USOO8942430B2 (12) United States Patent (10) Patent N0.2 US 8,942,430 B2 Ivanov et a]. (45) Date of Patent: Jan. 27, 2015 (54) METHOD AND APPARATUS FOR 5,841,886 A 11/1998 Rhoads AUTHENTICATING AREA BIOMETRIC 2 1%; Isiatolé er al~ , , e1n erg SCANNERS 6,023,522 A * 2/2000 Draganoff et a1. .......... .. 382/124 6,868,173 B1 3/2005 Sak ' t l. (75) Inventors: Vladimir Iankov Ivanov, Hyattsville, 6,393,299 B 1 5/2005 Brozijs: a MD (US); John S. Baras, Potomac, MD 6,995,346 B2 2/2006 Johanneson et al. (US) 7,129,973 B2 10/2006 Raynor 7,161,465 B2 1/2007 Wood et a1. (73) Assl. gnee._ The Univ. ersi. ty of Maryland, College 77,,138117,,084124 BB22 21/02000%7 TKioasnt rzewski et al‘ Park, College Park, MD (Us) 7,360,093 B2 4/2008 de Queiroz 7,616,237 B2 11/2009 Fridrich et a1. ( * ) Notice: Subject to any disclaimer, the term of this 7,724,920 B2 5/2010 Rhoads patent is extended or adjusted under 35 2002/0191091 A1 12/2002 Raynor U.S.C. 154(b) by 136 days. (Continued) (21) App1.No.: 13/480,122 OTHER PUBLICATIONS _ _ Jain, Anil K., Arun Ross, and Salil Prabhakar. “An introduction to (22) Flled' May 24’ 2012 biometric recognition.” Circuits and Systems for Video Technology, (65) Prior Publication Data IEEE Transactions on 14.1 (2004): 4-20.* (Continued) US 2012/0300988 A1 Nov. 29, 2012 R l d U s A l_ _ D Primary Examiner * Stephen R Koziol 6 ate ' ' PP lcatlon ata Assistant Examiner * Amandeep Saini (60) Provisional application No. 61/489,607, ?led on May (74) Azzgrney, Agenz, or Firm i Nixon & Vanderhye PC 24, 2011. (57) ABSTRACT (51) /00 2006 01 Methods and apparatuses for authenticating a biometric scan ( ' ) ner, such as area type ?nger print scanners, involves estimat (52) us“ Cl“ _ ing unique intrinsic characteristics of the scanner (scanner CPC ...... .. G06K 9/00006~(2013.01), G06K 9/00892 pattern), that are permanth over time, and can identify a (2013'01)’ G06K 9/00899 (201301) scanner even among scanners of the same manufacturer and USPC ......... .... ...... ... .................................... .. 382/115 modeL Image processing and analysis are used to extract a (58) Fleld 0f ClaSSI?catlon searCh scanner pattern from images acquired With the scanner. The None _ _ _ scanner pattern is used to verify Whether the scanner that see apphcanon ?le for complete searCh hIStOrY acquired a particular image is the same as the scanner that (56) R f Ct d acquired one or several images during enrollment of the bio e erences 1 e metric information. Authenticating the scanner can prevent subsequent security attacks using counterfeit biometric infor US. PATENT DOCUMENTS mation on the scanner, or on the user authentication system. 5,499,294 A 3/ 1996 Friedman 5,787,186 A 7/ 199 8 Schroeder 22 Claims, 12 Drawing Sheets EMéGE ACQUSSMON WARRER NONWTCH SCANNER VERWMAWON SCANNER MATCH 73 83090135 18153 NONMATZZH BtQMETRiS VERWIQAUGN 83689818312 mrcn , x 136 mmmws xawmme 1;; vammmow \Iaairaemoa 13mm magmas US 8,942,430 B2 Page 2 (56) References Cited Khanna, et al, “Forensic Classi?cation of Imaging Sensor Types”, SPIE Int. Conf. Security, Steganography, Watermarking Multimedia U.S. PATENT DOCUMENTS Contents IX, San Jose, CA, vol. 6505, Jan. 2007, 9 pages. Lukas et al., “Digital Bullet Scratches for Images”, Proc. ICIP 2005, 2004/0113052 A1 6/ 2004 Johanneson et al. Sep. 11-14, 2005, Genova, Italy, 4 pages. 2006/0036864 A1 2/2006 Parulski et al. Lukas, et al, “Detecting Digital Image Forgeries Using Sensor Pat 2006/0050996 A1* 3/2006 King et al. .................. .. 382/312 tern Noise”, Proc. of SPIE Electronic Imaging, Photonics West, Jan. 2006/0269097 A1* 11/2006 Mihcak et al. .............. .. 382/100 2008/ 0044096 A1 2/ 2008 Cowburn et al. 2006, 11 pages. 2008/0291996 A1* 11/2008 Pateux et al. .......... .. 