ebook img

Metric Diffusion Along Foliations PDF

63 Pages·2017·1.252 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metric Diffusion Along Foliations

SPRINGER BRIEFS IN MATHEMATICS Szymon M. Walczak Metric Diff usion Along Foliations 123 SpringerBriefs in Mathematics SeriesEditors NicolaBellomo MicheleBenzi PalleJorgensen TatsienLi RoderickMelnik OtmarScherzer BenjaminSteinberg LotharReichel YuriTschinkel GeorgeYin PingZhang SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians. Moreinformationaboutthisseriesathttp://www.springer.com/series/10030 Szymon M. Walczak Metric Diffusion Along Foliations 123 SzymonM.Walczak NationalScienceCenter Kraków,Poland FacultyofMathematics andComputerScience UniversityofŁódz´ Łódz´,Poland ISSN2191-8198 ISSN2191-8201 (electronic) SpringerBriefsinMathematics ISBN978-3-319-57516-2 ISBN978-3-319-57517-9 (eBook) DOI10.1007/978-3-319-57517-9 LibraryofCongressControlNumber:2017939353 MathematicsSubjectClassification:53C12,53C23 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToJoanna,Jan,Julia&Zuzanna Contents 1 WassersteinDistance ......................................................... 1 1.1 OptimalTransportationProblem........................................ 1 1.2 WassersteinDistance..................................................... 5 2 FoliationsandHeatDiffusion................................................ 11 2.1 BasicFacts ............................................................... 11 2.2 Holonomy ................................................................ 14 2.3 HarmonicMeasuresandHeatDiffusion................................ 16 3 CompactFoliations ........................................................... 21 3.1 Examples ................................................................. 21 3.2 TopologyoftheLeafSpace ............................................. 24 4 MetricDiffusion............................................................... 31 4.1 MetricDiffusion ......................................................... 31 4.2 MetricDiffusionAlongCompactFoliations ........................... 35 5 MetricDiffusionforNon-compactFoliations:Remarks ................. 49 References.......................................................................... 53 Index................................................................................ 55 vii Introduction Inthelastfewyears,theauthorofthisbookwaslookingforakindofadeformation ofametriconafoliatedRiemannianmanifold,whichwillpreserve,insomesense, the set of compact leaves. More precisely, given a foliation F on a compact Riemannianmanifold.M;g/,wearelookingforadeformationD ofthestructureg t orinducedRiemannianmetricd suchthatthelimitofthesetC ofcompactleaves under,forexample,theGromov–HausdorffconvergenceishomeomorphictoC=F. Thefirstapproachtothisproblembywarpedfoliations[22,23]wasn’tsuccess- ful.Brieflyspeaking,foracompactfoliatedRiemannianmanifold.M;F;g/,anda smoothfunctionf WM !.0;1/constantalongtheleavesofF themetricinduced bytheRiemannianstructureg definedby f g .v;w/Df2g.v;w/ forv;wtangenttoF; f g .v;w/Dg.v;w/ ifatleastoneofv;wisperpendiculartoF f iscalledthewarpedmetric.f iscalledthewarpingfunction,whilethemetricspace .M;d /,whered isametricinducedbyg ,thewarpedfoliation. f f f Let f be a sequence of warping functions converging uniformly to zero on a n ReebfoliationR ofanannulusADfx2R2 W1(cid:2)kxk(cid:2)2g.In[23],thefollowing wasproved: TheoremI.1 The limit of warped Reeb foliation limGn!H1.M;dfn/n2N under the Gromov–Hausdorffconvergenceisasingleton. The above example shows that the two boundary compact leaves, which are linked by a non-compact leaf, collapse, while warping, to the same point of the limit. The same can be observed for compact foliations. In [22] it was shown that the non-empty bad set of the compact foliation described by Epstein and Vogt in [10]collapses,inGromov–Hausdorfftopology,tothesingleton. The approach presented here uses more advanced tools. First, observe that the Wassersteindistanced (see[19])oftwoDiracmeasuresonaPolishmetricspace W .X;d/ concentrated in x;y 2 X is equal to d.x;y/. Having d , with foliated heat W ix x Introduction diffusionoperatorsD (introducedbyL.Garnettin[11])wedefine,forgiventime t t (cid:3) 0, the metric Dd diffused along a foliation on a Riemannian manifold M t equippedwithafoliationF astheWassersteindistanceofDiracmeasuresdiffused at time t. It occurs that Dd defines the same topology on M as the initial one t (Theorem4.1). In further considerations, we concentrate our attention on compact foliations. Thereasonistopological,namely,thattheleaveshavenoends,sothatthenatureof theheatkerneliswellknown.Noticethatinthecaseofthemanifoldswithendsin generalthereisnoknowledgeontheheatkernelbehaviour.Ontheotherhand,the existenceofanon-emptybadsetcanproduceanumberofproblemsonconvergence ofthefamily.M;Dd/. t The main purpose for this work is to try to answer the question, whether the family.M;Dd/convergesornotind toaclosedsubsetofP.M/.Thiswillbe t WH themainsubjectofthestudiespresentedhere. There is one more problem to settle. In the case of warped foliations, the Gromov–Hausdorffconvergencewasused.Inthecaseofmetricdiffusionsomething elseismoreappropriate. LetusdenotebyP.M/thesetofallBorelprobabilitymeasuresonM.Thereis anaturalisometricembeddingof.M;Dd/into.P.M/;d /definedby t W (cid:2) WM 3x7!Dı 2P.M/: t t x Hence,fort;s(cid:3)0wecanconsider.M;Dd/and.M;D d/astheclosedsubsetsof t s P.M/ (which is compact if M is so), and we shall use the Hausdorff distance of (cid:2).M/and(cid:2) .M/in.P.M/;d /.Withtheaboveinmind,wewillwrite.M;Dd/or t s W t simplyM insteadof.(cid:2).M/;d /. t t W The book was planned to provide all necessary facts needed to understand the metric diffusion along compact foliations, that is some basic facts from the optimal transportation theory and the theory of foliations. Chapter 1 is devoted to theWassersteindistance,KantorovichDualityTheorem,andthemetrizationofthe weak-* topology by the Wasserstein distance. Moreover, we prove some technical lemmasusedinfurtherconsiderations.InChapter2,wepresentsomebasicsabout foliations, holonomy, and heat diffusion. They are necessary to understand the notion of the metric diffusion. The compact foliations are discussed in Chapter 3 wherewerecallthesefactswhichareessentialforfurtherconsiderations. The main results are presented in Chapter 4. We define the metric diffusion Dd and study the topology of the metric space .M;Dd/. The remaining pages t t are devoted to the limits of diffused metrics along compact foliations. We prove the necessary conditions for Wasserstein–Hausdorff convergence of the metric diffusedalongcompactfoliationwithnon-emptyEpsteinhierarchy.Thefirstresult (Theorem4.6)providesaninformationaboutthegeometryofthecompactfoliation, that is it describes the leaf volume growth near connected components of the bad sets. The second (Theorem 4.7) is rather measure-theoretic one. Enhancement of the necessary conditions presented in Theorem 4.6 and Theorem 4.7 allows us to formulatethesufficientconditionofWasserstein–Hausdorffconvergenceofmetrics diffusedalongcompactfoliationsofdimensiononewithfiniteEpsteinhierarchy. Introduction xi Asakindofsupplement,wepresentsomefactsaboutthemetricdiffusionalong non-compact foliations. We provide the full description of the limit for metrics diffused along foliation with at least one compact leaf on the two-dimensional torusT2. I would like to express my thanks to Prof. Jesus A. Alvarez-Lopez from the University of Santiago de Compostela for the initial idea of metric diffusion and a number of fruitful discussions. Thanks are also due to Prof. PawełWalczak and my colleagues from the University of Łódz´, namely Wojciech Kozłowski, Kamil Niedziałomski, and Krzysztof Andrzejewski for helpfuldiscussions and important remarks, and to Andrzej Komisarski for some probabilistic explanations. I’m also grateful to Prof. Takashi Tsuboi from the University of Tokyo, who gave me the opportunitytospendsometimeinTokyo,wherethisbookhasgotthecurrentshape. Last but not least, I would like to acknowledge my gratitude to the University of Łódz´,Prof.RyszardPawlak,theDeanoftheFacultyofMathematicsandComputer Science,andtotheNationalCenterofScience(NCN,grant#6065/B/H03/2011/40) forfinancialsupportduringtheresearchonmetricdiffusion. Chapter 1 Wasserstein Distance TheWassersteindistanceofBorelprobabilitymeasuresplaysaveryimportantrole in metric diffusion along foliations. In this chapter we present some foundations of the Optimal Transportation Theory, that is, the Kantorovich Duality Theorem for optimal transportation problem and the definition of the Wasserstein distance, togetherwiththeweak-(cid:4)topologymetrizationtheoremforthesetP.X/ofBorel probabilitymeasuresonacompactmetricspaceX.Thechapterisclosedbysome technicallemmasusedinthelaterconsiderations. The full theory of the Optimal Transportation can be found in the excellent monographs by C. Villani [18, 19]. We only present the main aspects, which are needed to understand the theory of metric diffusion. Full description and precise proofscanbefoundinthemonographsmentionedabove. Ifnotmentioned,wewillalwaysassumethattopologicalspaces,metricspaces ormanifoldsweconsiderarecompact.Forfullgenerality,referto[18]and[19]. 1.1 OptimalTransportationProblem The Wasserstein distance of measures on compact metric spaces comes from the Monge–Kantorovich problem of existence of an optimal transportation plan. In otherwords,imaginethatyouhaveapileofsomethingwhichshouldfillperfectly a hole in the ground. Of course, both the pile and the hole have the same volume. Therearemanywaysofdoingthis,buttheoneweareinterestedinisthatwiththe lowestcost.Thecostcanbeunderstoodasaneffortneededtodothejob. WenowrestrictourattentiontoBorelprobabilitymeasures(cid:3)and(cid:4) oncompact spacesX andX0,respectively.ABorelprobabilitymeasure(cid:5) onX(cid:5)X0 iscalleda couplingwithmarginals(cid:3)and(cid:4) (Figure1.1)ifitsatisfies (cid:5).A(cid:5)X0/D(cid:3).A/and(cid:5).X(cid:5)B/D(cid:3).B/: ©TheAuthor(s)2017 1 S.M.Walczak,MetricDiffusionAlongFoliations,SpringerBriefsinMathematics, DOI10.1007/978-3-319-57517-9_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.