ebook img

Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Design Automation, Optimization, and Test Techniques PDF

152 Pages·2019·6.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Design Automation, Optimization, and Test Techniques

Zipeng Li · Krishnendu Chakrabarty  Tsung-Yi Ho · Chen-Yi Lee Micro-Electrode- Dot-Array Digital Microfl uidic Biochips Design Automation, Optimization, and Test Techniques Micro-Electrode-Dot-Array Digital Microfluidic Biochips Zipeng Li • Krishnendu Chakrabarty Tsung-Yi Ho • Chen-Yi Lee Micro-Electrode-Dot-Array Digital Microfluidic Biochips Design Automation, Optimization, and Test Techniques 123 ZipengLi KrishnenduChakrabarty Intel(UnitedStates) DepartmentofECE SantaClara,CA,USA DukeUniversity Durham,NC,USA Tsung-YiHo NationalTsingHuaUniversity Chen-YiLee Hsinchu,Taiwan NationalChiaoTungUniversity Hsinchu,Taiwan ISBN978-3-030-02963-0 ISBN978-3-030-02964-7 (eBook) https://doi.org/10.1007/978-3-030-02964-7 LibraryofCongressControlNumber:2018962868 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Tomybelovedwife, MengjieWei. —ZipengLi Preface Digital microfluidic biochips (DMFBs) are revolutionizing many biochemical analysis procedures, e.g., high-throughput DNA sequencing and point-of-care clinical diagnosis. However, today’s DMFBs suffer from several limitations: (1) constraintsondropletsizeandtheinabilitytovarydropletvolumeinafine-grained manner; (2) the lack of integrated sensors for real-time detection; (3) the need for specialfabricationprocessesandtheassociatedreliability/yieldconcerns. Toovercometheabovelimitations,DMFBsbasedonamicro-electrode-dot-array (MEDA) architecture have recently been proposed. Unlike conventional digital microfluidics, where electrodes of equal size are arranged in a regular pattern, the MEDA architecture is based on the concept of a sea-of-micro-electrodes, i.e., thousands of microelectrodes can be integrated on a MEDA biochip. The MEDA architecture allows microelectrodes to be dynamically grouped to form a micro- componentthatcanperformdifferentmicrofluidicoperationsonthechip. DesignautomationtoolscanreducethedifficultyofMEDAbiochipdesignand help to ensure that the manufactured MEDA biochips are versatile and reliable. However, the increase in integration level introduces new challenges in the design optimization and testing of MEDA biochips, which impede their further adoption anddeployment.Thisbookisfocusedonenhancingtheautomateddesignanduseof MEDAbiochipsandondevelopingasetofsolutionstofacilitatethefullexploitation of design complexities that are possible with current MEDA platform. In order to fully exploit MEDA-specific advantages (e.g., real-time droplet sensing), four key research challenges are addressed in this book; these include high-level synthesis, errorrecovery,samplepreparationoptimization,andtesting. The book first presents a droplet-size-aware synthesis approach that can con- figure the target bioassay on a MEDA biochip. The proposed synthesis method targetsreservoirplacement,operationscheduling,moduleplacement,androutingof dropletsofvarioussizes.Thebookalsopresentsananalyticalmodelforestimating droplet velocity, and the model was experimentally validated using fabricated MEDA chips. In order to effectively exploit the advantages offered by MEDA, MEDA-specificfluidicoperations,suchasdropletdiagonalmovementanddroplet shapemorphing,havebeenconsideredintheproposedsynthesisapproach. vii viii Preface Next,thisbookpresentsanefficienterror-recoverystrategytoensurethecorrect- nessofassaysexecutedonMEDAbiochips.ByexploitingMEDA-specificadvances in droplet sensing, the book presents the first probabilistic timed automata (PTA)- basederror-recoverytechniquetodynamicallyreconfiguretheMEDAbiochipusing real-time data provided by on-chip sensors. The book also presents an on-line synthesis technique and a control flow to connect local recovery procedures with globalerrorrecoveryforthecompletebioassay. ApotentiallyimportantapplicationofMEDAbiochipsliesinsamplepreparation via a series of dilution steps. Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. The book presents the first droplet size-aware and error-correcting samplepreparationmethodforMEDAbiochips.Incontrasttopreviousmethods,the proposedapproachconsidersdropletsizesandincorporatesvariousmixingmodels in sample preparation. Moreover, the proposed approach utilizes MEDA-enabled microfluidicoperationsandfullyexploitsthefeatureofreal-timedropletsensingon MEDAbiochipsforerrorcorrection.Theproposedmethodcansignificantlyreduce thenumberofdilutionsteps,hencethetimeneededforsamplepreparation. In order to ensure high confidence in the outcome of biochemical experiments, MEDA biochips must be adequately tested before they can be used for bioassay execution. Thebookpresentsefficientstructuralandfunctionaltesttechniques for MEDA biochips. The proposed structural test techniques can effectively detect defects and identify faulty microcells, and the proposed functional test techniques addressfundamentalfluidicoperationsonMEDAbiochips. Insummary,thebooktacklesimportantproblemsrelatedtokeystagesofMEDA chipdesignandusage.Theresultsemergingfromthisdissertationprovidethefirst set of comprehensive design automation and test solutions for MEDA biochips. These methods are expected to not only shorten the product development cycle but also accelerate the adoption and further development of MEDA biochips by facilitatingthefullexploitationofdesigncomplexitiesthatarepossiblewithcurrent fabricationtechniques.Itisanticipatedthatchipdesignersandchipuserswillalso benefitfromthesemethods. SantaClara,CA,USA ZipengLi Durham,NC,USA KrishnenduChakrabarty HsinchuCity,Taiwan Tsung-YiHo HsinchuCity,Taiwan Chen-YiLee Acknowledgments TheauthorsacknowledgeProfessorMiroslavPajicfromDukeUniversity,Durham, NC,USA,forvaluablediscussionsandcollaboration.Theauthorsalsoacknowledge Dr. Kelven Yi-Tse Lai and Po-Hsien Yu from National Chiao Tung University, Hsinchu,Taiwan,forconstructivesuggestions. Zipeng Li and Krishnendu Chakrabarty acknowledge the financial support receivedfromtheUSNationalScienceFoundation. Tsung-YiHoandChen-YiLeeacknowledgethefinancialsupportreceivedfrom theTaiwanMinistryofScienceandTechnology. ix Contents 1 Introduction .................................................................. 1 1.1 ChapterOverview....................................................... 1 1.2 OverviewofDigitalMicrofluidics ..................................... 2 1.2.1 PrincipleofEWODandFluidicOperations................... 3 1.2.2 ApplicationsofDigitalMicrofluidics.......................... 6 1.3 BackgroundofMEDABiochips ....................................... 9 1.3.1 MEDAArchitecture ............................................ 10 1.3.2 MajorFunctionsforEachMicroelectrodeCell ............... 10 1.3.3 NovelCharacteristicsforMEDA .............................. 13 1.4 DesignAutomationandTestTechniquesforMEDABiochips....... 14 1.4.1 CADFlowandTestTechniques ............................... 15 1.4.2 MotivationforMEDA-SpecificResearch ..................... 16 1.5 OutlineoftheBook..................................................... 17 References..................................................................... 17 2 DropletSize-AwareHigh-LevelSynthesis................................. 21 2.1 ChapterOverview....................................................... 21 2.2 MotivationandProblemFormulation.................................. 22 2.2.1 MotivationofHigh-LevelSynthesisforMEDA .............. 22 2.2.2 ProblemFormulation........................................... 24 2.3 DropletVelocityModel................................................. 25 2.3.1 ModelConstruction............................................. 25 2.3.2 ModelValidation................................................ 28 2.4 UnifiedHigh-LevelSynthesis.......................................... 29 2.4.1 ReservoirPlacement............................................ 30 2.4.2 DynamicPriorityAssignment.................................. 32 2.4.3 ModulePlacement.............................................. 33 2.4.4 DropletRouting................................................. 35 2.4.5 OperationScheduling........................................... 41 xi xii Contents 2.5 SimulationandExperimentalResults.................................. 43 2.5.1 SimulationResults.............................................. 43 2.5.2 ExperimentalResults........................................... 46 2.6 Conclusion .............................................................. 50 References..................................................................... 50 3 EfficientandAdaptiveErrorRecovery.................................... 53 3.1 ChapterOverview....................................................... 53 3.2 PriorWorksandMotivation............................................ 54 3.3 ErrorRecoveryforLocalErrors........................................ 55 3.3.1 TargetErrorsinMEDA......................................... 55 3.3.2 OutcomeClassificationofFluidicOperations................. 56 3.3.3 ExperimentallyCharacterizedOutcomeProbability.......... 58 3.3.4 LocalRecoveryApproaches ................................... 60 3.4 Time-LimitSelectionforLocalRecovery............................. 65 3.4.1 ILPFormulation ................................................ 65 3.4.2 RandomizedRounding ......................................... 68 3.5 ErrorRecoveryfortheCompleteBioassay............................ 68 3.5.1 ControlFlow.................................................... 69 3.5.2 On-LineSynthesis.............................................. 70 3.6 ExperimentalResults ................................................... 73 3.6.1 ResultsforLocalFaults ........................................ 73 3.6.2 ResultsforBioassays........................................... 75 3.6.3 ResultsforTLLRSelection.................................... 77 3.7 Conclusion .............................................................. 79 References..................................................................... 79 4 FaultModeling,StructuralTesting,andFunctionalTesting............ 83 4.1 ChapterOverview....................................................... 83 4.2 DefectsandFaultModeling............................................ 84 4.3 PriorWorks.............................................................. 86 4.4 StructuralTestforMEDABiochips.................................... 86 4.4.1 OverviewofTestMethod ...................................... 87 4.4.2 Scan-ChainTestStrategy....................................... 88 4.4.3 MCTestStrategy ............................................... 89 4.5 FunctionalTestforMEDABiochips................................... 94 4.5.1 DispensingTest................................................. 95 4.5.2 RoutingTest..................................................... 97 4.5.3 MixingandSplittingTest ...................................... 98 4.6 ExperimentalResults ................................................... 103 4.6.1 ResultsforStructuralTest...................................... 103 4.6.2 ResultsforFunctionalTest..................................... 107 4.7 Conclusion .............................................................. 110 References..................................................................... 110

Description:
This book provides an insightful guide to the design, testing and optimization of micro-electrode-dot-array (MEDA) digital microfluidic biochips. The authors focus on the characteristics specific for MEDA biochips, e.g., real-time sensing and advanced microfluidic operations like lamination mixing a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.