375/240.11 Lukas, et al, “Digital Camera Identi?cation from Sensor Pattern 2011/0013814 A1 1/2011 Ivanov et al. Noise”, IEEE Transactions on Information Forensics and Security, 2012/0300992 A1 11/2012 Ivanov et al. vol. 1, Issue 2, pp. 205-214, Jun. 2006. Chen, et al, “Digital Imaging Sensor Identi?cation (Further Study)” OTHER PUBLICATIONS Proceedings of the SPIE, vol. 6505, Electronic Imaging, Security, Kivanc et al., “Spatially Adaptive Statistical Modeling of Wavelet Steganography, and Watermarking of Multimedia Contents IX, Jan. Image Coef?cients and itsApplication to Denoising”, Proc. IEEE Int. 2007. Conf. Acoustics, Speech, and Signal Processing, Phoenix, Arizona, Goljan, et al, “Camera Identi?cation from Cropped and Scaled Images”, Proceedings ofSPIE, vol. 6819, 68190E (2008), Electronic vol. 6, pp. 3253-3256, Mar. 1999. Imaging, Forensics, Security, Steganography, and Watermarking of Kivanc Mihcak et al., “Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet Coef?cients” IEEE Signal Process Multimedia Contents X, San Jose, CA, Jan. 2008, 13 pages. Chen, et al, “Determining Image Origin and Integrity Using Sensor ing Letters, Dec. 1999, vol. 6, Issue:12, pp. 300-303. Gou, et al., “Robust Scanner Identi?cation Based on Noise Features”, Noise”, IEEE Transactions on Information Forensics and Security, IS&T SPIE Conference on Security, Steganography and Watermark vol. 3, Issue 1, pp. 74-90, Mar. 2008. ing of Multimedia Contents IX, San Jose, CA, Jan. 2007. Bartlow, “Establishing the Digital Chain of Evidence in Biometric Swaminathan, et al. “Nonintrusive Component Forensics of Visual Systems”, Ph.D. thesis, 2009, West Virginia University, Sensors Using Output Images”, IEEE Transactions on Information Morgantown, W.Va., 195 pages. Forensics and Security, vol. 2, No. 1, pp. 91-106, Mar. 2007. Lim, “Two-dimensional Image and Signal Processing”, Prentice Hall Swaminathan, et al., “Digital Image Forensics via Intrinsic Finger PTR, 1989, Sections 9.21 Weiner ?ltering, Section 9.2.2Variations of prints”, IEEE Transactions on Information Forensics and Security, Wiener ?ltering, Section 9.2.4 The adaptive Wiener ?lter and Section vol. 3, No. 1, Mar. 2008, pp. 101-117. 9.2.7 Edge-sensitive adaptive image restoration textbook on two Swaminathan, et al, “Component Forensics: Theory, Methodologies, dimensional image and signal processing, 18 pages. andApplications”, IEEE Signal Processing Magazine, Mar. 2009, pp. U.S. Appl. No. 11/761,241, ofCowburn, ?led Jun. 11,2007. 38-48. U.S. Appl. No. 10/328,157, of Johannesen et al, ?led Dec. 23, 2002. Gou et al, “Intrinsic Sensor Noise Features for Forensic Analysis on US. Appl. No. 10/156,721, of Raynor, ?led May 28, 2002. Scanners and Scanned Images”, IEEE Transactions on Information US. Appl. No. 11/253,854, of Parulski, et al, ?led Oct. 18, 2005. Forensics and Security, Sep. 2009, vol. 4 Issue: 3, pp. 476-491. US. Appl. No. 12/838,952 ofIvanov, ?led Jul. 19,2010. Khanna, et al, “Scanner Identi?cation Using Sensor Pattern Noise”, U.S. Appl. No. 13/480,133 of Ivanov, ?led May 24, 2012. Proceedings of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, Jan. 2007. * cited by examiner US. Patent Jan. 27, 2015 Sheet 1 0f 12 US 8,942,430 B2 fm fm gamma i WisiiiigRWRii?? KEYWQRK amvm sag NNER fwg {Him 15W $3'EME 3 US. Patent Jan. 27, 2015 Sheet 2 0f 12 US 8,942,430 B2 4 [43% m 5 2% my pamwsm was mm US. Patent Jan. 27, 2015 Sheet 3 0f 12 US 8,942,430 B2 ffiaiiisayg magi; aaaziimé wii% 2% Wé'ii' agé amiiimp? wim a ?ngerti? i, 1 US. Patent Jan. 27, 2015 Sheet 4 0f 12 US 8,942,430 132 was? féQé g Y msxm? Y ‘ palapm“ E *5 WWW 9 y 3 T sswm _ Q ism l a» awaama é US. Patent Jan. 27, 2015 Sheet 5 0f 12 US 8,942,430 B2 5%. {waxy ma?a g gig {am 1%; Km: M _. 149:3 I $5 if. v aamm US. Patent Jan. 27, 2015 Sheet 6 0f 12 US 8,942,430 B2 5,5,2, ' ENROLLED WAGE QUERY WAGE 9% 4 [502 9a 4 {502 PREPROCESSWG mmoum PREPRocessme MGDULE QXRECT $IGNAL @1315 DIRECT $IGNAL MQIDE w 4 {594 “q 4 (504 I AVERAGENG momma AVERAGWG momma I P, 4 [505 m 4 [505 POSTPROCES8SNG MODULE POSTPROCESSiNG MODULE DIREC? SIGNAL MQQE DIRECT SIGW MODE v, 4 (we vq 4 {505 FELTERtNG usme Fluamm momma WVI§G~AVERAGE FILTERJZNG mVING"AVBZRAGE F1 Li‘C?ZRING x2 4 {507 M 4 (/50? MASKING womum msch; MODULE BYPAQS WEE BYPASS M03232 Ye A I I k 57% MATCHWG MODULE /soa CGRRELATIQH COEFFICIENT DECJS¥ON 3c:me mwcn QR scmrz momma FIG. I! US. Patent Jan. 27, 2015 Sheet 7 or 12 US 8,942,430 B2 mm mmaa mausiawww ' 152 mma laxawxzamx if ?g; ~ mmgym ' .‘ xméasmm > 2 , vammmma ‘ I I k ‘ > v 2222222222222222222222222222222222222 2 ‘ " ' siaamaa ; mma - : gmg‘wg 2 mmm , v m ymmmw , vmmmwmg H gag-ma ‘ mmmm
Description: