ebook img

Microhydrodynamics and Complex Fluids PDF

254 Pages·2012·16.009 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microhydrodynamics and Complex Fluids

B a Mechanical Engineering r t h è s -B ie s e l Microhydrodynamics Microhydrodynamics M i and Complex Fluids c r and Complex Fluids o h y d r o A self-contained textbook, Microhydrodynamics and Complex d Fluids deals with the main phenomena that occur in slow, y inertialess viscous flows often encountered in various industrial, n biophysical and natural processes. It examines a wide range of a situations, from flows in thin films, porous media and narrow m channels to flows around suspended particles. Each situation is illustrated with examples that can be solved analytically so that i c the main physical phenomena are clear. It also discusses a range s of numerical modelling techniques. a Two chapters deal with the flow of complex fluids, presented n first with the formal analysis developed for the mechanics of d suspensions and then with the phenomenological tools of non- Newtonian fluid mechanics. All concepts are presented simply, C with no need for complex mathematical tools. End-of-chapter o exercises and exam problems help you test yourself. m p l e Dominique Barthès-Biesel has taught this subject for over 15 x years and is well known for her contributions to low Reynolds number hydrodynamics. Building on the basics of continuum F mechanics, this book is ideal for graduate students specializing l u in chemical or mechanical engineering, material science, i bioengineering, and physics of condensed matter. d s K13875 ISBN 978-1-4398-8196-5 90000 9 781439 881965 K13875_COVER_final.indd 1 5/1/12 2:11 PM Microhydrodynamics and Complex Fluids Dominique Barthès-Biesel K13875_FM.indd 1 4/24/12 11:42 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120518 International Standard Book Number-13: 978-1-4665-6691-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures ix List of Tables xv Foreword xvii About the Author xix Symbol Description xxi 1 Fundamental Principles 1 1.1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . 4 1.5 Energy Dissipation . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . 6 2 General Properties of Stokes Flows 7 2.1 Stationary Stokes Equations . . . . . . . . . . . . . . . . . . 8 2.1.1 Pressure–Velocity Relation . . . . . . . . . . . . . . . 8 2.1.2 Pressure–Vorticity Relation . . . . . . . . . . . . . . . 9 2.1.3 Boundary Conditions on a Solid Surface . . . . . . . . 9 2.2 Simple Stokes Flow Problem . . . . . . . . . . . . . . . . . . 10 2.3 Linearity and Reversibility . . . . . . . . . . . . . . . . . . . 11 2.3.1 Linearity Theorem . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Reversibility . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Uniqueness Theorem . . . . . . . . . . . . . . . . . . . 12 2.4.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Minimum Energy Dissipation . . . . . . . . . . . . . . . . . . 14 2.5.1 Minimum Energy Theorem . . . . . . . . . . . . . . . 14 2.5.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Reciprocal Theorem . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.1 Reciprocal Theorem . . . . . . . . . . . . . . . . . . . 16 iii iv 2.6.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . 16 2.6.3 Particular Cases of the Reciprocal Theorem . . . . . . 17 2.7 Solution in Terms of Harmonic Functions . . . . . . . . . . . 17 2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8.1 Symmetry of Stokes Flow . . . . . . . . . . . . . . . . 19 2.8.2 EnergyDissipationDuetotheMotionofaSolidParticle in a Quiescent Fluid . . . . . . . . . . . . . . . . . . . 19 2.8.3 Drag on a Particle in a Reservoir . . . . . . . . . . . . 20 3 Two-Dimensional Stokes Flows 21 3.1 Stream Function . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . 21 3.1.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . 23 3.2 Two-Dimensional Stokes Momentum Equation . . . . . . . . 23 3.3 Wedge with a Moving Boundary . . . . . . . . . . . . . . . . 24 3.3.1 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.2 Pressure Field . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 Force on the Scraper . . . . . . . . . . . . . . . . . . . 28 3.3.4 Other Wedge Flows with Moving Boundary . . . . . . 29 3.4 Flow in Fixed Wedges . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Large Wedge Angle (2α>146.3o) . . . . . . . . . . . 32 3.4.2 Small Wedge Angle (2α<146.3o) . . . . . . . . . . . 34 3.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.1 Closing a Wedge . . . . . . . . . . . . . . . . . . . . . 37 3.5.2 Flow in an Unbounded Cavity . . . . . . . . . . . . . 38 3.5.3 Flow near a Stagnation Point on a Plane Wall . . . . 38 4 Lubrification Flows 41 4.1 Two-Dimensional Lubrication Flows . . . . . . . . . . . . . . 42 4.1.1 Orders of Magnitude and Approximations . . . . . . . 42 4.1.2 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.3 Mass Balance . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.4 Two-Dimensional Reynolds Equation. . . . . . . . . . 45 4.1.5 Example: Slider Bearing . . . . . . . . . . . . . . . . . 46 4.2 Three-Dimensional Lubrication Flows . . . . . . . . . . . . . 49 4.2.1 Three-Dimensional Reynolds Equation . . . . . . . . . 49 4.2.2 Example: Squeezing a Drop . . . . . . . . . . . . . . . 51 4.3 Flow between Fixed Solid Boundaries . . . . . . . . . . . . . 53 4.3.1 Hele–Shaw Flow . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Flow in Microfluidic Channels . . . . . . . . . . . . . . 55 4.4 Flow in Porous Media . . . . . . . . . . . . . . . . . . . . . . 58 4.4.1 Definition of a Porous Medium . . . . . . . . . . . . . 59 4.4.2 Flow in a Porous Medium . . . . . . . . . . . . . . . . 60 v 4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.1 Lubrication Flow in a Journal Bearing . . . . . . . . 63 4.5.2 Flow in an Ideal Porous Membrane . . . . . . . . . . . 64 4.5.3 Flow along a Porous Wall . . . . . . . . . . . . . . . . 66 4.5.4 Motion of a Cylinder between Two ParallelWalls . . . 67 5 Free Surface Films 71 5.1 Interface between Two Immiscible Fluids . . . . . . . . . . . 72 5.1.1 Geometry of a Free Surface . . . . . . . . . . . . . . . 72 5.1.2 Kinematic Conditions . . . . . . . . . . . . . . . . . . 73 5.1.3 Dynamic Conditions: Laplace’s Law . . . . . . . . . . 73 5.1.4 Air–Liquid Interface . . . . . . . . . . . . . . . . . . . 74 5.2 Gravity Spreading of a Fluid on a Horizontal Plane . . . . . 74 5.2.1 Spreading with No Surface Tension . . . . . . . . . . . 75 5.2.2 Effect of Surface Tension . . . . . . . . . . . . . . . . 78 5.3 Stability of a Film Flowing Down an Inclined Plane . . . . . 79 5.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.1 Gravity Spreading of a Film with Continuous Flux . . 82 5.4.2 Two-Dimensional Thermocapillary Flow . . . . . . . 83 5.4.3 Motion of a Contact Lens on the Eye . . . . . . . . . 84 6 Motion of a Solid Particle in a Fluid 87 6.1 Motion of a Solid Particle in a Quiescent Fluid . . . . . . . . 88 6.1.1 Resistance and Mobility Tensors . . . . . . . . . . . . 89 6.1.2 Relations between the Resistance and Mobility Tensors 90 6.1.3 Translation without Rotation . . . . . . . . . . . . . . 92 6.1.4 Rotation without Translation . . . . . . . . . . . . . . 93 6.2 Isotropic Particles . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3 Flow around a Translating Sphere . . . . . . . . . . . . . . . 95 6.3.1 Stream Function . . . . . . . . . . . . . . . . . . . . . 96 6.3.2 Velocity and Vorticity . . . . . . . . . . . . . . . . . . 98 6.3.3 Force Exerted on the Sphere . . . . . . . . . . . . . . 98 6.3.4 Streamline Pattern . . . . . . . . . . . . . . . . . . . . 100 6.4 Flow around a Rotating Sphere . . . . . . . . . . . . . . . . 101 6.5 Slender Particles . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.5.1 Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.5.2 Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.6.1 Sedimentation of a Particle with a Symmetry Plane . 105 6.6.2 Swimming Motion of Spheres and Bacteria . . . . . . 105 6.6.3 Micro-OrganismPropulsion by Means of a Flagellum. 107 6.6.4 Solid Particle in a General Flow Field . . . . . . . . . 109 vi 7 Flow of Bubbles and Droplets 111 7.1 Freely Suspended Liquid Drop . . . . . . . . . . . . . . . . . 112 7.1.1 General Problem Statement . . . . . . . . . . . . . . . 