Copyright and use of this thesis This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Methods to Support End User Design of Arrangement-Level Musical Decision Making Aengus Martin 2014 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Faculty of Engineering and Information Technologies Abstract Thisthesisisconcernedwiththestudyofmethodsandmodelstosupportthedesign of systems that perform music autonomously, by non-programming end users (typicallymusicianswhoarenotproficientinconventionalcomputerprogramming). Specifically,weaddressthedesignofthecentraldecisionmakingcomponentofsuch systems. Thiscomponenttypicallymakesmusicaldecisionsonthetimescaleofa fewsecondsandwerefertoitasamusicalagent. Weusethetermarrangement-level musicaldecisionmakingtorefertotheactivityperformedbyamusicalagent. Wedevelopandcharacterisethreeseparatemethodsforsupportingthedesign ofmusicalagentsbynon-programmingendusers. Thefirstistousethepartially observableMarkovdecisionprocess(POMDP)whichisanelegantmodelofthein- teractionbetweenanagentanditsenvironment. Weshowitspotentialfordesigning theresponsesofamusicalagenttoparticularstimuli. Forexample,wedemonstrate how, simply by adjusting the parameters of the model, an agent’s behaviour can be varied between ‘cautious’ and ‘risk-taking’, when there is uncertainty about a musicalsituation. However,weidentifysignificantchallengeswithregardtotheuse ofPOMDPsmoregenerallyfordesigningmusicalagents. Specifically,itisunclear whatrepresentationsofmusicalinformationshouldbeusedandhowtodesignthe rewardfunction,whichisanimportantparameterofthemodel. The second method is based on the paradigm of programming by example. We introduce the similarity-based musical agent which uses a novel instance-based machinelearningalgorithmtolearnthestyleinadatabaseofexampleperformances. While the similarity-based musical agent shows good potential for emulating a iv particularstyleofdecisionmaking,itrequiresalotoftrainingdata: aroundtwenty exampleperformanceswereneededtoemulatetworelativelysimplebehaviours accurately. Weregardthisasacriticalissue,envisagingthatarequirementtosupply so many example performances in order to create even a simple musical agent, wouldconstituteasignificantbarriertotheadoptionofthissystem. Thethirdmethodexploredinvolvescombiningprogrammingbyexamplewith a mechanism whereby a musician can embed musical knowledge into an agent. The main contribution of this work is a new piece of software called the Agent DesignerToolkit(ADTK)whichsupportsthisnovelparadigmfordesigningmusical agents. We show that the ADTK can be used to create agents that convincingly emulatestylesofarrangement-levelmusicaldecisionmakinginawidevarietyof musical contexts, both mainstream and experimental, with small sets of example performances. Furthermore,theagentsareoftenveryquicktocreate. TheADTKdefinesanovelclassofmodelscomprisingacombinationofvariable orderMarkovmodels,associationrulesandotheruser-definedrelationshipsbetween variables. Tousethesemodelsinmusicperformance,anewmethodwasdeveloped forcomputingmusicaldecisionsrepresentedasconstraintsatisfactionproblemssubject toreal-timeconstraints. Themethodisbasedonbinarydecisiondiagramsanditmay beapplicableinavarietyofotherreal-timecomputermusicapplications. TheADTKuniquelyfulfilsourgoalsinthatitdoesnotrequiretheusertohave anyexpertiseinconventionalcomputerprogramming. Inaddition,itcanbeseam- lesslyembeddedintwopopularmusicsoftwarepackagessothatautonomousmusic systemscanbecreatedentirelyinsideastandardmusicproductionenvironment. Whileweidentifycertainusabilityissueswiththesoftwareinitscurrentincarnation, weshowthepromiseofanumberofstrategiesformitigatingthem. Forexample, weprovidesupportfortheideathatasetofwidelyapplicablepresetconfigurations