ebook img

Michael A. Patterson, William W. Hager, and Anil V. Rao PDF

24 Pages·2014·1.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Michael A. Patterson, William W. Hager, and Anil V. Rao

OPTIMALCONTROLAPPLICATIONSANDMETHODS Optim.ControlAppl.Meth.(2014) PublishedonlineinWileyOnlineLibrary(wileyonlinelibrary.com).DOI:10.1002/oca.2114 A ph mesh refinement method for optimal control MichaelA.Patterson1,WilliamW.Hager2 andAnilV.Rao1,*,† 1DepartmentofMechanicalandAerospaceEngineering,UniversityofFlorida,Gainesville,FL32611,USA 2DepartmentofMathematics,UniversityofFlorida,Gainesville,FL32611,USA SUMMARY A mesh refinement method is described for solving a continuous-time optimal control problem using collocationatLegendre–Gauss–Radaupoints.Themethodallowsforchangesinboththenumberofmesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of the state andaLegendre–Gauss–Radauquadratureintegrationofthedynamicswithinameshinterval.Thederived relativeerrorestimateisthenusedtodecideifthedegreeoftheapproximatingpolynomialwithinamesh shouldbeincreasedorifthemeshintervalshouldbedividedintosubintervals.Thedegreeoftheapprox- imatingpolynomialwithinameshintervalisincreasedifthepolynomialdegreeestimatedbythemethod remainsbelowamaximumallowabledegree.Otherwise,themeshintervalisdividedintosubintervals.The process of refining the mesh is repeated until a specified relative error tolerance is met. Three examples highlightvariousfeaturesofthemethodandshowthattheapproachismorecomputationallyefficientand producessignificantlysmaller meshsizesforagivenaccuracytolerancewhencomparedwithfixed-order methods.Copyright©2014JohnWiley&Sons,Ltd. Received16September2013; Revised29January2014; Accepted30January2014 KEYWORDS: optimalcontrol;collocation;Gaussianquadrature;variable-order;meshrefinement 1. INTRODUCTION Over the past two decades, direct collocation methods have become popular in the numerical solutionofnonlinearoptimalcontrolproblems.Inadirectcollocationmethod,thestateandcontrol arediscretizedatasetofappropriatelychosenpointsinthetimeintervalofinterest.Thecontinuous- time optimal control problem is then transcribed to a finite-dimensional nonlinear programming problem (NLP), and the NLP is solved using a well-known software [1, 2]. Originally, direct col- location methods were developed as h methods (e.g., Euler or Runge–Kutta methods) where the time interval is divided into a mesh and the state is approximated using the same fixed-degree polynomialineachmeshinterval.Convergence inan hmethodisthenachievedbyincreasingthe number and placement of the mesh points [3–5]. More recently, a great deal of research has been carried out in the class of direct Gaussian quadrature orthogonal collocation methods [6–20]. In a Gaussian quadrature collocation method, the state is typically approximated using a Lagrange polynomialwherethesupportpointsoftheLagrangepolynomialarechosentobepointsassociated withaGaussianquadrature.Originally,Gaussianquadraturecollocationmethodswereimplemented asp methodsusingasingleinterval.Convergenceofthep methodwasthenachievedbyincreas- ing the degree of the polynomial approximation. For problems whose solutions are smooth and well-behaved, a Gaussian quadrature collocation method has a simple structure and converges at anexponentialrate[21–23].Themostwell-developedGaussianquadraturemethodsarethosethat *Correspondence to: Anil V. Rao, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,FL32611,USA. †E-mail:anilvrao@ufl.edu Copyright©2014JohnWiley&Sons,Ltd. M.A.PATTERSON,W.W.HAGERANDA.V.RAO employeitherLegendre–Gausspoints[9,13]orLegendre–Gauss–Radau(LGR)points[14,15,17] orLegendre–Gauss–Lobattopoints[6]. While h methods have a long history and p methods have shown promise in certain types of problems, both the h and p approaches have limitations. Specifically, achieving a desired accu- racy tolerance may require an extremely fine mesh (in the case of an h method) or may require the use of an unreasonably large-degree polynomial approximation (in the case of a p method). Inordertoreducesignificantlythesizeofthefinite-dimensionalapproximation,andthusimprove computational efficiency of solving the NLP, hp collocation methods have been developed. In an hp method, both the number of mesh intervals and the degree of the approximating polynomial within each mesh interval is allowed to vary. Originally, hp methods were developed as finite elementmethodsforsolvingpartialdifferentialequations[24–28].Inthepastfewyears,theprob- lem of developing hp methods for solving optimal control problems has been of interest [29, 30]. Thisrecentresearchhasshownthatconvergenceusinghp methodscanbeachievedwithasignifi- cantlysmallerfinite-dimensionalapproximationthanwouldberequiredwhenusingeitheranhora pmethod. Motivated by the desire to improve computational efficiency when solving the NLP while pro- vidinghighaccuracyinthediscreteapproximationoftheoptimalcontrolproblem,inthispaper,we describe a new ph Gaussian quadrature collocation method for solving continuous-time nonlinear optimalcontrolproblems.Here,wehavedeliberatelychangedtheorderfromhptophbecauseour schemetriestoachievetheprescribederrortolerancebyincreasingthedegreeofthepolynomialsin theapproximatingspace,andifthisfails,byincreasingthenumberofmeshintervals.Themethodis dividedintothreeparts.First,anapproachisdevelopedforestimatingtherelativeerrorinthestate within each mesh interval. This relative error estimate is obtained by comparing the original state variable to a higher-order approximation of the state. This relative error estimate is used to deter- mineifthedegreeofthepolynomialapproximationshouldbeincreasedorifmeshintervalsshould be added. The polynomial degree is increased if it is estimated that the ensuing mesh requires a polynomial degree that is less than a maximum allowable degree. Otherwise, the mesh is refined. Thisprocessisrepeatedonaseriesofmeshesuntilaspecifiedaccuracytoleranceismet.Thedeci- sion to increase the polynomial degree or refine the mesh is based on the ratio of the maximum relativeerrorandtheaccuracytoleranceandisconsistentwiththeknownexponentialconvergence ofaGaussianquadraturemethodforaproblemwhosesolutionissmooth. Variousmeshrefinementmethodsemployingdirectcollocationmethodshavebeendescribedin recent years [5, 29–31]. Reference [31] describes a method that employs a differentiation matrix to attempt to identify switches, kinks, corners, and other discontinuities in the solution, and uses Gaussianquadraturerulestogenerateameshthatisdenseneartheendpointsofthetimeinterval of interest. Reference [5] employs a density function and attempts to generate a fixed-order mesh on which to solve the problem. References [32] and [33] (and the references therein) describe a dual weighted residual method for mesh refinement and goal-oriented model reduction. The dual weighted residual method uses estimates of a dual multiplier together with local estimates of the residualstoadaptivelyrefineameshandcontroltheerrorinproblemsgovernedbypartialdifferen- tial equations. References [29] and [30] describe hp adaptive methods where the error estimate is basedonthedifferencebetweenanapproximationofthetimederivativeofthestateandtheright- handsideofthedynamicsmidwaybetweenthecollocationpoints.Itisnotedthattheapproachof References [29] and [30] creates a great deal of noise in the error estimate, thereby making these approachescomputationallyintractablewhenahigh-accuracysolutionisdesired.Furthermore,the errorestimateofReferences[29]and[30]doesnottakeadvantageoftheexponentialconvergence rate of a Gaussian quadrature collocation method. Finally, in Reference [3], an error estimate is developedbyintegratingthedifferencebetweenaninterpolationofthetimederivativeofthestate and the right-hand side of the dynamics. The error estimate developed in Reference [3] is predi- catedontheuseofafixed-ordermethod(e.g.,trapezoid,Hermite–Simpson,andRunge–Kutta)and computesalow-orderapproximationoftheintegraloftheaforementioneddifference.Ontheother hand,inthispaper,anestimateoftheerroronagivenmeshisobtainedbyvaryingthedegreeofthe polynomialintheGaussianquadratureapproximation. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca AphMESHREFINEMENTMETHODFOROPTIMALCONTROL The method of this paper is fundamentally different from any of the previously developed methods due to the fact that it takes advantage of the exponential convergence properties of a Gaussianquadrature.Specifically,inthediscretizationusedinthispaper,thestateisapproximated usingapiecewisepolynomial,andthedynamicsarecollocatedattheLGRquadraturepointsineach interval. This leads to a finite-dimensional mathematical programming problem that is solved to obtainestimatesforthecontrolandthestateatthecollocationpoints.Arelativeerrorestimateisthen derived that uses the difference between an interpolated value of the state and an LGR quadrature approximation to the integral of the state dynamics. This relative error estimate remains computa- tionallytractablewhenahigh-accuracysolutionisdesiredandreducessignificantlythenumberof collocationpointsrequiredtomeetaspecifiedaccuracytolerancewhencomparedwiththemethods ofReference[29]or[30].Furthermore,differentfromtheerrorestimatedevelopedinReference[3], theerrorestimateinthisresearchutilizestheLGRquadraturepointsinboththeinterpolationofthe stateandtheintegrationofthestatealongtheinterpolatedsolution.Consequently,theapproachof thisresearchenablestheuseofaGaussianquadraturemethodtoestimatetheerrors,therebyachiev- ingconvergenceusingfewercollocationpointsthanmaybenecessaryusinganhmethodwiththe error estimate of Reference [3]. It is noted, however, that in the case of an h LGR method (i.e., a methodwhoseorderisthesameinallmeshintervals),theerrorestimateinthispaperissimilarto theestimatederivedinReference[3]withtheexceptionthattheapproachofthispaperstillemploys ahigher-orderintegrationmethodthantheapproachofReference[3]. While the mesh refinement method presented in this paper is based on only the state error and seemstoignoretheerrorinthecostateaswellasignorethecontrolminimumprinciple,inearlier work(suchasReferences[14–16]),acloseconnectionhasbeenestablishedbetweenthefirst-order optimality conditions for the mathematical program and the continuous first-order optimality con- ditions (i.e., the system dynamics, the costate equation, and the minimum principle). Specifically, itisobservedthatatasolutionofthemathematicalprogrammingproblem,theminimumprinciple holdsatthecollocationpoints.Thus,bysolvingthemathematicalprogram,theminimumprinciple issatisfiedexactly.AshasbeenshowninReferences[14–16],thediscretizationofthestateequation leads to an induced discretization for the costate equation that is expressed in terms of the mul- tipliers of the mathematical programming problem. Hence, when the mathematical programming problem is solved, in essence a two point boundary-value problem is solved in which the control has been eliminated through the minimum principle. In this paper, we develop a mesh refinement methodthatisbasedentirelyontheestimationoftheerrorinthestate.Whiletheerrorintheinduced costateapproximationcouldbemonitoredusingthesameapproachasisusedtomonitorthestate error,onefindsthattheerrorsconnectedwiththesystemdynamicsandtheinducedcostateequation aretightlycoupledinthattheinducedcostateerrorislargeduringintervalswherethestateerroris large.Asaresult,thebenefitofmonitoringtheerrorinthestateandtheinducedcostateismarginal whencomparedwithmonitoringtheerrorinonlythestate.Thus,itismoreefficientandsimplerto focusentirelyontheerrorinthestateequation.Theeffectivenessofourmeshrefinementstrategy isstudiedonthreeexamplesthathavedifferentfeaturesintheoptimalsolutionand,thus,exercise differentbenefitsofthenewphapproach.Itisfoundthatthemeshrefinementmethoddevelopedin thispaperisaneffectiveyetsimplewaytogeneratemeshesandtoreducecomputationtimeswhen comparedwithfixed-orderhmethods. Thesignificanceofthisresearchisthreefold.First,wedevelopasystematicwaytoestimatethe errorintheRadaudiscretizationofanoptimalcontrolproblemusingthefactthatRadaucollocation isaGaussianquadratureintegrationmethod.Second,basedonthederivedestimateoftheerror,we provideasimpleyeteffectivephmeshrefinementmethodthatallowsboththedegreeoftheapprox- imating polynomial and the number of mesh intervals to vary. Third, we show on three nontrivial examplesthatthephmeshrefinementmethoddevelopedinthispaperismorecomputationallyeffi- cientandproducessmallermeshesforagivenaccuracytolerancewhencomparedwithtraditional fixed-orderhmethods. Thispaperisorganizedasfollows.InSection2,weprovideamotivationforournewphmethod. InSection3,westatethecontinuous-timeBolzaoptimalcontrolproblem.InSection4,westatethe integralformofthephLGRintegrationmethod[14–16]thatisusedasthebasisforthephmesh refinement method developed in this paper. In Section 5, we develop the error estimate and our Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca M.A.PATTERSON,W.W.HAGERANDA.V.RAO newph-adaptivemeshrefinementmethod.InSection6,weapplythemethodofSection5tothree examplesthathighlightdifferentfeaturesofthemethod.InSection7,wedescribethekeyfeatures of our approach and compare our method to recently developed hp-adaptive methods. Finally, in Section8,weprovideconclusionsonourwork. 2. MOTIVATIONFORNEWph-ADAPTIVECOLLOCATIONMETHOD In order to motivate the development of our new ph-adaptive Gaussian quadrature collocation method,considerthefollowingtwofirst-orderdifferentialequationsontheinterval(cid:2) 2Œ(cid:2)1;C1(cid:3): dy 1 Df .(cid:2)/D(cid:4)cos.(cid:4)(cid:2)/; y .(cid:2)1/Dy ; (1) 1 1 10 d(cid:2) 80; (cid:2)16(cid:2) <(cid:2)1=2 dy < 2 Df .(cid:2)/D (cid:4)cos.(cid:4)(cid:2)/; (cid:2)1=26(cid:2) 6C1=2; ; y .(cid:2)1/Dy : (2) 2 2 20 d(cid:2) :0; C1=2<(cid:2) 6C1 Thesolutionstothedifferentialequations(1)and(2)aregiven,respectively,as y .(cid:2)/Dy Csin.(cid:4)(cid:2)/; (3) 1 10 8y ; (cid:2)16(cid:2) <(cid:2)1=2; < 20 y .(cid:2)/D y C1Csin.(cid:4)(cid:2)/; (cid:2)1=26(cid:2) 6C1=2; (4) 2 20 :y C2; C1=2<(cid:2) 6C1: 20 Suppose now that it is desired to approximate the solutions to the differential equations (1) and (2) using the following three different methods that employ the LGR [34] collocation method as describedinvariousformsinReferences[14–17,19]:(i)apmethodwherethestateisapproximated using an Nth degree polynomial on Œ(cid:2)1;C1(cid:3) and N is allowed to vary; (ii) an h method using k k K equallyspacedmeshintervalswhereK isallowedtovaryandafixedfourth-degreepolynomial is employed within each mesh interval; and (iii) a ph method where both the number of mesh intervals, K, and the degree of the approximating polynomial, N , within each mesh interval are k allowed to vary. Using any of the aforementioned approximations (p, h, or ph), within any mesh intervalŒT ;T (cid:3),thefunctionsy .(cid:2)/; .i D1;2/areapproximatedusingthefollowingLagrange k(cid:2)1 k i polynomialapproximations: y.k/.(cid:2)/(cid:3)Y.k/.(cid:2)/DNXC1Y.k/`.k/.(cid:2)/; `.k/.(cid:2)/DNYC1 (cid:2) (cid:2)(cid:2)l.k/ ; (5) i i ij j j (cid:2).k/(cid:2)(cid:2).k/ jD1 lD1 j l l¤j where the support points for `.k/.(cid:2)/; j D 1;:::;N C 1, are the N LGR points [34] j k k .(cid:2).k/;:::;(cid:2).k//onŒT ;T (cid:3)suchthat(cid:2).k/ D T and(cid:2).k/ D T isanoncollocatedpointthat 1 N k(cid:2)1 k 1 k(cid:2)1 NC1 k definestheendofmeshintervalk.WithinanyparticularmeshintervalŒT ;T (cid:3) (cid:4) Œ(cid:2)1;C1(cid:3),the k(cid:2)1 k approximationsofy.k/.(cid:2)/; i D1;2,aregivenatthesupportpoints(cid:2).k/ ; j D1;:::;N,as i jC1 N y.k/(cid:2)(cid:2).k/ (cid:3)(cid:3)Y.k/(cid:2)(cid:2).k/ (cid:3)DY.k/CXI.k/f (cid:2)(cid:2).k/(cid:3); .i D1;2/; .j D1;:::;N/; (6) i jC1 i jC1 i1 jl i l lD1 where Y.k/ is the approximation to y .(cid:2).k// at the start of the mesh interval and I.k/ .j;l D i1 i 1 jl 1;:::;N / is the N (cid:5)N LGR integration matrix (see Reference [14] for details) defined on the k k k meshintervalŒT ;T (cid:3). k(cid:2)1 k Suppose now that we define the maximum absolute error in the solution of the differential equationas ˇ (cid:2) (cid:3)ˇ E D max ˇY.k/(cid:2)y (cid:2).k/ ˇ; .i D1;2/: i ˇ ij i j ˇ j2Œ1;:::;Nk(cid:2) k2Œ1;:::;K(cid:2) Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca AphMESHREFINEMENTMETHODFOROPTIMALCONTROL Figure1(a)and(b)showthebase-10logarithmofE asafunctionofN forthep methodandas 1 a function of K for the h method. First, it is seen that because y .(cid:2)/ is a smooth function, the p 1 methodconvergesexponentiallyasafunctionofN whilethehmethodconvergessignificantlymore slowly as a function of K. Figure 1(c) and (d) show E . Unlike y , the function y is continuous 2 1 2 but not smooth. As a result, the h method converges faster than the p method because no single polynomial(regardlessofdegree)onŒ(cid:2)1;C1(cid:3)isabletoapproximatethesolutiontoequation(2)as accurately as a piecewise polynomial. However, while the h method converges more quickly than does the p method when approximating the solution of equation (2), it is seen that the h method doesnotconvergeasquicklyasthepmethoddoeswhenapproximatingthesolutiontoequation(1). In fact, when approximating the solution of equation (1), it is seen that the h method achieves an (a) (b) (c) (d) (e) Figure1. Base-10logarithmofabsoluteerrorsinsolutionsofequations(1)and(2)atLagrangepolynomial supportpointsusingp,h,andphmethods. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca M.A.PATTERSON,W.W.HAGERANDA.V.RAO errorof(cid:3) 10(cid:2)7 forK D 24,whereasthep methodconvergesexponentiallyandachievesanerror of(cid:3)10(cid:2)15forN D20.Asaresult,anhmethoddoesnotprovidethefastestpossibleconvergence ratewhenapproximatingthesolutiontoadifferentialequationwhosesolutionissmooth. Given the aforementioned p and h analysis, suppose now that the solution to equation (2) is approximatedusingtheaforementionedphRadaumethod(i.e.,boththenumberofmeshintervals and the degree of the approximating polynomial within each mesh interval are allowed to vary). Assume further that the ph method is constructed such that the time interval Œ(cid:2)1;C1(cid:3) is divided into three mesh intervals Œ(cid:2)1;(cid:2)1=2(cid:3), Œ(cid:2)1=2;C1=2(cid:3), and ŒC1=2;C1(cid:3), and Lagrange polynomial approximationsoftheformofequation(5)ofdegreeN ,N ,andN ,respectively,areusedineach 1 2 3 meshinterval.Furthermore,supposeN ,N ,andN areallowedtovary.Becausethesolutiony .(cid:2)/ 1 2 3 2 isaconstantinthefirstandthirdmeshintervals,itispossibletosetN DN D2andvaryonlyN . 1 3 2 Figure1(e)showstheerroriny .(cid:2)/,E Dmaxjy (cid:2)Y jusingtheaforementionedthree-interval 2 2ph 2 2 phapproach.Similartotheresultsobtainedusingthep methodwhenapproximatingthesolution of equation (1), in this case, the error in the solution of equation (2) converges exponentially as a functionofN .Thus,whileanhmethodmayoutperformapmethodonaproblemwhosesolution 2 is not smooth, it is possible to improve the convergence rate by using a ph-adaptive method. The foregoing analysis provides a motivation for the development of the ph method described in the remainderofthispaper. 3. BOLZAOPTIMALCONTROLPROBLEM Without loss of generality, consider the following general optimal control problem in Bolza form. Determinethestate,y.t/ 2 Rny,thecontrolu.t/ 2 Rnu,theinitialtime,t ,andtheterminaltime, 0 t ,onthetimeintervalt 2Œt ;t (cid:3)thatminimizethecostfunctional f 0 f Z tf J D(cid:5).y.t /;t ;y.t /;t /C g.y.t/;u.t/;t/dt (7) 0 0 f f t0 subjecttothedynamicconstraints dy Da.y.t/;u.t/;t/; (8) dt theinequalitypathconstraints c 6c.y.t/;u.t/;t/6c ; (9) min max andtheboundaryconditions b 6b.y.t /;t ;y.t /;t /6b : (10) min 0 0 f f max Thefunctions(cid:5),g,a,c,andbaredefinedbythefollowingmappings: (cid:5) W Rny (cid:5)R(cid:5)Rny (cid:5)R ! R; g W Rny (cid:5)Rnu (cid:5)R ! R; a W Rny (cid:5)Rnu (cid:5)R ! Rny; c W Rny (cid:5)Rnu (cid:5)R ! Rnc; b W Rny (cid:5)R(cid:5)Rny (cid:5)R ! Rnb; where all vector functions of time are treated as row vectors. In this presentation, it will be useful to modify the Bolza problem given in equations (7)–(10) as follows. Let (cid:2) 2 Œ(cid:2)1;C1(cid:3) be a new independentvariablesuchthat t (cid:2)t t Ct f 0 f 0 t D (cid:2) C : (11) 2 2 TheBolzaoptimalcontrolproblemofequations(7)–(10)isthendefinedintermsofthevariable(cid:2) as follows. Determine the state, y.(cid:2)/ 2 Rny, the control, u.(cid:2)/ 2 Rnu, the initial time, t , and the 0 terminaltime,t ,onthetimeinterval(cid:2) 2Œ(cid:2)1;C1(cid:3)thatminimizethecostfunctional f t (cid:2)t Z C1 J D(cid:5).y.(cid:2)1/;t ;y.C1/;t /C f 0 g.y.(cid:2)/;u.(cid:2)/;(cid:2)It ;t /d(cid:2) (12) 0 f 0 f 2 (cid:2)1 Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca AphMESHREFINEMENTMETHODFOROPTIMALCONTROL subjecttothedynamicconstraints dy t (cid:2)t f 0 D a.y.(cid:2)/;u.(cid:2)/;(cid:2)It ;t /; (13) 0 f d(cid:2) 2 theinequalitypathconstraints c 6c.y.(cid:2)/;u.(cid:2)/;(cid:2)It ;t /6c ; (14) min 0 f max andtheboundaryconditions b 6b(cid:4)y.(cid:2)1/;t ;y.C1/;t (cid:5)6b : (15) min 0 f max Suppose now that the time interval (cid:2) 2 Œ(cid:2)1;C1(cid:3) is divided into a mesh consisting of K mesh intervals S D ŒT ;T (cid:3); k D 1;:::;K, where .T ;:::;T / are the mesh points. The mesh k k(cid:2)1 k 0 K K K [ \ intervalsS .k D1;:::;K/havethepropertiesthat S DŒ(cid:2)1;C1(cid:3)and S D;,whilethe k k k kD1 kD1 meshpointshavethepropertythat(cid:2)1DT <T <T <(cid:6)(cid:6)(cid:6)<T DC1.Lety.k/.(cid:2)/andu.k/.(cid:2)/ 0 1 2 K bethestateandcontrolinS .TheBolzaoptimalcontrolproblemofequations(12)–(15)canthen k berewrittenasfollows.Minimizethecostfunctional J D(cid:5)(cid:2)y.1/.(cid:2)1/;t ;y.K/.C1/;t (cid:3)C tf (cid:2)t0 XK Z Tk g(cid:2)y.k/.(cid:2)/;u.k/.(cid:2)/;(cid:2)It ;t (cid:3) d(cid:2); 0 f 0 f 2 kD1 Tk(cid:2)1 .k D1;:::;K/; (16) subjecttothedynamicconstraints dy.k/.(cid:2)/ t (cid:2)t (cid:2) (cid:3) D f 0a y.k/.(cid:2)/;u.k/.(cid:2)/;(cid:2)It ;t ; .k D1;:::;K/; (17) 0 f d(cid:2) 2 thepathconstraints (cid:2) (cid:3) c 6c y.k/.(cid:2)/;u.k/.(cid:2)/;(cid:2)It ;t 6c ; .k D1;:::;K/; (18) min 0 f max andtheboundaryconditions (cid:2) (cid:3) b 6b y.1/.(cid:2)1/;t ;y.K/.C1/;t 6b : (19) min 0 f max Because the state must be continuous at each interior mesh point, it is required that the condition y.T(cid:2)/Dy.TC/; .k D1;:::;K(cid:2)1/besatisfiedattheinteriormeshpoints.T ;:::;T /. k k 1 K(cid:2)1 4. LEGENDRE–GAUSS–RADAUCOLLOCATIONMETHOD Thephformofthecontinuous-timeBolzaoptimalcontrolprobleminSection3isdiscretizedusing collocationatLGRpoints[14–17,19].IntheLGRcollocationmethod,thestateofthecontinuous- timeBolzaoptimalcontrolproblemisapproximatedinS ; k 2Œ1;:::;K(cid:3),as k y.k/.(cid:2)/(cid:3)Y.k/.(cid:2)/DNXkC1Y.k/`.k/.(cid:2)/; `.k/.(cid:2)/DNYkC1 (cid:2) (cid:2)(cid:2)l.k/ ; (20) j j j (cid:2).k/(cid:2)(cid:2).k/ jD1 lD1 j l l¤j where (cid:2) 2 Œ(cid:2)1;C1(cid:3); `.k/.(cid:2)/; j D 1;:::;N C 1, is a basis of Lagrange polynomials, j k (cid:2) (cid:3) (cid:2).k/;:::;(cid:2).k/ are the LGR [34] collocation points in S D ŒT ;T /, and (cid:2).k/ D T is a 1 Nk k k(cid:2)1 k NkC1 k noncollocatedpoint.DifferentiatingY.k/.(cid:2)/inequation(20)withrespectto(cid:2),weobtain dY.k/.(cid:2)/ DNXkC1Y.k/d`.jk/.(cid:2)/: (21) d(cid:2) j d(cid:2) jD1 Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca M.A.PATTERSON,W.W.HAGERANDA.V.RAO The cost functional of equation (16) is then approximated using a multiple-interval LGR quadratureas J (cid:3)(cid:5)(cid:2)Y.1/;t ;Y.K/ ;t (cid:3)CXK XNk tf (cid:2)t0w.k/g(cid:2)Y.k/;U.k/;(cid:2).k/It ;t (cid:3); (22) 1 0 NKC1 f 2 j j j j 0 f kD1jD1 where w.k/ .j D 1;:::;N / are the LGR quadrature weights [34] in S D ŒT ;T (cid:3), k 2 j k k k(cid:2)1 k Œ1;:::;K(cid:3), U.k/; i D 1;:::;N , are the approximations of the control at the N LGR points in i k k meshintervalk 2Œ1;:::;K(cid:3); Y.1/istheapproximationofy.T /,andY.K/ istheapproximation 1 0 NKC1 ofy.T /(wherewerecallthatT D(cid:2)1andT DC1).Collocatingthedynamicsofequation(17) K 0 K attheN LGRpointsusingequation(21),wehave k NXkC1D.k/Y.k/(cid:2) tf (cid:2)t0a(cid:2)Y.k/;U.k/;(cid:2).k/It ;t (cid:3)D0; .i D1;:::;N /; ij j 2 i i i 0 f k jD1 where d`.k/.(cid:2).k// D.k/ D j i ; .i D1;:::;N ; j D1;:::;N C1/; ij d(cid:2) k k aretheelementsoftheN (cid:5).N C1/LGRdifferentiationmatrix[14]D.k/associatedwithS ; k 2 k k k Œ1;:::;K(cid:3). While the dynamics can be collocated in differential form, in this paper, we choose to collocate the dynamics using the equivalent implicit integral form (see References [14–16] for details).TheimplicitintegralformoftheLGRcollocationmethodisgivenas Y.k/ (cid:2)Y.k/(cid:2) tf (cid:2)t0 XNk I.k/a(cid:2)Y.k/;U.k/;(cid:2).k/It ;t (cid:3)D0; .i D1;:::;N /; (23) iC1 1 2 ij i i i 0 f k jD1 whereI.k/; .i D1;:::;N ;j D1;:::;N ;k D1;:::;K/istheN (cid:5)N LGRintegrationmatrix ij k k k k inmeshintervalk 2Œ1;:::;K(cid:3);itisobtainedbyinvertingasubmatrixofthedifferentiationmatrix formedbycolumns2throughN C1: k h i(cid:2)1 I.k/ D D.k/(cid:6)(cid:6)(cid:6)D.k/ : 2 NkC1 ItisnotedforcompletenessthatI.k/D.k/ D(cid:2)1(seeReferences[14–16]),where1isacolumnvector 1 oflengthN ofallones[14–16].Next,thepathconstraintsofequation(18)inS ; k 2Œ1;:::;K(cid:3), k k areenforcedattheN LGRpointsas k (cid:2) (cid:3) c 6c Y.k/;U.k/;(cid:2).k/It ;t 6c ; .i D1;:::;N /: (24) min i i i 0 f max k Theboundaryconditionsofequation(19)areapproximatedas (cid:2) (cid:3) b 6b Y.1/;t ;Y.K/ ;t 6b : (25) min 1 0 NKC1 f max Itisnotedthatcontinuityinthestateattheinteriormeshpointsk 2 Œ1;:::;K (cid:2)1(cid:3)isenforcedvia thecondition Y.k/ DY.kC1/; .k D1;:::;K(cid:2)1/; (26) NkC1 1 wherethesamevariableisusedforbothY.k/ andY.kC1/.Hence,theconstraintofequation(26) NkC1 1 iseliminatedfromtheproblembecauseitistakenintoaccountexplicitly.TheNLPthatarisesfrom the LGR collocation method is then to minimize the cost function of equation (22) subject to the algebraicconstraintsofequations(23)–(25). Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca AphMESHREFINEMENTMETHODFOROPTIMALCONTROL 5. ph-ADAPTIVEMESHREFINEMENTMETHOD We now develop a ph-adaptive mesh refinement method using the LGR collocation method describedinSection4.Wecallourmethodaphmethodbecausewefirsttrytoadjustthepolyno- mialdegreetoachieveconvergence,andifthisfails,weadjustthemeshspacing.Theph-adaptive meshrefinementmethoddevelopedinthispaperisdividedintotwoparts.InSection5.1,themethod forestimatingtheerrorinthecurrentsolutionisderived,andinSection5.4,thep-then-hstrategy isdevelopedforrefiningthemesh. 5.1. Errorestimateineachmeshinterval In this section, an estimate of the relative error in the solution within a mesh interval is derived. BecausethestateistheonlyquantityintheLGRcollocationmethodforwhichauniquelydefined function approximation is available, we develop an error estimate for the state. The error estimate isobtainedbycomparingtwoapproximationstothestate,onewithhigheraccuracy.Thekeyidea is that for a problem whose solution is smooth, an increase in the number of LGR points should yieldastatethatmoreaccuratelysatisfiesthedynamics.Hence,thedifferencebetweenthesolution associatedwiththeoriginalsetofLGRpointsandtheapproximationassociatedwiththeincreased numberofLGRpointsshouldyieldanestimatefortheerrorinthestate. Assume that the NLP of equations (22)–(25) corresponding to the discretized control problem has been solved on a mesh S D ŒT ;T (cid:3); k D 1;:::;K, with N LGR points in mesh inter- k k(cid:2)1 k k val S . Suppose that we want to estimate the error in the state at a set of M D N C 1 LGR k(cid:2) (cid:3) k k points (cid:2)O.k/;:::;(cid:2)O.k/ , where (cid:2)O.k/ D (cid:2).k/ D T , and that (cid:2)O.k/ D T . Suppose further 1 Mk 1 1 k(cid:2)1 MkC1 k (cid:2) (cid:3) thatthevalues ofthestateapproximationgiven inequation(20)atthepoints (cid:2)O.k/;:::;(cid:2)O.k/ are 1 Mk (cid:2) (cid:3) denoted Y.(cid:2)O.k//;:::;Y.(cid:2)O.k// . Next, let the control be approximated in S using the Lagrange 1 Mk k interpolatingpolynomial U.k/.(cid:2)/D XNk U.k/`O.k/.(cid:2)/; `O.k/.(cid:2)/D YNk (cid:2) (cid:2)(cid:2)l.k/ ; (27) j j j (cid:2).k/(cid:2)(cid:2).k/ jD1 lD1 j l l¤j andletthecontrolapproximationat(cid:2)O.k/ bedenotedU.(cid:2)O.k//,1 6 i 6 M .Weusethevalueofthe i i k right-handsideofthedynamicsat.Y.(cid:2)O.k//;U.(cid:2)O.k//;(cid:2)O.k//toconstructanimprovedapproximation i i i ofthestate.LetYO.k/ beapolynomialofdegreeatmostM thatisdefinedontheintervalS .Ifthe k k derivativeofyO.k/ matchesthedynamicsateachoftheRadauquadraturepoints(cid:2)O.k/; 1 6 i 6 M , i k thenwehave YO.k/(cid:2)(cid:2)O.k/(cid:3)DY.k/.(cid:2) /Ctf (cid:2)t0 XMk IO.k/a(cid:2)Y.k/(cid:2)(cid:2)O.k/(cid:3);U.k/(cid:2)(cid:2)O.k/(cid:3);(cid:2)O.k/(cid:3); jD2;:::;M C1; j k(cid:2)1 2 jl l l l k lD1 (28) whereIO.k/; j;l D 1;:::;M ,istheM (cid:5)M LGRintegrationmatrixcorrespondingtotheLGR jl k k k (cid:2) (cid:3) pointsdefinedby (cid:2)O.k/;:::;(cid:2)O.k/ .UsingthevaluesY.(cid:2)O.k//andYO.