ebook img

Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par ... PDF

215 Pages·2013·12.97 MB·French
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par ...

le 11 décembre 2013 Méthodes de réduction de modèles appliquées à des problèmes d’aéroacoustique résolus par équations intégrales Résumé : Cette thèse s’articule autour de deux thématiques : les méthodes numériques pour la propa- gation d’ondes acoustiques sous écoulement et les méthodes de réduction de modèles. Dans la première thématique, nous développons une méthode de couplage d’éléments finis et d’éléments de frontière pour résoudre l’équation d’Helmholtz convectée, lorsque l’écoulement est uniforme à l’extérieur d’un domaine borné. En particulier, nous proposons une formulation bien posée à toutes les fréquences de la source. Dans la deuxième thématique, nous proposons une solution au problème classique d’accumulation d’arrondis machine qui survient en calculant l’estimateur d’erreur a posteriori dans la méthode des bases réduites. Par ailleurs, nous proposons une méth- ode non intrusive pour calculer une approximation sous forme séparée des systèmes linéaires résultant de l’approximation en dimension finie de problèmes aux limites dépendant d’un ou plusieurs paramètres. Mots-clés : Équations intégrales, Aéroacoustique, Équation d’Helmholtz convectée, Couplage éléments finis et éléments de frontière, Formulation intégrale de type équation combinée, Méthode des bases réduites, Approximation certifiée, Estima- teur d’erreur a posteriori, Méthode d’interpolation empirique, Approximation non intrusive Reduced order methods applied to aeroacoustic problems solved by integral equations Abstract : This thesis has two topics : numerical methods for acoustic wave propagation in a flow and reduced order methods. In the first topic, we develop a coupled finite element and boundary element method to solve the convected Helmholtz equation, when the flow is uniform outside a boundeddomain.Inparticular,weproposeaformulationthatiswell-posedatallthefrequencies of the source. In the second topic, we propose a solution to the classical problem of round-off erroraccumulationthatoccurswhencomputingtheaposteriorierrorboundinthereducedbasis method. Furthermore, we propose a nonintrusive method for the approximation, in a separated representation form, of linear systems resulting from the finite-dimensional approximation of boundary-value problems depending on one or several parameters. Keywords : Integral equations, Aeroacoustics, Convected Helmholtz equation, Fi- nite element and boundary element coupling, Combined fields integral equations, Reduced basis method, Certified approximation, A posteriori error bound, Empir- ical interpolation method, Nonintrusive approximation Table des matières 1 Introduction générale ...................................................... 1 1.1 Contexte industriel ....................................................... 1 1.1.1 Bruit généré par un avion............................................ 1 1.1.2 Description de l’écoulement autour du turboréacteur .................... 3 1.2 L’équation d’Helmholtz convectée .......................................... 4 1.2.1 Approximation acoustique ........................................... 5 1.2.2 Perturbation autour d’un écoulement moyen ........................... 6 1.2.3 Écoulement irrotationel et isentropique ................................ 7 1.3 Méthode des équations intégrales pour l’équation d’Helmholtz classique ......... 9 1.4 Méthodes de réduction de modèle .......................................... 10 1.4.1 Introduction : le fléau de la dimension................................. 11 1.4.2 Les représentations en produits tensoriels .............................. 12 1.4.3 La méthode des bases réduites ....................................... 14 1.5 Contenu de la thèse ...................................................... 20 1.5.1 Production scientifique .............................................. 20 1.5.2 Plan de la thèse .................................................... 21 Part I Two aeroacoustic problems solved by integral equations 2 Acoustic scattering by an impedant object ................................. 27 2.1 Physical setting .......................................................... 27 2.2 Weak formulation ........................................................ 27 2.2.1 Preliminaries....................................................... 27 2.2.2 The Robin boundary condition ....................................... 29 2.3 Existence and uniqueness ................................................. 30 2.4 Inf-sup stability of the discrete formulation .................................. 33 2.5 Combined field integral equations (CFIE) ................................... 36 2.5.1 Eigenvalue problems in Ω− .......................................... 36 2.5.2 Kernel of boundary integral operators ................................. 37 2.5.3 CFIE for the exterior Helmholtz problem .............................. 38 2.6 Numerical illustration..................................................... 41 3 A coupled FEM/BEM for the convected Helmholtz equation with non-uniform flow in a bounded domain..................................... 43 3.1 Introduction............................................................. 43 3.2 Aeroacoustic problem..................................................... 45 3.2.1 Notation and preliminaries........................................... 45 3.2.2 The convected Helmholtz equation.................................... 46 3.2.3 The Prandtl–Glauert transformation .................................. 47 3.2.4 The transformed problem............................................ 47 3.3 Coupling procedure....................................................... 50 3.3.1 The transmission problem ........................................... 50 3.3.2 Basic ingredients of the coupling procedure ............................ 51 3.3.3 Unstable coupled formulation ........................................ 53 3.3.4 Stable coupled formulation........................................... 55 3.4 Finite-dimensional approximation .......................................... 57 3.4.1 Discrete finite element spaces ........................................ 57 3.4.2 Discretization of the coupled formulations ............................. 58 3.4.3 Inf-sup stability of the discretized formulations ......................... 60 3.4.4 Convergence ....................................................... 60 3.4.5 Numerical resolution ................................................ 61 3.5 Numerical results ........................................................ 61 3.5.1 Comparison of pressure fields ........................................ 62 3.5.2 Auxiliary variable p ................................................. 63 3.5.3 Comparison of condition numbers..................................... 63 3.5.4 Convergence ....................................................... 64 3.5.5 Choice of the coupling parameter η ................................... 66 3.6 Conclusion .............................................................. 68 3.7 Annex: Proof of the mathematical results ................................... 68 4 Validation campaign and numerical simulations ............................ 75 4.1 Validation campaign...................................................... 75 4.1.1 Flow at rest and uniform properties: M = M = 0, ρ = ρ , c = c , ∞ ∞ ∞ comparison with ACTIPOLE with only BEM .......................... 