ebook img

Methods of bosonic and fermionic path integrals representations: continuum random geometry in quantum field theory PDF

351 Pages·2009·5.34 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Methods of bosonic and fermionic path integrals representations: continuum random geometry in quantum field theory

M B F ETHODS OF OSONIC AND ERMIONIC P I R : ATH NTEGRALS EPRESENTATIONS C R G ONTINUUM ANDOM EOMETRY IN Q F T UANTUM IELD HEORY No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. M B F ETHODS OF OSONIC AND ERMIONIC P I R : ATH NTEGRALS EPRESENTATIONS C R G ONTINUUM ANDOM EOMETRY IN Q F T UANTUM IELD HEORY LUIZ C.L. BOTELHO NovaSciencePublishers,Inc. NewYork c 2009byNovaSciencePublishers,Inc. (cid:2) Allrightsreserved. Nopartofthisbookmaybereproduced,storedinaretrievalsystemor transmittedinanyformorbyanymeans:electronic,electrostatic,magnetic,tape,mechanical photocopying,recordingorotherwisewithoutthewrittenpermissionofthePublisher. Forpermissiontousematerialfromthisbookpleasecontactus: Telephone631-231-7269;Fax631-231-8175 WebSite: http://www.novapublishers.com NOTICETOTHEREADER ThePublisherhastakenreasonablecareinthepreparationofthisbook,butmakesnoexpressedor impliedwarrantyofanykindandassumesnoresponsibilityforanyerrorsoromissions. No liabilityisassumedforincidentalorconsequentialdamagesinconnectionwithorarisingoutof informationcontainedinthisbook.ThePublishershallnotbeliableforanyspecial,consequential, orexemplarydamagesresulting,inwholeorinpart,fromthereaders’useof,orrelianceupon,this material. Independentverificationshouldbesoughtforanydata,adviceorrecommendationscontainedin thisbook.Inaddition,noresponsibilityisassumedbythepublisherforanyinjuryand/ordamage topersonsorpropertyarisingfromanymethods,products,instructions,ideasorotherwise containedinthispublication. Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationwithregardtothe subjectmattercoverherein.ItissoldwiththeclearunderstandingthatthePublisherisnotengaged inrenderinglegaloranyotherprofessionalservices. Iflegal,medicaloranyotherexpertassistance isrequired,theservicesofacompetentpersonshouldbesought.FROMADECLARATIONOF PARTICIPANTSJOINTLYADOPTEDBYACOMMITTEEOFTHEAMERICANBAR ASSOCIATIONANDACOMMITTEEOFPUBLISHERS. LibraryofCongressCataloging-in-PublicationData Botelho,LuizC.L. Methodsofbosonicandfermionicpathintegralsrepresentations: continuumrandomgeometryin quantumfieldtheory/LuizC.L.Botelho. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-60741-908-2(E-Book) 1. Pathintegrals.2. Integralrepresentations.I.Title. QC174.17.P27B6792007 530.14’3–dc22 2007042443 PublishedbyNovaSciencePublishers,Inc.>NewYork For all those who have been struggling, resisting and finally prevailing in “Gulags” (even “Academic” ones.) To Nelma, Rafael and Gabriel – always at my side. Contents AboutThisMonograph xi 1 Loop Space Path Integrals Representations for Euclidean Quantum Fields PathIntegralsandtheCovariantPathIntegral 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. TheBosonicLoopSpaceFormulationoftheO(N)-ScalarFieldTheory . . 1 1.3. AFermionicLoopSpaceforQCD . . . . . . . . . . . . . . . . . . . . . . 4 1.4. Invariant Path Integration and the Covariant Functional Measure for Ein- steinGravitation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.2. Invariant Integration . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.3. AQuantumPathMeasureforEinsteinTheory . . . . . . . . . . . . 8 2 PathIntegralsEvaluationsinBosonicRandomLoopGeometry- AbelianWilsonLoops 35 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2. AbelianWilsonLoopInteraction atFiniteTemperature . . . . . . . . . . . 35 2.3. The Static Confining Potential for Q.C.D. in the Mandelstam Model through PathIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 The Triviality – Quantum Decoherence of Quantum Chromodynamics SU(∞) inthePresenceofanExternalStrongWhite-NoiseEletromagnetic Field 59 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2. TheTriviality–Quantum Decoherence Analysis . . . . . . . . . . . . . . 60 3.3. RandomSurfaceDynamicalFactorintheAnalytical Regularization Scheme 64 3.4. TheNon-relativistic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5. TheStaticConfiningPotentialinaTensorAxionModel . . . . . . . . . . . 69 3.6. The Confining Potential on the Axion-String Model in the Axion Higher- EnergyRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7. Aλφ4 StringFieldTheoryasaDynamicsofSelfAvoidingRandomSurfaces 75 4 TheConfiningBehaviourandAsymptoticFreedomfor QCD(SU(∞))-ACon- stantGaugeFieldPathIntegralAnalysis 87 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2. TheModelandItsConfiningBehavior . . . . . . . . . . . . . . . . . . . . 88 vii viii Contents 4.3. ThePath-IntegralTrivialityArgumentfortheThirringModelatSU(∞) . . 94 4.4. TheLoopSpaceArgumentfortheThirringModel Triviality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5 Triviality - Quantum Decoherence of Fermionic Quantum Chromodynamics SU(N ) in the Presence of an External Strong U(∞) Flavored Constant noise c Field 105 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2. The Triviality - Quantum Decoherence Analysis for Quantum Chromody- namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6 Fermions on the Lattice by Means of Mandelstam-Wilson Phase Factors: A BosonicLatticePath-IntegralFramework 115 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2. TheFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 A Connection between Fermionic Strings and Quantum Gravity States – A LoopSpaceApproach 121 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2. TheLoopSpaceApproachforQuantumGravity . . . . . . . . . . . . . . . 122 7.3. TheWheeler-DeWittGeometrodynamical Propagator . . . . . . . . . . . 127 7.4. Aλφ4 Geometrodynamical FieldTheoryforQuantumGravity . . . . . . . 130 8 AFermionicLoopWaveEquationforQuantumChromodynamicsatN =+∞137 c 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2. TheFermionicLoopWaveEquation . . . . . . . . . . . . . . . . . . . . . 137 9 StringWaveEquationsinPolyakov’sPathIntegralFramework 141 9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9.2. TheWaveEquationinCovariantParticleDynamics . . . . . . . . . . . . . 141 9.3. TheWaveEquationintheCovariantBosonicStringDynamics . . . . . . . 143 9.4. AStringSolutionfortheQCD[SU(∞)]BosonicContour AverageEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.5. TheNeveu-SchwarzStringWaveEquation . . . . . . . . . . . . . . . . . . 150 10 ARandomSurfaceMembraneWaveEquationforBosonicQ.C.D.(SU(∞)) 163 10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.2. TheRandomSurfaceWaveFunctional . . . . . . . . . . . . . . . . . . . . 163 10.3. AConnection withQ.C.D(SU(∞)) . . . . . . . . . . . . . . . . . . . . . . 166 11 CovariantFunctionalDiffusionEquationforPolyakov’sBosonicString 173 11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.2. TheCovariantEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.3. TheWheeler-DeWittEquationasaFunctional DiffusionEquation . . . . 177 Contents ix 12 CovariantPathIntegralforNambu-GotoStringTheory 183 12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 12.2. TheNambu-GotoFullPathIntegral . . . . . . . . . . . . . . . . . . . . . 183 13 Topological Fermionic String Representation for Chern-Simons Non-Abelian GaugeTheories 191 13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 13.2. TheFermionicStringRepresentation . . . . . . . . . . . . . . . . . . . . . 191 14 FermionicStringRepresentation fortheThree-DimensionalIsingModel 195 14.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.2. TheProposedStringTheory . . . . . . . . . . . . . . . . . . . . . . . . . 196 15 APolyakovFermionicString asaQuantumStateofEinsteinTheoryofGravitation 201 15.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 15.2. TheQuantumGravityString . . . . . . . . . . . . . . . . . . . . . . . . . 201 16 AScatteringAmplitudeintheQuantumGeometryofFermionicStrings 209 16.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 16.2. TheScatteringAmplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 17 Path-IntegralBosonization fortheThirringModelonaRiemannSurface 217 17.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 17.2. ThePath-IntegralBosonization onaRiemannSurface . . . . . . . . . . . . 217 18 APath-IntegralApproachforBosonicEffectiveTheories forFermionFieldsinFour andThreeDimensions 225 18.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 18.2. TheBosonicHigh-Energy EffectiveTheory . . . . . . . . . . . . . . . . . 225 18.3. TheBosonicLow-EnergyEffectiveTheory . . . . . . . . . . . . . . . . . 228 18.4. Polyakov’s Fermi-BoseTransmutation in3DAbelian-Thirring Model . . . 231 18.5. EffectiveFour-Dimensional BosonicActions–Some Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 18.6. TheTrivialityoftheAbelian-Thirring QuantumFieldModel . . . . . . . . 239 19 Domains ofBosonic FunctionalIntegrals andSomeApplicationsto theMath- ematicalPhysicsofPathIntegralsandStringTheory 245 19.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 19.2. TheEuclideanSchwingerGenerating Functional asaFunctional FourierTransform . . . . . . . . . . . . . . . . . . . . . . 246 19.3. TheSupportofFunctionalMeasures-TheMinlos Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 x Contents 19.4. SomeRigorousQuantumFieldPathIntegral intheAnalyticalRegularization Scheme . . . . . . . . . . . . . . . . . . . 256 19.5. Remarks on the Theory of Integration of Functionals on Distributional SpacesandHilbert-Banach Spaces . . . . . . . . . . . . . . . . . . . . . . 261 20 Non-linearDiffusioninRD andinHilbertSpaces,aPathIntegralStudy 279 20.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.2. TheNon-linearDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.3. TheLinearDiffusionintheSpaceL2(Ω) . . . . . . . . . . . . . . . . . . . 285 21 BasicsIntegralsRepresentationsinMathematicalAnalysisofEuclideanFunc- tionalIntegrals 295 22 SupplementaryAppendixes 307 Index 331

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.