(cid:2)O.k//,l D 1;:::;M C1,the 1 Mk l l k absoluteandrelativeerrorsintheithcomponentofthestateat.(cid:2)O.k/;:::;(cid:2)O.k/ /arethendefined, 1 MkC1 respectively,as (cid:2) (cid:3) ˇ (cid:2) (cid:3) (cid:2) (cid:3)ˇ E.k/ (cid:2)O.k/ DˇYO.k/ (cid:2)O.k/ (cid:2)Y.k/ (cid:2)O.k/ ˇ; i l ˇ i l i l ˇ (cid:2) (cid:3) (cid:6) (cid:7) ei.k/(cid:2)(cid:2)Ol.k/(cid:3) D 1C mEai.xk/ (cid:2)Ol.ˇˇkY/.k/(cid:2)(cid:2)O.k/(cid:3)ˇˇ; l Di D1;:1:;::;:M:;knyC;1; : (29) ˇ i j ˇ j2Œ1;:::;MkC1(cid:2) Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca M.A.PATTERSON,W.W.HAGERANDA.V.RAO ThemaximumrelativeerrorinS isthendefinedas k e.k/ D max e.k/.(cid:2)O.k//: (30) max i l i2Œ1;:::;ny(cid:2) l2Œ1;:::;MkC1(cid:2) 5.2. Rationaleforerrorestimate TheerrorestimatederivedinSection5.1issimilartotheerrorestimateobtainedusingthemodified EulerRunge–KuttaschemetonumericallysolveadifferentialequationyP.t/ D f.y.t//.Thefirst- orderEulermethodisgivenas y Dy Chf.y /; (31) jC1 j j where h is the step size and y is the approximation to y.t/ at t D t D jh. In the second-order j j modified Euler Runge–Kutta method, the first stage generates the following approximation yN to y.t /: jC1=2 yN Dy C 1hf.y /: j 2 j The second stage then uses the dynamics evaluated at yN to obtain an improved estimate yO of jC1 y.t /: jC1 yO Dy Chf.yN/: (32) jC1 j The original Euler scheme starts at y and generates y . The first-stage variable yN is the j jC1 interpolant of the line (first-degree polynomial) connecting .t ;y / and .t ;y / evaluated at j j jC1 jC1 thenewpointt .Thesecondstagegiveninequation(32)usesthedynamicsattheinterpolant jC1=2 yN toobtainanimprovedapproximationtoy.t /.BecauseyO isasecond-orderapproximation jC1 jC1 toy.t /andy isafirst-orderapproximationtoy ,theabsolutedifferencejyO (cid:2)y j jC1 jC1 jC1 jC1 jC1 isanestimateoftheerroriny inamannersimilartotheabsoluteerrorestimateE.k/.(cid:2)O.k//.l D jC1 i l 1;:::;M C1/derivedinequation(29). k The effectiveness of the derived error estimate derived in Section 5.1 can be seen by revisiting themotivatingexamplesofSection2.Figure2(a)and(b)showthepandherrorestimates,respec- tively, E and E , in the solution to equation (1); (c) and (d) show the p and h error estimates, 1p 1h respectively, E and E , in the solution to equation (2); and (e) shows the ph error estimates, 2p 2h E , in the solution to equation (2). It is seen that the error estimates are nearly identical to the 2ph actualerror.Therelativeerrorestimategiveninequation(30)isusedinthenextsectionasthebasis formodifyinganexistingmesh. 5.3. Estimationofrequiredpolynomialdegreewithinameshinterval SupposeagaintheLGRcollocationNLPofequations(22)–(25)hasbeensolvedonameshS ; k D k 1;:::;K.Supposefurtherthatitisdesiredtomeetarelativeerroraccuracytolerance(cid:6)ineachmesh intervalS ; k D 1;:::;K.Ifthetolerance(cid:6) isnotmetinatleastonemeshinterval,thenthenext k stepistorefinethecurrentmesh,eitherbydividingthemeshintervalorincreasingthedegreeofthe approximatingpolynomialwithinthemeshinterval. ConsiderameshintervalS ; q 2Œ1;:::;K(cid:3),whereN LGRpointswereusedtosolvetheNLP q q ofequations(22)–(25),andagain,let(cid:6)bethedesiredrelativeerroraccuracytolerance.Supposefur- therthattheestimatedmaximumrelativeerror,e.q/,hasbeencomputedasdescribedinSection5.1 max andthate.q/ >(cid:6)(i.e.,theaccuracytolerance(cid:6)isnotsatisfiedintheexistingmeshinterval).Finally, max letN andN beuser-specifiedminimumandmaximumboundsonthenumberofLGRpoints min max withinanymeshinterval.Accordingtotheconvergencetheorysummarizedin[35,36],theerrorin aglobalcollocationschemebehaveslikeO.N2:5(cid:2)k/,whereN isthenumberofcollocationpoints withinameshintervalandk isthenumberofcontinuousderivativesinthesolution[21,22].Ifthe solutionissmooth,thenwecouldtakek DN.Hence,ifN wasreplacedbyN CP,thentheerror bounddecreasesbyatleastthefactorN(cid:2)P. Copyright©2014JohnWiley&Sons,Ltd. Optim.ControlAppl.Meth.(2014) DOI:10.1002/oca

Description:
Michael A. Patterson1, William W. Hager2 and Anil V. Rao1,*,† . method whose order is the same in all mesh intervals), the error estimate in this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.