ebook img

Microcavity Semiconductor Lasers: Principles, Design, and Applications PDF

326 Pages·2021·13.769 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microcavity Semiconductor Lasers: Principles, Design, and Applications

MicrocavitySemiconductorLasers Microcavity Semiconductor Lasers Principles, Design, and Applications Yong-zhen Huang Yue-de Yang Authors AllbookspublishedbyWILEY-VCH arecarefullyproduced.Nevertheless, Prof.Yong-zhenHuang authors,editors,andpublisherdonot StateKeyLabofIntegrated warranttheinformationcontainedin Optoelectronics thesebooks,includingthisbook,to InstituteofSemiconductors befreeoferrors.Readersareadvised ChineseAcademyofSciencesand tokeepinmindthatstatements,data, CollegeofMaterialsSciencesand illustrations,proceduraldetailsorother OptoelectronicTechnology itemsmayinadvertentlybeinaccurate. UniversityofChineseAcademyof Sciences LibraryofCongressCardNo.:appliedfor No.A35,QingHuaEastRoad HaidianDistrict BritishLibraryCataloguing-in-Publication 100083Beijing DataAcataloguerecordforthisbook China isavailablefromtheBritishLibrary. Prof.Yue-deYang Bibliographicinformationpublishedby StateKeyLabofIntegrated theDeutscheNationalbibliothekThe Optoelectronics DeutscheNationalbibliothekliststhis InstituteofSemiconductors publicationintheDeutsche ChineseAcademyofSciencesand Nationalbibliografie;detailed CollegeofMaterialsSciencesand bibliographicdataareavailableonthe OptoelectronicTechnology Internetat<http://dnb.d-nb.de>. UniversityofChineseAcademyof Sciences ©2021WILEY-VCHGmbH,Boschstr. No.A35,QingHuaEastRoad 12,69469Weinheim,Germany HaidianDistrict 100083Beijing Allrightsreserved(includingthoseof China translationintootherlanguages).No partofthisbookmaybereproducedin CoverImage:©Supphachai anyform–byphotoprinting, Salaeman/Shutterstock microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw. PrintISBN:978-3-527-34546-5 ePDFISBN:978-3-527-82018-4 ePubISBN:978-3-527-82020-7 oBookISBN:978-3-527-82019-1 Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface xi 1 Introduction 1 1.1 Whispering-Gallery-ModeMicrocavities 1 1.2 ApplicationsofWhispering-Gallery-ModeMicrocavities 2 1.3 Ultra-HighQWhispering-Gallery-ModeMicrocavities 5 1.4 ModeQFactorsforSemiconductorMicrolasers 6 1.4.1 OutputEfficiencyandModeQFactor 6 1.4.2 MeasurementofModeQFactor 7 1.5 BookOverview 10 References 11 2 MultilayerDielectricSlabWaveguides 13 2.1 Introduction 13 2.2 TEandTMModesinSlabWaveguides 14 2.3 ModesinSymmetricThree-LayerSlabWaveguides 15 2.3.1 TEModesinThree-LayerSlabWaveguides 15 2.3.2 TMModesinThree-LayerSlabWaveguides 17 2.3.3 GuidedandRadiationModes 17 2.4 EigenvalueEquationsforMultilayerSlabComplexWaveguides 18 2.4.1 EigenvalueEquationforTEModes 19 2.4.2 EigenvalueEquationforTMModes 21 2.4.3 PhaseShiftofTotalInternalReflection 21 2.5 EigenvalueEquationsforOne-DimensionalMultilayerWaveguides 22 2.5.1 EigenvalueEquationforVertical-CavitySurface-EmittingLasers 22 2.5.2 ResonanceConditionfortheFabry–PerotCavity 24 2.5.3 ModeSelectionforDistributedFeedbackLasers 26 2.6 ModeGainandOpticalConfinementFactor 28 2.6.1 OpticalConfinementFactorBasedonPowerFlow 28 2.6.2 ModeGainforTEModes 29 2.6.3 ModeGainforTMModes 30 vi Contents 2.7 NumericalResultsofOpticalConfinementFactors 31 2.7.1 Edge-EmittingSemiconductorLasers 31 2.7.2 Si-on-SiO SlabWaveguide 32 2 2.7.3 Vertical-CavitySurface-EmittingLasers 33 2.8 EffectiveIndexMethod 35 References 36 3 FDTDMethodandPadéApproximation 37 3.1 Introduction 37 3.2 BasicPrincipleofFDTDMethod 38 3.2.1 Maxwell’sEquation 38 3.2.2 