75 4.1.2 Flow at rest and uniform properties: M = M = 0, ρ = ρ , c = 2c , ∞ ∞ ∞ comparison with an analytic solution computed by means of Mie series .... 78 4.1.3 Uniformflowandproperties:M =M =0.5,ρ=ρ ,c=c ,comparison ∞ ∞ ∞ with ACTIPOLE with only BEM..................................... 79 4.1.4 Nonuniform flow and nonuniform properties: M = M = 0, ρ = ρ , ∞ ∞ 6 6 c=c , qualitative comparison with ACTI-HF and ISVR ................ 80 ∞ 6 4.2 Industrial test cases ...................................................... 82 4.2.1 Potential flow around a sphere ....................................... 83 4.2.2 Aircraft turbojet ................................................... 83 Part II The Reduced Basis Method 5 Accurate and online efficient evaluation of the a posteriori error bound in the reduced basis method .................................................. 91 5.1 Introduction............................................................. 91 5.2 The reduced basis method................................................. 92 5.2.1 The model problem ................................................. 92 5.2.2 The reduced problem ............................................... 93 5.2.3 A posteriori error bound............................................. 93 5.2.4 Online-efficiency of the RB method ................................... 94 5.2.5 The offline stage.................................................... 95 5.3 Round-off errors and online certification..................................... 96 5.3.1 Elements of floating-point arithmetic.................................. 96 5.3.2 Validity of the formulae and for computing the error bound......... 97 1 2 E E 5.4 New procedures for accurate and online-efficient evaluation of the error bound ...100 5.4.1 Procedure 1: rewriting ............................................101 2 E 5.4.2 Procedure 2: improvement on Procedure 1 using the EIM................102 5.4.3 Illustration ........................................................104 5.4.4 Procedure 3: improvement of Procedure 2 using a stabilized EIM .........105 5.4.5 Summary..........................................................107 5.5 Application to a three-dimensional acoustic scattering problem.................109 5.5.1 Formulation of the problem ..........................................109 5.5.2 Application of the RB method .......................................110 5.5.3 Error bound curves .................................................112 5.6 The Successive Constraint Method .........................................113 5.6.1 Principle ..........................................................114 5.6.2 Algorithm .........................................................116 6 A nonintrusive EIM to approximate linear systems with nonlinear parameter dependence .....................................................119 6.1 Introduction.............................................................119 6.2 The approximation problem ...............................................120 6.3 Empirical Interpolation Method............................................122 6.4 The nonintrusive procedure................................................123 6.4.1 Description of the procedure .........................................123 6.4.2 Practical implementation ............................................124 6.4.3 Illustration ........................................................125 6.5 Extension to more general parameter dependence ............................127 6.5.1 Generalization of the nonintrusive procedure ...........................127 6.5.2 Sound-hard scattering in the air at rest................................128 6.5.3 Sound-hard scattering in a non-uniform flow ...........................131 6.6 Outlook.................................................................134 7 A nonintrusive Reduced Basis Method applied to aeroacoustic simulations.137 7.1 Introduction.............................................................137 7.2 Classical EIM and variants ................................................139 7.3 Nonintrusive procedure ...................................................142 7.3.1 Online-efficient procedures ...........................................143 7.3.2 Computation between training points and weak intrusivity...............143 7.3.3 Modification of the online problems ...................................144 7.3.4 The nonintrusive procedures .........................................146 7.4 Nonintrusive RBM for aeroacoustic problems ................................148 7.4.1 Implementation of the RBM .........................................148 7.4.2 An optimization problem for an impedant object in the air at rest ........149 7.4.3 An uncertainty quantification problem for an object surrounded by a potential flow ......................................................151 7.4.4 A scalable RBM implementation applied to an industrial test case of an impedant aircraft in the air at rest....................................154 7.5 Conclusion ..............................................................158 8 A multiscale problem in thermal science ...................................159 8.1 Introduction.............................................................159 8.2 Physical modeling ........................................................159 8.2.1 A hierarchy of models ...............................................160 8.2.2 Geometry and boundary conditions ...................................161 8.2.3 Time and space discretization ........................................162 8.2.4 Numerical results ...................................................163 8.3 A reduced basis approach for the electronic component problem................167 8.3.1 Review of the method ...............................................167 8.3.2 Goal-oriented a posteriori error estimate : certified RB ..................168 8.3.3 Computation aspects and construction of the basis with a greedy algorithm 171 Annexe A A well conditioned kernel interpolation ....................................179 A.1 Kernel interpolation ......................................................179 A.2 Empirical interpolation method ............................................179 A.3 Simple numerical illustration ..............................................181 B Étude d’un modèle d’incertitude non paramétrique ........................183 B.1 Problème modèle.........................................................183 B.2 Modélisation probabiliste..................................................184 B.2.1 La loi de Wishart...................................................185 X B.2.2 La loi de la norme d’énergie de la solution .............................186 B.3 Le problème d’optimisation sous contraintes en probabilité dans le cas d’un seul objet ...................................................................188 B.4 Tests numériques dans le cas d’une corde vibrante............................194 B.5 Le problème d’optimisation sous contraintes stochastiques dans le cas de deux objets : décomposition de domaines.........................................195 B.6 Perspectives .............................................................197

Description:
In the first topic, we develop a coupled finite element and boundary element method to solve the convected Helmholtz equation, when the flow is uniform outside a bounded domain. In particular avec les facteurs d'échelle L (longueur en m), v0 (vitesse en m.s−1), ρ0 (densité en kg.m−3),. µ (
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.