112 7.1.2 Dimensional Analysis . . . . . . . . . . . . . . . . . . 113 7.2 Translation of a Bubble in a Quiescent Fluid . . . . . . . . . 114 7.2.1 Problem Equations . . . . . . . . . . . . . . . . . . . . 114 7.2.2 Solution in Terms of a Stream Function . . . . . . . . 115 7.2.3 Shape of the Bubble . . . . . . . . . . . . . . . . . . . 116 7.3 Translation of a Liquid Drop in a Quiescent Fluid . . . . . . 117 7.3.1 Hadamard–Rybczynski Drag on a Drop . . . . . . . . 117 7.3.2 Stability of the Stokes Solution . . . . . . . . . . . . . 119 7.3.3 Validity Limits of the Stokes Solution . . . . . . . . . 119 7.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.4.1 Thermocapillary Motion of a Gas Bubble . . . . . . . 122 7.4.2 Flow in a Droplet Due to an Electric Field . . . . . . 123 8 General Solutions of the Stokes Equations 127 8.1 Flow Due to a Point Force . . . . . . . . . . . . . . . . . . . 128 8.1.1 Stokeslet . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.1.1.1 Demonstration . . . . . . . . . . . . . . . . . 129 8.1.2 Stokeslet Properties . . . . . . . . . . . . . . . . . . . 130 8.1.3 Correspondence with the Flow around a Sphere . . . . 131 8.1.4 Solutions Derived from a Stokeslet . . . . . . . . . . . 132 8.2 Irrotational Solutions . . . . . . . . . . . . . . . . . . . . . . 134 8.3 Series of Fundamental Solutions: Singularity Method . . . . 135 8.3.1 Singularities for External Flows . . . . . . . . . . . . . 136 8.3.2 Singularities for Internal Flows . . . . . . . . . . . . . 137 8.3.3 Example: Translating Gas Bubble . . . . . . . . . . . 140 8.3.4 Applications of the Singularity Method . . . . . . . . 141 8.4 Integral Form of the Stokes Equations . . . . . . . . . . . . . 142 8.4.1 Velocity Field in . . . . . . . . . . . . . . . . . . . . 143 D 8.4.2 Velocity Field on the Boundary ∂ . . . . . . . . . . . 144 D 8.4.2.1 Demonstration . . . . . . . . . . . . . . . . . 145 8.4.3 Boundary Integral Method . . . . . . . . . . . . . . . 145 8.4.4 Motion of a Solid Particle . . . . . . . . . . . . . . . . 146 8.4.5 Applications of the Boundary Integral Method . . . . 147 8.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.5.1 Liquid Droplet Translating in a Quiescent Liquid . . . 150 8.5.2 Solid Sphere Freely Suspended in a Linear Shear Flow 150 8.5.3 Hydrodynamic Interaction between Three Spheres . . 151 8.5.4 Integral Equation for the Flow around a Solid Particle 153 8.5.5 Integral Equation for the Flow around a Liquid Drop 154 vii 9 Introduction to Suspension Mechanics 155 9.1 Homogenisation of a Suspension . . . . . . . . . . . . . . . . 156 9.2 Micro–Macro Relationship . . . . . . . . . . . . . . . . . . . 157 9.3 Dilute Suspension . . . . . . . . . . . . . . . . . . . . . . . . 160 9.3.1 Dilute Suspension of Identical Spheres . . . . . . . . . 160 9.3.2 Dilute Suspension of Anisotropic Particles . . . . . . . 161 9.3.3 Approximation O(c2) to the Viscosity of a Suspension of Spheres . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.4 Highly Concentrated Suspension of Spheres . . . . . . . . . . 165 9.5 Numerical Modelling of a Suspension . . . . . . . . . . . . . 166 9.5.1 Global Mobility and Resistance Tensors . . . . . . . . 167 9.5.2 Application to a Suspension of Spherical Particles . . 168 9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.7.1 Constitutive Law of a Suspension of Spheres . . . . . 172 9.7.2 Intrinsic Convection in a Suspension . . . . . . . . . . 173 10 O(Re) Correction to Some Stokes Solutions 177 10.1 Translation of a Sphere: Oseen Correction . . . . . . . . . . . 177 10.2 Translation of a Cylinder: Stokes Paradox . . . . . . . . . . . 180 10.3 Validity Limits of the Stokes Approximation . . . . . . . . . 182 10.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.4.1 Evaluation of the Reynolds Number . . . . . . . . . . 183 11 Non-Newtonian Fluids 185 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 11.2 Non-Newtonian Fluid Mechanics . . . . . . . . . . . . . . . . 187 11.2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . 187 11.2.2 Formulation of a Constitutive Law . . . . . . . . . . . 188 11.2.3 Viscometric Parameters in Simple Shear Flow . . . . . 