2DFDTDMethodinCartesianCoordinateSystem 38 3.2.3 3DFDTDMethodinCartesianCoordinateSystem 41 3.2.4 3DFDTDMethodinCylindricalCoordinateSystem 43 3.2.5 NumericalStabilityCondition 45 3.2.6 AbsorptionBoundaryCondition 46 3.2.7 FDTDSimulationofMicrocavities 48 3.3 PadéApproximationforTime-DomainSignalProcessing 50 3.3.1 PadéApproximationwithBaker’sAlgorithm 50 3.3.2 CalculationofIntensitySpectraforOscillators 52 3.4 ExamplesofFDTDTechniqueandPadéApproximation 53 3.4.1 SimulationforCoupledMicrodisks 53 3.4.2 SimulationforMicroringChannelDropFilters 54 3.4.3 LightDelaySimulationforCoupledMicroringResonators 57 3.4.4 CalculationofPropagationLossinPhotonicCrystalWaveguides 59 3.5 Summary 62 References 62 4 DeformedandChaoticMicrocavityLasers 65 4.1 Introduction 65 4.2 NondeformedCircularMicrodiskLasers 65 4.2.1 Whispering-GalleryModesinCircularMicrodisks 65 4.2.2 CircularMicrodiskSemiconductorLasers 70 4.3 DeformedMicrocavityLaserswithDiscontinuousBoundary 70 4.3.1 MicrodiskLaserswithaLocalBoundaryDefect 70 4.3.2 Spiral-ShapedMicrocavityLasers 72 4.3.3 Waveguide-ConnectedSpiralMicrocavityLasers 75 4.4 ChaoticMicrocavityLaserswithSmoothlyDeformedBoundary 75 4.4.1 Quadrupolar-ShapedMicrocavityLaserswithDirectionalEmission 76 4.4.2 LimaçonMicrocavityLaserswithUnidirectionalEmission 79 4.4.3 Wavelength-ScaleMicrocavityLaserswithUnidirectionalEmission 82 4.4.4 Waveguide-CoupledChaoticMicrocavityLasers 86 4.5 Summary 87 References 88 Contents vii 5 UnidirectionalEmissionMicrodiskLasers 91 5.1 Introduction 91 5.2 ModeCouplinginWaveguide-ConnectedMicrodisks 92 5.2.1 Whispering-GalleryModesinCircularMicrodisks 92 5.2.2 ModeCouplinginWaveguide-ConnectedMicrodisks 94 5.3 Waveguide-ConnectedUnidirectionalEmissionMicrodiskLasers 100 5.3.1 LasingCharacteristicsofUnidirectionalEmissionMicrodiskLasers 100 5.3.2 DirectModulationCharacteristicsofUnidirectionalEmissionMicrodisk Lasers 103 5.4 UnidirectionalEmissionMicroringLasers 107 5.5 UnidirectionalEmissionHybridDeformed-MicroringLasers 111 5.6 Wide-AngleEmissionandMultiportMicrodiskLasers 113 5.6.1 Wide-AngleEmission-DeformedMicrodiskLasers 113 5.6.2 MultiportOutputMicrodiskLasers 117 5.7 Summary 119 References 119 6 Equilateral-Triangle-ResonatorMicrolasers 123 6.1 Introduction 123 6.2 ModeAnalysisBasedontheETRSymmetry 123 6.2.1 WaveEquationsforTEandTMModes 123 6.2.2 TransverseModesbyUnfoldingLightRayintheETR 124 6.2.3 EvanescentFieldsinExternalRegions 125 6.2.4 EigenvalueEquation 127 6.3 Mode-FieldDistributions 128 6.3.1 ModeDegeneracyandClassify 128 6.3.2 ComparisonsofAnalyticalSolutionswithSimulatedResults 129 6.3.3 SizeLimitforETR 129 6.4 Far-FieldEmissionandWaveguide-OutputCoupling 131 6.4.1 ModeQ-FactorCalculatedbyFar-FieldEmission 131 6.4.2 OutputCouplingbyConnectingaWaveguide 133 6.5 ModeAnalysisUsingReflectedPhaseShiftofPlaneWave 135 6.5.1 ModeAnalysisUsingModeLightRayApproximation 135 6.5.2 ComparisonofModeQFactors 138 6.5.3 EffectofMetalLayeronModeConfinement 139 6.6 ModeCharacteristicsofETRMicrolasers 140 6.6.1 DeviceFabrication 140 6.6.2 LasingCharacteristics 142 6.7 Summary 145 References 145 7 SquareMicrocavityLasers 147 7.1 Introduction 147 7.2 AnalyticalSolutionofConfinedModes 148 7.3 SymmetryAnalysisandModeCoupling 150 viii Contents 7.4 ModeAnalysisforHighQModes 154 7.5 Waveguide-CoupledSquareMicrocavities 157 7.6 Directional-EmissionSquareSemiconductorLasers 163 7.7 Dual-ModeLasingSquareLaserswithaTunableInterval 165 7.8 ApplicationofDual-ModeSquareMicrolasers 168 7.9 LasingSpectraControlledbyOutputWaveguides 171 7.10 Circular-SideSquareMicrocavityLasers 