallyestimated inthedifferenceimage,correspondingto F inEq.(18),and 0 by propagating the Poisson noise of the counts through the A(t)and A(t )arelensingmagnificationsattheobservation i ref imagesubtractionprocesses. timet andthetimeofthereferenceimaget . Asdescribed i ref Fig.10showsthephotometricerroronthelightcurvemea- inSection2.3,thelightcurveinthedifferenceimageischar-