190 11.3 Viscous Non-Newtonian Liquid . . . . . . . . . . . . . . . . . 191 11.3.1 Reiner–Rivlin Fluid . . . . . . . . . . . . . . . . . . . 191 11.3.2 Fluid with a Yield Stress . . . . . . . . . . . . . . . . 193 11.4 Viscoelastic fluid . . . . . . . . . . . . . . . . . . . . . . . . . 195 11.4.1 Relative Deformation . . . . . . . . . . . . . . . . . . 195 11.4.2 General Constitutive Law . . . . . . . . . . . . . . . . 197 11.5 Linear Viscoelastic Laws . . . . . . . . . . . . . . . . . . . . 197 11.5.1 Maxwell Fluid . . . . . . . . . . . . . . . . . . . . . . 197 11.5.2 Generalised Maxwell Fluid . . . . . . . . . . . . . . . 199 11.5.2.1 Proof of Equation (11.39) . . . . . . . . . . . 200 11.5.3 Linear Viscoelastic Law: Integral Form . . . . . . . . 201 11.6 Non-Linear Viscoelastic Laws . . . . . . . . . . . . . . . . . . 202 viii 11.6.1 Non-Linear Integral Laws . . . . . . . . . . . . . . . . 202 11.6.2 Non-Linear Differential Laws . . . . . . . . . . . . . . 203 11.7 Non-Newtonian Flow Examples . . . . . . . . . . . . . . . . 204 11.7.1 Stationary 2D Flow between Two ParallelPlates . . . 204 11.7.1.1 Example (a): Power Law Fluid . . . . . . . . 205 11.7.1.2 Example (b): Bingham Fluid . . . . . . . . . 207 11.7.1.3 Example (c): Unknown Constitutive Law . . 208 11.7.2 Oscillatory Flow of a Viscoelastic Liquid . . . . . . . . 209 11.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.9.1 Flow of a Bingham Fluid in a Cylindrical Tube . . . . 212 11.9.2 Weissenberg Effect . . . . . . . . . . . . . . . . . . . . 213 Appendix A Notations 217 A.1 Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . 217 A.2 Einstein Summation Convention . . . . . . . . . . . . . . . . 218 A.3 Integration on a Sphere . . . . . . . . . . . . . . . . . . . . . 219 Appendix B Curvilinear Coordinates 221 B.1 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . 221 B.2 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . 224 Bibliography 227 Index 231 List of Figures 1.1 Definition of a fluid domain bounded by ∂ . . . . . . . . 5 D D 2.1 Stokesflowinthefluiddomain boundedby∂ ∂ ∂ . 10 0 1 2 D D ∪ D ∪ D 2.2 Definition of the fluid domain. The velocity is prescribed on the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Stokes flow around a solid particle with a symmetry plane. . 19 3.1 2D Stokes flow in the xy-plane in terms of Cartesian(x,y) or polar (r,θ) coordinates.. . . . . . . . . . . . . . . . . . . . . 22 3.2 Stokes flow near a wall with longitudinal obstacles. . . . . . 24 3.3 Definition of the Taylor paint-scraper. . . . . . . . . . . . . 25 3.4 Sketch of the streamlines for different values of Ψ and com- parison with an exact solution for α=π/2. . . . . . . . . . 27 3.5 Forcesonthescraperandonthefluid.Thestreamlinepattern is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Belt plunging into a quiescent liquid. . . . . . . . . . . . . . 30 3.7 Examples of flow near 2D grooves or protrusions. . . . . . . 30 3.8 Flow in a fixed wedge of angle 2α.. . . . . . . . . . . . . . . 31 3.9 Graphical representation of Equation (3.55). . . . . . . . . . 33 3.10 Streamlines forα>73o:(a)antisymmetricflow;(b) symmet- ric flow; (c) arbitrary flow. . . . . . . . . . . . . . . . . . . . 33 3.11 Streamlines forα<73o:(a)antisymmetricflow;(b) symmet- ric flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.12 Experimental observation of corner eddies for 2α=28.5o . . 36 3.13 Corner eddies in cavities with different width to height ratios 36 3.14 Closing of a wedge with angle 2α at time t. . . . . . . . . . 37 3.15 Flow in an unbounded cavity with parallel walls. . . . . . . 38 3.16 Flow near a stagnation point on a flat plate. . . . . . . . . . 39 4.1 Two-dimensional lubrication flow between two solid walls. . 42 4.2 Mass balance over a small film element. . . . . . . . . . . . 45 4.3 Two-dimensional slider bearing. . . . . . . . . . . . . . . . . 46 4.4 2D slider bearing: (a) velocity profile in the gap; (b) pressure distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Sector thrust bearings used on rotor shafts: example of a Michell thrust bearing with patented pads anchor system. . 49 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.