174 7.11 Summary 180 References 181 8 HexagonalMicrocavityLasersandPolygonal Microcavities 185 8.1 Introduction 185 8.2 ModeCharacteristicsofRegularPolygonalMicrocavities 186 8.2.1 SymmetryAnalysesBasedonGroupTheory 186 8.2.2 NumericalSimulationsofWGMsinRegularPolygonal Microcavities 190 8.2.3 Circular-SidePolygonalMicrocavities 193 8.3 WGMSinHexagonalMicrocavities 197 8.3.1 PeriodicOrbitsinHexagonalMicrocavities 197 8.3.2 SymmetryAnalysesandModeCoupling 200 8.3.3 NumericalSimulationofWGMsinHexagonalMicrocavities 201 8.3.4 WGMsinWavelength-ScaleHexagonalMicrocavities 203 8.4 UnidirectionalEmissionHexagonalMicrocavityLasers 205 8.4.1 Waveguide-CoupledHexagonalMicrocavityLasers 206 8.4.2 Circular-SideHexagonalMicrocavityLasers 209 8.5 OctagonalResonatorMicrolasers 211 8.6 Summary 214 References 215 9 VerticalLossfor3DMicrocavities 219 9.1 Introduction 219 9.2 NumericalMethodfortheSimulationof3DMicrocavities 220 9.2.1 EffectiveIndexMethod 220 9.2.2 S-MatrixMethod 222 9.3 ControlofVerticalRadiationLossforCircularMicrocavities 225 9.3.1 ModeCouplingandVerticalRadiationLoss 225 9.3.2 SemiconductorMicrocylinderLaserswiththeSizesLimitedbyVertical RadiationLoss 230 9.3.3 CancelationofVerticalRadiationLossbyDestructiveInterference 236 9.4 VericalRadiationLossforPolygonalMicrocavities 245 9.4.1 3DEquilateral-TriangularMicrocavitywithWeakVertical Waveguiding 245 9.4.2 3DSquareMicrocavitywithWeakVerticalWaveguiding 246 9.5 Summary 247 References 249 Contents ix 10 NonlinearDynamicsforMicrocavityLasers 251 10.1 Introduction 251 10.2 RateEquationModelwithOpticalInjection 253 10.3 DynamicalStatesofRateEquationswithOpticalInjection 255 10.4 SmallSignalAnalysisofRateEquations 261 10.5 ExperimentsofOpticalInjectionMicrodiskLasers 263 10.5.1 NonlinearDynamicsUnderOpticalInjection 263 10.5.2 ComparisonBetweenExperimentandSimulatedResults 268 10.5.3 ModulationBandwidthEnhancementUnderOpticalInjection 269 10.6 MicrowaveGenerationinMicrolaserwithOpticalInjection 271 10.7 IntegratedTwin-MicrolaserwithMutuallyOpticalInjection 275 10.8 DiscussionandConclusion 276 References 278 11 Hybrid-CavityLasers 283 11.1 Introduction 283 11.2 ReflectivityofaWGMResonator 284 11.3 ModeQ-FactorEnhancementforHybridModes 286 11.4 HybridMode-FieldDistributions 288 11.5 FabricationofHybridLasers 290 11.6 Q-FactorEnhancementandLasingCharacteristics 292 11.7 RobustSingle-ModeOperation 295 11.8 OpticalBistabilityforHSRLS 297 11.9 All-OpticalSwitching 302 11.10 All-OpticalLogicGates 306 11.11 HybridSquare/Rhombus-RectangularLasers(HSRRLS) 309 11.12 Summary 312 References 314 Index 317 xi Preface As typical whispering-gallery microcavities, microdisks, and microrings have been studied for applications in integrated optics over a half century. The study of semiconductor microdisk lasers has become a distinct subject of optoelectron- ics, and deformed microdisk lasers have attracted great attention for realizing directional emission microlasers. In addition to circular microcavities, polygonal microcavitiescanalsosupporthighQ-confinedmodesthatrelyonthetotalinternal reflection,similartowhispering-gallerymodesinmicrodisks.Wehaveinvestigated microcavity lasers for the past two decades, mainly focusing on mode analysis, design,processingtechnique,photonicintegration,andapplicationsofmicrocavity lasers. This book summarizes the research on semiconductor microcavity lasers based on whispering-gallery modes. Although there are several books on optical microcavities, this book provides unique descriptions of directional emission