ebook img

Methods and models in mathematical programming PDF

399 Pages·2019·3.701 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Methods and models in mathematical programming

S. A. MirHassani · F. Hooshmand Methods and Models in Mathematical Programming Methods and Models in Mathematical Programming (cid:129) S. A. MirHassani F. Hooshmand Methods and Models in Mathematical Programming S.A.MirHassani F.Hooshmand DepartmentofMathematics DepartmentofMathematics andComputerScience andComputerScience AmirkabirUniversityofTechnology AmirkabirUniversityofTechnology (TehranPolytechnic) (TehranPolytechnic) Tehran,Iran Tehran,Iran ISBN978-3-030-27044-5 ISBN978-3-030-27045-2 (eBook) https://doi.org/10.1007/978-3-030-27045-2 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Abbreviations and Acronyms The following table summarizes all abbreviations and acronyms, used throughout thisbook,andthereadercanturntothislistatanytime. Abbreviation Definition B&B Branch-and-bound B&C Branch-and-cut BIP Binaryintegerprogramming CLP Constraintlogicprogramming CSP Cuttingstockproblem CTP Coursetimetablingproblem DCP Diseasecontrolproblem FSSP Flowshopschedulingproblem IFP Innerfitpolygon IIS Irreducibleinfeasiblesubsystem IP Integerprogramming IPM Interiorpointmethod KKT KarushKuhnTucker LHS Lefthandside LP Linearprogramming LPR Linearprogrammingrelaxation (mu) Monetaryunit MCER McCormickenveloperelaxation MILP Mixedintegerlinearprogramming MINLP Mixedintegernonlinearprogramming MIP Mixedintegerprogramming MIS Minimalinfeasiblesubsystem MPDP Multi-parametricdisaggregationtechnique NDP Networkdesignproblem NFP Nofitpolygon NLP Nonlinearprogramming (continued) v vi AbbreviationsandAcronyms Abbreviation Definition OR Operationsresearch PDIP Pre-disasterinvestmentproblem PIP Pureintegerprogramming PLF Piecewiselinearfunction PPSP Petroleumpipelineschedulingproblem PSP Portfolioselectionproblem QP Quadraticprogramming RHS Right-handside RLT Reformulationandlinearizationtechnique SHP Sellorholdproblem SNP Socialnetworkproblem SOS1 Specialorderedsetoftype1 SOS2 Specialorderedsetoftype2 SSP Sportsschedulingproblem TSP Travelingsalesmanproblem VRP Vehicleroutingproblem VRPTW Vehicleroutingproblemwithtimewindow WRMP Waterresourcemanagementproblem Preface Operations research (OR) is a branch of mathematical sciences that aims to utilize mathematicalmodeling,statisticalanalysis,andmathematicaloptimizationsystem- atically to identify the best choice among available options. The source of optimi- zation problems is the need for industrial, economic, and social decision-makers, who are looking for the best possible way to solve the problems in their area of expertise. In most cases, the number of options discussed is exceptionally high, so thatitisnotpossibletoexpressallofthemexplicitly.Therefore,theseproblemsare initially described by managers (problem description). Then, in order to identify acceptable alternatives, possible choices are implicitly introduced in the form of mathematical relations, so that any solution satisfying these relations is a valid choice. In this way, mathematical models are formulated as a combination of vari- ablesandparametersintheformofmathematicalequalitiesandinequalities(model construction). Finally, methods of solving mathematical models are utilized to determine the optimal choice from a range of possible options (model solving). Trackingandreplicatingthisprocessinaninteractiveanddynamicenvironmentcan leadtothedesiredoutcome,i.e.,theselectionofthebestoption. Today, with the efforts of the scientific community, efficient algorithms have been developed and embedded in mathematical software to satisfy the need of OR practitioners. These software can receive the mathematical models, compile the collected information in a specific form, and call an appropriate solver. Then, the modelissolvedviamathematicalalgorithms,andtheresultisreturnedtotheuser.In this way, theuser will beable todesign,formulate, andthen solve theproblemby himselforherselfwithoutdealingwiththemathematicalcomplexityofalgorithms. Thesuccessinthisareaisreliantontheconstructionofanaccurateandappropriate model that not only observes the problem conditions but also considers the limita- tionsofalgorithmsasaneffectivefactor. Theinitialdescriptionofapracticalproblemisoftenbasedontheexpressionofa collection of logical statements that should be used in the form of mathematical equations and inequalities. Although describing a problem in the form of a mathe- maticalmodelisanessentialstepinthereal-worldapplicationofoptimization,little attention has been paid in the literature to the challenges and delicacies of the vii viii Preface modelingprocess.Thistextbookfocusesonmathematicalmodelingandintroduces its principles and inherent weaknesses. It attempts to describe the process of constructing and evaluating models and explicitly outlines the required rules and regulations so that the reader is able to generalize and reuse concepts in other problemsbyrelyingonmathematicallogic. This textbook is organized into six chapters: General principles of modeling, differenttypesofmodelsandtheirimportance,themainstepsofmodeling,andthe general structure of an optimization model are described in Chap. 1. Chapter 2 introduces the main components of an optimization model, provides an accurate classification of models’ types, and presents a short review of solution methods. Chapter3expresseshowtoincorporatelogicalpropositionsaslinearconstraintsinto optimization models. Chapter 4 refers to some nonlinear functions frequently appearing in optimization problems (e.g., multiplication of two or more variables, piecewiselinearandseparablenonlinearfunctions,minimaxandmaximinfunctions, absolute value and fractional functions) and explains some techniques for their linearization.Inthecasesinwhichlinearizationisnotpossible,someapproximation techniques are introduced. Chapter 5 addresses the qualitative comparison of models, discusses the impact of the number of constraints and variables on the quality of models, and introduces the ideal formulation. Furthermore, some tech- niques of improving formulations are presented, and at the end of this chapter, constraintlogicprogrammingisintroduced.Chapter6developsasetofreal-world applications of mathematical programming, which are closely related to the meth- odologypresentedinthepreviouschapters.Ineachcase,theproblemisdefined,the model’scomponentsareintroduced,andthen,themodelispresentedinthegeneral form. Afterward, the model is solved for a given set of data with the aid of a computer, and the results are analyzed. Each chapter contains different exercises; somearerelativelysimple,andothersaremorechallenging. Undergraduate and postgraduate students of different academic disciplines, including applied mathematics, computer science, operations research, industrial engineering, and management science would find this textbook a suitable option preparingthemforjobsandresearchesrequiringmodelingtechniques.Furthermore, this textbook can be used as a reference for experts requiring advanced skills of modelbuildingintheirjobs. ThefirstversionofthisbookwaspublishedinPersianbyAmirkabirUniversity ofTechnologyPress.Here,itisthesecondversionwritteninEnglish. Thisbookistheresultofseveralyearsofteaching,andideasbroughtforwardby readerswillbeappreciatedforimprovingpossibleshortcomingsinthefuture. Tehran,Iran S.A.MirHassani F.Hooshmand Contents 1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ModelandItsTypes. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ValueofMathematicalModels. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 StepsofModelBuilding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 Step1:IdentifyandDefinetheProblem. . . . . . . . . . . . 4 1.4.2 Step2:CollectDataandPresenttheModel. . . . . . . . . . 4 1.4.3 Step3:SolvetheModel. . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.4 Step4:ValidatetheModel. . . . . . . . . . . . . . . . . . . . . . 5 1.4.5 Step5:ProvideResultstotheOrganization. . . . . . . . . . 5 1.5 StructureofaMathematicalModel. . . . . . . . . . . . . . . . . . . . . . 5 1.5.1 DecisionVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.2 Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.3 ObjectiveFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.4 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.5 SolutionTypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.6 ModelAssumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 NotesandReferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 MainComponentsofMathematicalModels. . . . . . . . . . . . . . . . . . . 13 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 FreeVariables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 FiniteDomainVariables. . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Semi-continuousVariables. . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 PartialIntegerVariable. . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 SimpleBoundandGeneralBound. . . . . . . . . . . . . . . . 16 2.3.2 SoftandHardConstraints. . . . . . . . . . . . . . . . . . . . . . 17 ix x Contents 2.3.3 RedundantandBindingConstraints. . . . . . . . . . . . . . . 18 2.3.4 CutsandLazyConstraints. . . . . . . . . . . . . . . . . . . . . . 19 2.3.5 ConstraintsandSpecialOrderedSets. . . . . . . . . . . . . . 21 2.3.6 ChanceConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.7 ConvertingConstraints. . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 ObjectiveFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 MathematicalModels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 ContinuousandDiscreteModels. . . . . . . . . . . . . . . . . 26 2.5.2 LinearandNonlinearModels. . . . . . . . . . . . . . . . . . . . 26 2.5.3 SingleandMulti-ObjectiveModels. . . .. . . . . . .. . . . . 30 2.5.4 ConstrainedandUnconstrainedModels. . . . . . . . . . . . 31 2.5.5 StaticandDynamicModels. . . . . . . . . . . . . . . . . . . . . 31 2.5.6 DeterministicandNon-deterministicModels. . . . . . . . . 32 2.5.7 LPModelswithIntervalCoefficients. . . . . . . . . . . . . . 32 2.5.8 SingleandMulti-stageModels. . . . . . . . . . . . . . . . . . . 34 2.5.9 SingleandMulti-levelModels. . . . . . . . . . . . . . . . . . . 36 2.6 SolutionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6.1 SolvingLPProblems. . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6.2 SolvingMIPProblems. . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6.3 SolvingNLPProblems. . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.4 SolvingMulti-objectiveProblems. . . . . . . . . . . . . . . . . 50 2.6.5 DynamicProgrammingtoSolveOptimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.6.6 SolvingBi-levelProblems. . . . . . . . . . . . . . . . . . . . . . 52 2.6.7 SolvingProblemswithIntervalCoefficients. . . . . . . . . 55 2.7 NotesandReferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 ModelsandMathematicalLogic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 AtomicPropositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 CompositePropositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4 PropositionalFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5 PropositionsandBinaryVariables. . . . . . . . . . . . . . . . . . . . . . . 70 3.6 ConstraintsandIndicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.1 ConditionalIndicators. . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6.2 ComplementarityRule. . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.3 Bi-ConditionalIndicators. . . . . . . . . . . . . . . . . . . . . . . 80 3.6.4 Either-orConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.5 ConstraintSelection. . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.6.6 Not-EqualityConstraints. . . . . . . . . . . . . . . . . . . . . . . 94 3.6.7 If-ThenConstraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.6.8 If-Then-ElseConstraints. . . . . . . . . . . . . . . . . . . . . . . 100 3.7 MiscellaneousExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.8 NotesandReferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.9 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.