ebook img

Methods in Chemical Ecology Volume 2: Bioassay Methods PDF

421 Pages·1998·24.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Methods in Chemical Ecology Volume 2: Bioassay Methods

v o L u M METHODS IN C:· HI E',M il! C A, L. E'.C: L., Y BIOASSAY METHODS Aboullhe cover: The cover depicts a female bolas spider in her hunting posture. The spider aggressively mimics the sex pheromone blend of a few species of moths, and thus attracts only male moths. These prey are caught by the sticky ball {or bolas} at the end of the vertical line. v o L u M NETHQ·DS IN C·HE:.MiIC·A.. L. E.C: L... Y BIOASSAY METHODS EDITED BY KEN N ETH F. HAYN ES University of Kentucky, Department of Entomology, Lexington, KY JOCELYN G. MILLAR University of California, Department of Entomology, Riverside, CA SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data Methods in chemi cal ecology p.cm. Includes bibliographical references and index. Contents: v. 1. Chemical methods / edited by Jocelyn G. Millar and Kenneth F. Haynes-- v. 2. Bioassay methods / edited by Kenneth F. Haynes and Jocelyn G. Millar. ISBN 978-1-4613-7471-8 ISBN 978-1-4615-5411-0 (eBook) DOI 10.1007/978-1-4615-5411-0 1. Chemical ecology--Methodology. 1. Millar, Jocelyn G. II. Haynes, K.F. QH541.15.C44M48 1998 577'.0I'54--dc21 97-39820 CIP Copyright © 1998 by Springer Science+Business Media N ew York Originally published by Kluwer Academic Publishers in 1998 Softcover reprint of the hardcover 1s t edition 1998 AII rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any meanS, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher. Springer Science+Business Media, LLC. Printed an acid-free paper. Dedicated to the memory of Catharine Kennedy Haynes and William Warren Haynes Contents Preface xv Contributors xix 1. Bioassays with marine microorganisms Kelly M. Jenkins, Paul R. Jensen, and William Fenical 1.J. Chemical ecology of marine microorganisms 2 1.2. Ecological relevance of bioassays 3 1.3. Antimicrobial assays 5 1.3.1. Direct challenge/competitive interaction assays 6 1.3.2. Antibiotic disk susceptibility assays 7 1.3.3. Bioautography 10 1.3.4. Direct algal cell count assays 11 1.3.5. Spectrophotometric assays 11 1.3.6. Viral plaque formation assay 13 1.3.7. Agar plate assay for filamentous fungi 13 1.3.8. Fungal interference competition assay 14 1.3.9. Associational defense 15 1.4. Behavioral assays 16 1.4.1. Chemotaxis 16 1.4.1.1. Capillary assay 17 1.4.1.2. Modified capillary assays 18 1.4.1.3. Chamber method 20 1.4.1.4. Dual-well slide method 21 1.4.2. Gamete chemotaxis 21 1.4.2.1. MUller method 21 1.4.2.2. Miller method 22 1.4.3. Motility 23 1.4.4. Settlement assays-laboratory studies 24 1.4.4.1. Microscope slide assay 25 1.4.4.2. Agar matrix assay 26 vii viii / Contents 1.4.4.3. Spectrophotometric assay 26 1.4.4.4. Microalgal attachment assay 27 1.4.5. Settlement assays-field studies 28 1.4.5.1. Tile assay 28 1.4.5.2. Microscope slide assay 29 1.4.5.3. Microalgal assays 29 1.5. Summary and conclusions 31 1.6. Acknowledgments 32 1. 7. References 32 2. Bioassays with marine and freshwater macroorganisms Mark E. Hay, John J. Stachowicz, Edwin Cruz-Rivera, Stephan Bullard, Michael S. Deal, and Niels Lindquist 39 2.1. Introduction 40 2.2. Foraging cues 42 2.2.1. Isolation and preparation of foraging cues 43 2.2.2. Vertebrates 45 2.2.3. Invertebrates 47 2.3. Feeding cues 51 2.3.1. Isolation and preparation of feeding cues 55 2.3.2. Feeding deterrents 56 2.3.2.1. Vertebrates 56 2.3.2.1.1. Field assays 56 2.3.2.1.2. Laboratory assays 59 2.3.2.2. Invertebrates 63 2.3.2.2.1. Field assays 63 2.3.2.2.2. Laboratory assays 64 2.3.3. Feeding stimulants 70 2.3.4. Multiple cues and defensive synergisms 72 2.4. Consequences of consuming defensive metabolites 74 2.4.1. Vertebrates 76 2.4.1.1. Short -term assays 76 2.4.1.2. Long-term assays 80 2.4.2. Invertebrates 82 2.4.2.1. Short-term assays 82 2.4.2.2. Long-term assays 85 2.5. Toxin-mediated prey capture 90 2.6. Chemically mediated detection of and responses to predators 92 2.6.1. Vertebrates 93 2.6.1.1. Chemical cues from conspecifics 93 2.6.1.2. Chemical cues from predators 95 2.6.2. Invertebrates 97 2.6.2.1. Behavioral responses 97 2.6.2.2. Induced responses 99 2.7. Intraspecific chemical communication 102 2.8. Chemically mediated homing behavior 106 Contents I ix 2.8.1. Vertebrates 106 2.8.2. Invertebrates 108 2.9. Settlement cues 108 2.9.1. Vertebrates 108 2.9.2. Invertebrates 109 2.9.3. Recommendations regarding still water assays 114 2.10. Allelopathy and antifouling 117 2.10.1. Invertebrates 117 2.10.2. Seaweeds 119 2.11. Chemical ecology within a broader environmental context 120 2.12. Conclusions 121 2.13. Acknowledgments 122 2.14. References 122 3. Bioassay methods for fungi and oomycetes James L. Kerwin and Melinda J. Semon 142 3.1. Introduction 142 3.2. Intraspecific interactions-reproduction 143 3.2.1. Chytridiomycetes 144 3.2.2. Oomycetes 145 3.2.3. Yeast 147 3.2.4. Basidiomycetes and ascomycetes 148 3.3. Intraspecific population interactions 148 3.4. Interspecific interactions 151 3.4.1. Exploitation of resources-saprophytes 151 3.4.2. Exploitation of resources-parasites and pathogens 151 3.4.2.1. Plant parasites and pathogens 151 3.4.2.2. Animal parasites and pathogens 157 3.4.2.3. Fungal and lichen parasites and pathogens 159 3.4.3. Mutualistic and symbiotic interactions 160 3.4.3.1. Vesicular-arbuscular mycorrhizal fungi 160 3.4.3.2. Ectomycorrhizal fungi 162 3.4.3.3. Fungal-insect associations 162 3.4.4. Competition-allelopathy 163 3.4.5. Defense against herbivores and pathogens 163 3.5. Conclusions 165 3.6. Acknowledgments 165 3.7. References 165 4. Bioassays for allelopathy in terrestrial plants John T. Romeo and Jeffrey D. Weidenhamer 179 4.1. Introduction 179 4.2. Case studies illustrating appropriate bioassays 184 4.2.1. Bracken fern 184 4.2.1.1. Vegetation pattern 184 4.2.1.2. Environmental factors 185 x / Contents 4.2.1.3. Allelopathy 186 4.2.2. The California chaparral 188 4.2.2.1. Role of allelopathy 188 4.2.2.2. Physical and biotic factors 189 4.2.2.3. Bioassays to establish mechanism of allelochemical transport 189 4.2.3. Rye 191 4.2.3.1. Greenhouse experiments and bioassays 192 4.2.3.2. Chemical studies 193 4.2.4. The Florida scrub 195 4.2.4.1. Vegetation pattern and soil 195 4.2.4.2. Resource competition 195 4.2.4.3. AUelopathy 196 4.2.4.4. Chemical studies 196 4.2.5. Crowberry 198 4.2.5.1. Laboratory bioassays 198 4.2.5.2. Greenhouse and field studies 199 4.3. Density-dependent phytotoxicity 200 4.4. Practical considerations 202 4.5. Acknowledgments 205 4.6. References 205 5. Bioassay methods with terrestrial invertebrates J. Daniel Hare 212 5.1. Introduction 213 5.1. I. Scope of the chapter 214 5.1.2. General considerations for laboratory bioassays 214 5.1.3. Statistical analysis of choices 215 5.2. Behavioral bioassays for odors, pheromones, and other volatile compounds 216 5.2.1. General considerations 216 5.2.2. Moving air bioassays (olfactometers and wind tunnels) 217 5.2.3. Still-air bioassays 223 5.2.4. Modifications for specific purposes 225 5.3. Bioassays for contact oviposition stimulants-two case studies 228 5.3.1. Butterflies 229 5.3.2. Parasitic Wasps 233 5.3.3. Data Analysis 237 5.4. Measurement of preference 237 5.4.1. Host-plant selection for feeding 237 5.4.1.1. Neutral substrates 238 5.4.1.2. Artificial diets 240 5.4.1.3. Plant tissue substrates 241 5.4.1.4. Leaf disks 243 5.4.1.5. Other natural substrates 243 5.4.2. Details of bioassay design 243 Contents / xi 5.4.3. Data collection 244 5.4.4. Data analysis 247 5.5. Postingestive bioassays 247 5.6. Measurements in diet studies: growth rate, consumption rate, and efficiency of conversion of food to biomass 248 5.6.1. Data acquisition 252 5.6.1.1. Consumption 252 5.6.1.2. Weight gain 253 5.6.1.3. Measurements of excreta 253 5.6.2. Alternatives to gravimetry 254 5.6.2.1. Uric acid determination 254 5.6.2.2. Calorimetry and respirometry 255 5.6.3. Summary 256 5.7. Alternative methods to separate preingestive and postingestive effects 257 5.8. Contact and volatile toxicity 259 5.9. Conclusions 260 5.10. Acknowledgments 260 5.11. References 261 6. Bioassay methods for amphibians and reptiles Robert T. Mason, Douglas P. Chivers, Alicia Mathis, and Andrew R. Blaustein 271 6.1. Introduction 272 6.2. Amphibians 273 6.2.1. Orientation and homing 273 6.2.1.1. Frogs and toads 273 6.2.1.2. Salamanders 277 6.2.2. Chemical cues in kin recognition 278 6.2.2.1. Larval amphibians 278 6.2.2.2. Post-metamorphosis 282 6.2.3. Territorial pheromones 282 6.2.3.1. Source of the chemical signal 282 6.2.2.2. Response variables 284 6.2.4. Marking behaviors 286 6.2.5. Reproductive pheromones and sexual advertisement 287 6.2.5.1. Source of the chemical signal 287 6.2.5.2. Response variables 287 6.2.5.3. Species discrimination 288 6.2.5.4. Male courtship pheromones 288 6.2.6. Predator/prey interactions 289 6.2.6.1. Chemical alarm cues 289 6.2.6.2. Antipredator responses 292 6.2.7. Noxiousness and toxicity 294 6.3. Reptiles 296 6.3.1. Olfaction and vomerolfaction 296 xii / Contents 6.3.2. Attractants and repellents 297 6.3.3. Aggregation 299 6.3.4. Trailing 302 6.3.5. Sexual behavior 305 6.3.6. Femoral pores 307 6.3.7. Copulatory plugs 307 6.3.8. Combat behavior 308 6.3.9. Predator/prey recognition 308 6.4. Conclusions 310 6.5. Acknowledgments 311 6.6. References 311 7. Bioassays for mammals and birds Dale L. Nolte and 1. Russell Mason 326 7.l. Introduction 327 7.2. Chemical senses 327 7.2.l. Olfaction 327 7.2.2. Vomeronasal chemoreception 328 7.2.3. Trigeminal chemoreception 328 7.2.4. Terminal nerve 329 7.2.5. Septal organ 329 7.2.6. Taste 329 7.3. Test paradigms 330 7.3.l. Naturalistic observations 331 7.3.2. Orientating responses 331 7.3.3. Choice tests 331 7.3.4. Flavor-avoidance learning 333 7.3.5. Operant conditioning 335 7.3.6. Single-subject designs 336 7.4. Experimental apparatus 337 7.4.l. Feed trays 337 7.4.2. Drinking tubes 337 7.4.3. Arena 338 7.4.4. Mazes 339 7.5. Intraspecific behaviors 339 7.5.l. Detection and recognition 342 7.5.1.1. Mammal bioassays 342 7.5.1.2. Bird bioassays 346 7.5.2. Reproduction 349 7.5.3. Dominance 351 7.5.4. Territorial behaviors 352 7.6. Interspecific behaviors 355 7.6.1. Resource exploitation 356 7.6.1.1. Mammal bioassays 356 7.6.1.2. Fetal mammal bioassays 360 7.6.1.3. Lactating mammal bioassays 362

Description:
Identification of chemicals that affect the naturally occurring interactions be­ tween organisms requires sophisticated chemical techniques, such as those docu­ mented in volume 1, in combination with effective bioassays. Without an effective bioassay, the identification becomes akin to looking fo
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.