microcavity lasers by directly connecting an output waveguide, mode behaviors based on group theory for polygonal microcavities, and hybrid-cavity lasers with integratedmicrocavityandwaveguide. The book is organized into 11 chapters: introduction emphasized on mode Q factor, multilayer optical waveguides, FDTD method and Padé approximation, deformed and chaos microdisk lasers, unidirectional emission microdisk lasers, equilateral triangle resonator microlasers, square microcavity lasers, hexagonal microcavity lasers and polygonal microcavities, vertical loss for 3D microcavities, nonlineardynamicsformicrocavitylasers,andhybrid-cavitylasers. WewanttothankHuang’sstudents,especiallyDr.Wei-HuaGuo,atInstituteof Semiconductors;theirworkshavecontributedtomainpartsofthisbook. Yong-zhenHuang Yue-deYang StateKeyLabofIntegratedOptoelectronics InstituteofSemiconductors ChineseAcademyofSciencesandCollegeof Beijing,China MaterialsSciencesandOptoelectronicTechnology November2020 UniversityofChineseAcademyofSciences 1 1 Introduction 1.1 Whispering-Gallery-Mode Microcavities Optical resonant cavities, composed of two or more mirrors, are essential part of ordinarylasersandhavebeenutilizedinalmostallbranchesofmodernopticsand photonics.Opticalenergyisrecirculatedinsidethecavitiesduetothereflectionon themirrors,andonebasicpropertyoftheopticalcavitiesisthequality(Q)factor relatedtothemodelifetimefordescribingthelight-confiningability.Modevolume (V) is another important parameter of an optical cavity and a small V is of great importance for realizing a compact-size integrated device. A suitable parameter, finesse, which is defined as the ratio of the free spectral range to the resonance linewidth, takes both the mode Q factor and the resonator size into account. For certain applications, high-finesse microcavity with a large value of Q/V, which is alsorelatedtotheelectromagneticfieldenhancementfactorofanopticalcavity,is veryimportant.Comparedwithconventionallasers,microcavitylaserswithalarge Q/V can promise lower lasing threshold. Moreover, light–matter interactions can begreatlyenhancedbystoringopticalenergyinasmallmodevolume[1,2].The ability to concentrate light is important to both fundamental science studies and practicaldeviceapplications[3],suchasstrong-couplingcavityquantumelectrody- namics, enhancement and suppression of spontaneous emission, high-sensitivity sensors,low-thresholdlightsources,andcompactopticaladd-dropfiltersinoptical communication. ToobtainhighQmodesinopticalcavitieswithasmallV,ahighreflectivitycloseto unityisnecessary,whichcanberealizedbyutilizingaperiodicstructuretoconstruct a photonic forbidden band, such as that in vertical-cavity surface-emitting lasers andphotoniccrystalmicrocavities,orsimplybytotalinternalreflection(TIR)atthe dielectricboundarywithahigh-lowrefractiveindexcontrastinwhispering-gallery (WG)-mode optical microcavities [4]. The idea of WG mode was born out of the observation of acoustical phenomenon in [5] where sound waves were efficiently reflectedwithminimaldiffractionandstruckthewallagainatthesameangleand therebytraveledalongthegallerysurface.Similarly,classicalelectromagneticwaves can undergo reflection,refraction,and diffractionlike the sound waves whenthe wavelengthsofthewavesaresmallerthanthebendingradiusofareflectionmirror. Amongvariouskindsofopticalmicrocavities,WG-modemicrocavitieswithsimple MicrocavitySemiconductorLasers:Principles,Design,andApplications,FirstEdition. Yong-zhenHuangandYue-deYang. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.