canbeidentifiedandthesewillmakethesoftwaremuchmoreaccessible. Finally,in additiontoitsuseinmusicperformance,weshowthepotentialoftheADTKfora varietyofothercreativeusessuchasthegenerationofnewmusicalideas. Publications Following is a list of peer-reviewed publications written over the course of this thesis-work. Thosearisingdirectlyfromtheresearchhereinaremarkedwithstars ((cid:63)): A.Eigenfeldt,O.Bown,P.PasquierandA.Martin,‘TheFirstMusicalMetacre- ationWeekend: TowardsaTaxonomyofMusicalMetacreation,’2ndInternational WorkshoponMusicalMetacreation,Boston,MA(2013)(toappear) O. Bown, A. Eigenfeldt, P. Pasquier, B. Carey and A. Martin, ‘The Musical MetacreationWeekend: Challengesarisingfromthelivepresentationofmusically metacreativesystems,’2ndInternationalWorkshoponMusicalMetacreation,Boston, MA(2013)(toappear) (cid:63) A.MartinandO.Bown,‘TheAgentDesignerToolkit,’Demoatthe9thACM ConferenceonCreativityandCognition,Sydney,Australia(2013) (cid:63) O.BownandA.Martin,‘Backgammon,’LivePerformancewithmusicalagents atthe9thACMConferenceonCreativityandCognition,Sydney,Australia(2013) S. Ferguson, A. Johnston and A. Martin, ‘A Corpus-Based Method for Con- trolling Guitar Feedback,’ New Interfaces for Musical Expression, Seoul, Korean Republic(2013) O.BownandA.Martin,‘AutonomyinMusic-GeneratingSystems,’1stInterna- tionalWorkshoponMusicalMetacreation,PaloAlto,California(2012) (cid:63) A. Martin, C.T. Jin, B. Carey and O. Bown, ‘Creative Experiments Using a SystemforLearningHigh-LevelPerformanceStructureinAbletonLive,’Soundand MusicComputingConference,Copenhagen,Denmark(2012) vi (cid:63) A. Martin, C.T. Jin and O. Bown, ‘Implementation of a real-time musical decision-maker,’ Australasian Computer Music Conference, Brisbane, Australia (2012) K.BeilharzandA.Martin‘The“Interface”inSite-SpecificSoundInstallation,’ NewInterfacesforMusicalExpression,AnnArbour,Michigan(2012) (cid:63) A.Martin,C.JinandO.Bown,‘AToolkitforDesigningInteractiveMusical Agents,’ProceedingsofOZCHI2011,Canberra,Australia(2011) A.MartinandK.Beilharz,‘Windtraces: AccessibleSonicArt,’Proceedingsof CreateWorld,Brisbane,Australia(2011) (cid:63) A.Martin,C.Jin,A.McEwanandW.L.Martens,‘ASimilarityAlgorithmfor InteractiveStyleImitation,’InternationalComputerMusicConference,Huddersfield, UK(2011) A. Martin, S. Ferguson, K. Beilharz, ‘Mechanisms for Controlling Complex SoundSources: ApplicationstoGuitarFeedbackControl,’NewInterfacesforMu- sicalExpression,Sydney(2010) (cid:63) A. Martin, C. Jin, A. van Schaik and W.L. Martens, ‘Partially Observable MarkovDecisionProcessesforInteractiveMusicSystems,’InternationalComputer MusicConference,NewYork(2010) Acknowledgements Thereareagreatmanypeoplewithoutwhomtheconstructionofthisthesiswould havebeen(i)completelyimpossible,(ii)muchmoredifficult,or(iii)farlesstolerable. I will leave it to the individuals themselves to figure out in which category or categoriestheyreside. First,Iwouldliketothankmysupervisor,CraigJin,whofromourfirstmeeting at ICAD in Limerick, Ireland, gave me great encouragement, first to come and work as an audio programmer and then to pursue a PhD at the Computing and AudioResearchLab(CARLab)atSydneyUniversity. Craig,alongwithAndrévan SchaikandJeffreyShaw,wasgoodenoughtoprovidemuchofthesupportforsaid PhDfromAustralianResearchCouncilLinkageGrantLP0669163,andforthatIam especiallygrateful1. I would like to extend my heartfelt gratitude to Ollie Bown for becoming my associatesupervisorandahugelyimportantinfluenceonmywork. Hisintroduction ofAbletonLiveintothemix(nopunintended)wastheperfectpieceofthepuzzleat theperfecttime. MygratitudealsogoestoBillMartensforhisfantasticenergyand understandingasOllie’spredecessorandforseeingthatOlliewouldbeanexcellent fit. Iextendmywarmesthighfivesandembraces(embodied,ofcourse,insedate handshakes)toagreatmanystudents,postdocs,researchassistants,staff,interlopers andindividualsofnonspecificrole,fromCARLabandlateralsofromtheComputing 1IamadditionallyappreciativeoftheUniversityofSydneyInternationalResearchScholarshipand theNormanI.PricescholarshipfromtheSchoolofElectricalandInformationEngineering. viii Engineering Laboratory at Sydney University. In particular (but in no particular order),toAbhaya,Alan,David,Sean,Tara,Andrew,Tony,Alistair,Joubin,Roman, Nico,Pierre,Trang,Nick,Mike,MahendraandGaetano,Isaythanksforthemany discussions,laughs,beersandbarbecuesthatweshared. At a number of points during the research reported herein, I cold-called re- searchers from fields unfamiliar to me (at the time), shamelessly looking for free expertise. Theirpositiveresponsesamazedmeandhelpedagreatdeal. Iwouldlike tothankTobyWalshandNinaNarodytskafortheirinvaluableadviceonconstraint programming and binary decision diagrams; Kate Stevens for being an excellent soundingboardinallmattersHCI;andJudyKayformoreHCIwisdomrelatingto softwareevaluation. IwouldalsoliketothankSimonO’Callaghanforhisthoughts on a variety of machine learning issues and for having a scuba diving obsession comparabletomyown. Thecontributionsofpractisingmusicianswerevitallyimportantforthiswork. I wouldliketothankBenCareyforofferinglotsofthoughtfulfeedbackontheAgent DesignerToolkitandforbeinganexcellentfriendandcollaborator. Mygratitude alsogoestotheothermusiciansthatweregametojamwithnascentagent-controlled electronics: AstridZeman,EvanDorrian,JamesNicholsandPeterHollo. Iwould alsoliketothanktheelectronicmusicpractitionersthatparticipatedinthestudiesof theAgentDesignerToolkit,fortheirconsiderabletimeandeffort. ItookpartinaselectionofinterestingsideprojectsduringthecoursemyPhD researchandthereweretwothatprovidedparticularlydelightfuldiversions. I’m gratefultoSamFergusonforallowingmetotakepartintherobotfeedbackguitar workandforourfriendshipsince. I’malsohugelyindebtedtoKirstyBeilharz,not onlyfortheopportunitytoco-createWindtraces,butalsoforbeingfirmlybehindme ateachstageofmyprogressiontolecturerattheUniversityofTechnology,Sydney. Finally,Iwouldliketothankmyfamilywhotookakeeninterestinmyprogress andenquirednotafewtimeswhatexactlyitwasthatIwasdoing,andEithne,who providedloveandsupporteverystepoftheway. Contents Glossary xvii 1 Introduction 1 1.1 Player-ParadigmInteractiveMusicSystems . . . . . . . . . . . . . . . . 5 1.2 Arrangement-LevelMusicalDecisionMaking . . . . . . . . . . . . . . . 6 1.3 TheDesignofPlayer-ParadigmSystems . . . . . . . . . . . . . . . . . . 8 1.3.1 ComputationalStructure . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 GeneralDesignApproaches. . . . . . . . . . . . . . . . . . . . . . 12 1.3.3 ThreePlayer-ParadigmSystems . . . . . . . . . . . . . . . . . . . . 15 1.3.4 CommonDesignStrategies . . . . . . . . . . . . . . . . . . . . . . 20 1.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4 EndUserToolsforDesigningMusicalDecisionMaking . . . . . . . . . . 26 1.4.1 ToolsforDesigningStructuralModels . . . . . . . . . . . . . . . . . 26 1.4.2 ToolsforDesigningAbstractModels . . . . . . . . . . . . . . . . . . 27 1.4.3 GenerativeToolsConfiguredbyHigh-LevelDescriptors . . . . . . . . 28 1.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.6 AimsofthisWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.1 Requirementsformethodsfordesigningmusicalagents . . . . . . . . 32 1.6.2 ResearchQuestions . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.7 OutlineandContributions . . . . . . . . . . . . . . . . . . . . . . . . . 36
Description: