ebook img

Metformin Activates AMP Kinase through Inhibition of AMP Deaminase PDF

12 Pages·2010·1.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metformin Activates AMP Kinase through Inhibition of AMP Deaminase

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.286,NO.1,pp.1–11,January7,2011 ©2011byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Metformin Activates AMP Kinase through Inhibition of AMP Deaminase Receivedforpublication,March9,2010,andinrevisedform,November5,2010 Published,JBCPapersinPress,November8,2010,DOI10.1074/jbc.M110.121806 JiangyongOuyang‡,RahulkumarA.Parakhia§,andRaymondS.Ochs§1 Fromthe‡DepartmentofPathology,NewYorkUniversitySchoolofMedicine,NewYork,NewYork10010andthe§Departmentof PharmaceuticalSciences,SchoolofPharmacy,St.John’sUniversity,Queens,NewYork11439 ThemechanismforhowmetforminactivatesAMPK(AMP- olism.Theenzymeisbroadlydistributed,andestablishedasa activatedkinase)wasinvestigatedinisolatedskeletalmuscle keyregulatorofskeletalmusclemetabolism(4–6). L6cells.Awidelyheldnotionisthatinhibitionofthemito- TheregulationofAMPKisillustratedinFig.1.AMPKacti- chondrialrespiratorychainiscentraltothemechanism.We vationrequiresphosphorylationataspecificthreonineresi- alsoconsideredotherproposalsformetforminaction.Asmet- due(7).Inmuscle,themajorkinasecatalyzingthisreaction abolicpathwaymarkers,wefocusedonglucosetransportand hasbeensuggestedtobeLKB1(8).Thus,theupstreamkinase fattyacidoxidation.Wealsoconfirmedmetforminactionson ofAMPKisapotentialregulatorysite(7).Infact,ithasbeen othermetabolicprocessesinL6cells.Metforminstimulated proposedthatinlivercellsLKB1activationisthemechanism bothglucosetransportandfattyacidoxidation.Themito- formetforminactivationofAMPK,basedontheobservation chondrialComplexIinhibitorrotenonealsostimulated thatgeneticablationoftheLKB1eliminatedtheabilityof glucosetransportbutitinhibitedfattyacidoxidation,inde- metformintoactivateAMPKinvivo(9).However,evidence pendentlyofmetformin.Theperoxynitritegenerator3-mor- alsoexistsagainstthepossibilitythatLKB1isthetargetof pholinosydnoniminestimulatedglucosetransport,butinhib- metforminaction(10,11). itedfattyacidoxidation.Additionofthenitricoxideprecursor Thereareotherproposalsforhowmetforminmightacti- argininetocellsdidnotaffectglucosetransport.Thesestudies vateAMPK,andalloftheseinvolveincreasedproductionof differentiatemetforminfrominhibitionofmitochondrialres- AMP.Thisnucleotide,whereaspresentinnearmillimolar pirationandfromactivenitrogenspecies.Knockdownofad- concentrationsincells,ispresentinitsfreestateinthecy- enylatekinasealsofailedtoaffectmetforminstimulationof tosolatmicromolarconcentrations(12).IncreasingAMP glucosetransport.Hence,anymeansofincreaseinADPap- concentrationsfavoritsbindingtoAMPK,bothpromoting pearsnottobeinvolvedinthemetforminmechanism.Knock- andmaintainingtheactivephosphorylatedform(13). downofLKB1,anupstreamkinaseandAMPKactivator,did Acommonlyproposedmechanismformetforminactionis notaffectmetforminaction.Havingruledoutexistingpropos- aninhibitionofmitochondrialrespirationatComplexI.This als,wesuggestanewone:metforminmightincreaseAMP interruptionofenergyproductionwoulddecreaseATPpro- throughinhibitionofAMPdeaminase(AMPD).Wefoundthat ductionandhenceelevatetheconcentrationofADP.Thisin metformininhibitedpurifiedAMPdeaminaseactivity.Fur- turnwouldelevatetheconcentrationofAMPthroughthe thermore,aknowninhibitorofAMPDstimulatedglucoseup- actionofadenylatekinase(14–17).Thisisconsistentwithan takeandfattyacidoxidation.BothmetforminandtheAMPD increaseinglucosetransportthatoccurswithmitochondrial inhibitorsuppressedammoniaaccumulationbythecells. respiratoryinhibition(18). KnockdownofAMPDobviatedmetforminstimulationofglu- Avariantonthemitochondrialrespirationinhibitionisthe cosetransport.WeconcludethatAMPDinhibitionisthe possibilitythatareactivenitrogen(19)and/oroxygenspecies mechanismofmetforminaction. (20)isresponsibleforactivationofAMPK.Thusnitricoxide ortheadductperoxinitrateofnitricoxideplussuperoxide (whichisformedwhenmitochondrialrespirationisblocked), MetforminiscurrentlythemostwidelyuseddrugforType havebeenshowntoactivateAMPK,andcouldalsoaccount IIdiabetes,anditsuseisindicatedforotherdiseasesrelated forincreasedglucoseuptake(19). tometabolicsyndrome(1).Althoughthedrughasbeenused However,itisalsoknownthatinbothliverandmuscleother forover50years(2),itsmechanismremainsunclear.Re- metabolicprocessesareaffectedbymetformin.Inbothofthese cently,itwasdiscoveredthatmetformincausesanactivation tissues,metforminstimulatesfattyacidoxidation(21–24).Itis oftheenzymeAMP-activatedkinase(AMPK)2(3),whichis difficulttorationalizeaninhibitionofrespirationwithastimula- nowestablishedasacentralregulatorofintermediarymetab- tionoffattyacidoxidation.Wethereforeassessedcurrentlypro- posedmechanismsofactionformetforminfortheirabilityto stimulatebothglucoseuptakeandfattyacidoxidation.Asnone 1Towhomcorrespondenceshouldbeaddressed.Tel.:718-990-1678;Fax: ofthecurrentproposalsmettheseconditions,weformedanew 718-990-1936;E-mail:[email protected]. 2Theabbreviationsusedare:AMPK,AMP-activatedproteinkinase;ACC, hypothesis:AMPdeaminase(representingAMPbreakdown) acetyl-CoAcarboxylase;AK1,adenylatekinase1;AMPD,AMPdeaminase; EHNA,erythro-9-(2-hydroxy-3-nonyl)-adenine;KHB,Krebs-Henseleit buffer;MCD,malonyl-CoAdecarboxylase;(cid:1)-MEM,(cid:1)-minimumessential SIN-1,3-morpholinosydnonimine;BisTris,2-[bis(2-hydroxyethyl)amino]-2- medium;MTT,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide; (hydroxymethyl)propane-1,3-diol. JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 1 This is an Open Access article under the CC BY license. ActivatingAMPKinasethroughAMPDeaminase takenforenzymaticendpointassay(26)usingtheHTS7000 BioPlateReader. GlycogenContentMeasurement—Glycogencontentwas assessedbyusingmodifiedamyloglucosidaseassayasprevi- ouslydescribed(27,28).Afteraspirationofthemedium,ad- herentcellmonolayerswereextractedwith400(cid:2)lof30% (w/v)KOHandboiledfor15min.Aliquotswerespottedonto Whatman3Tpaper,whichwasthenimmersedinice-cold 66%(v/v)ethanol.Thepaperswerewashedtwicewith66% FIGURE1.AMPKinmuscle.Theproposedmechanismsfortheactionof ethanol,anddriedpaperscontainingprecipitatedglycogen metformininstimulatingAMPKcanbemappedtothisdiagram.Theen- zymeneedstobephosphorylated(1),whichiscatalyzedprincipallybyLBK1 wereincubatedin2mlof0.4Macetatebuffer(pH4.8)con- inliverandmuscle.Dephosphorylation(2)inactivatestheenzyme;how- taining25units/mlof(cid:1)-amyloglucosidasefor90minat37°C. ever,bindingtoAMPleadstoactivation(3)bymakingAMPKapoorersub- Glucosereleasedfromglycogenwasmeasuredbyusingan strateforthephosphatase.Normally,energydemand(4)canincreaseADP andconsequentlyAMPconcentrationbymeansofincreasedflowthrough enzymaticendpointassayforglucoseusinghexokinase. adenylatekinase(5).Alternatively,AMPmayarisebyanincreasedADPdue GlucoseUptakeAssay—Glucoseuptakewasdeterminedas tointerruptionofmitochondrialenergysupply,whichwouldalsoincrease AMPconcentrationinvolvingflow-throughadenylatekinase(5).Thepres- therateof2-deoxy-D-[2,6-3H]glucoseuptake,usingamodifi- entworksupportsanewsiteofactionformetformin,theAMPdeaminase cationofapreviousmethod(29).Thecellswerefirstincu- (6).Alsoshownareseveralmetabolicprocessesknowntobeaffectedby batedfor15minwithKHB,glucose,andotheragentsasindi- AMPKactivationviametformin:glucoseuptake,fattyacidoxidation,glyco- gensynthesis,andlactateformation. cated.Atthispoint,thelabeleddeoxyglucose(0.6(cid:2)Ci)was addedtoeachwellandtheincubationcontinuedfor45min. Themediumwasaspirated,andthewellswerewashedthree mightbeinhibitedbymetformin.Wepresentevidenceconsist- timeswithice-coldKHBtoremoveexogenouslabel.Thecells entwiththishypothesis. werelysedbytheadditionof0.1%TritonX-100(1ml).Sam- plesofeachwellweremixedwithaqueousscintillationfluid EXPERIMENTALPROCEDURES andmeasuredbyliquidscintillationcounting. Materials—Metformin,andmostchemicals,includingBSA PalmitateOxidationAssay—Palmitateoxidationwasdeter- (bovineserumalbumin,essentiallyfattyacidfree),wereob- minedbyamodificationofquantitativemeasuringtherateof tainedfromSigma.Priortouse,BSAwasdialyzedextensively 14CO productionfrom14C-labeledpalmiticacidasdescribed 2 againstKrebs-Henseleitbicarbonatebuffer(KHB).Palmitic previously(30).TheKHBfortheseincubationswassupple- acidwasfromNu-ChekPrepInc.(Elysian,MN).Dulbecco’s mentedwithfattyacid-pooralbumindialyzedagainstthe modifiedEagle’smedium(DMEM),(cid:1)-minimumessential samebuffer(threechanges).Thefinalalbuminconcentration medium((cid:1)-MEM),Hanks’balancedsaltsolution,fetalbovine was1%.Afteraninitial10minofincubation,allsamplesre- serum(FBS),horseserum,trypsin,andNuPAGE4–12%Bis- ceived2mMcarnitineand[1-14C]palmiticacid(1(cid:2)Ci/mmol), Trisgel,andLipofectaminetransfectionreagentswerefrom andotheradditionsasnoted,andincubationswerecontinued Invitrogen.ScintillationvialswereobtainedfromWheaton for3h.Aliquotsof0.8mlweretakenfromeachwelltoan (Millville,NJ)andScintisafe(30%advancedsafetyLSCmix- Eppendorftube.Eachtubehadacircularpieceoffilterpaper, ture)fromFischerScientific(Fairlawn,NJ).Cellcultureplates producedwithapaperpunch,attachedtotheinsideofthelid, andflaskswereobtainedfromCorningInc.(Corning,NY). towhich15(cid:2)lof2MNaOHwasadded.200(cid:2)lof3Mper- 2-Deoxy-D-[2,6-3H]glucose,[1-14C]palmiticacid,and chloricacidwascarefullyaddedtothe0.8mltoensureno D-[U-14C]glucosewerefromAmershamBiosciences.Nitro- acidwasdepositedonthesideofthetube,andthelidwas cellulosemembraneswereobtainedfromBio-Rad.Adenylate quicklyclosed.Thetubeswereincubatedovernighttoallow kinase1siRNA(siGenomeduplexAK1),DharmaFECT3 the[14C]CO tobeabsorbedintothewick.Thecapswere 2 siRNAtransfectionreagent,negativecontrolsiRNA detachedandplacedin10mlofliquidscintillationfluidfor (siCONTROLNon-TargetingsiRNA),5(cid:1)siRNAbuffer,and counting. transfectionmediumwereobtainedfromDharmaconInc. GlycogenSynthesis—Glycogensynthesiswasdeterminedby (Chicago,IL).AK1antibody,LKB1siRNA,andAMPDsiRNA amodificationoftheincorporationofD-[U-14C]glucoseinto werefromSantaCruzBiotechnology.Allotherantibodies glycogenaspreviouslydescribed(31,32).Afterincubation, includingAMPK(cid:1)antibodyandP-AMPK(cid:1)antibody(phos- cellswerewashedwithice-coldKHBandlysedin0.5mlof phor-Thr172specific)werefromCellSignalingTechnology KOH(30%).Aliquotsof0.2mlwerespottedontoWhatman (Danvers,MA). 3Tpaper,andglycogenwasprecipitatedbyimmersingthe CellCulture—L6ratskeletalmusclecellswereculturedin papersinice-cold66%(v/v)ethanolovernight.Whatman3T DMEMsupplementedwith10%FBS.Cellswereconvertedto papercontainingprecipitatedglycogenwastransferredto myotubesbyswitchingto(cid:1)-MEMwith2%horseserumfor1 scintillationvialsforradioactivitycounting. day,andthento(cid:1)-MEMwith1%horseserumfor5–8days TransfectionofsiRNA—L6cellsweretransfectedwith100 priortouseforexperiments.Detailsofthecellpreparation nMAK1/LKB1/AMPDsiRNAfor3daysbythefollowingpro- areprovidedinapriorpublication(25). cedure:104cells/wellwereseededin12-wellplatesthatwere LactateFormation—Forlactateformation,cellswereincu- incubatedwithDMEMwith10%FBSfor2hbeforetransfec- batedfor4h,afterwhich125(cid:2)lofincubationmediumwas tionwith2(cid:2)MsiRNAsolutionin1(cid:1)siRNAbufferorcontrol 2 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase RNase-freesolution.siRNAandtransfectionreagentwere imidazole-HCl(pH7.0),2mMAMP,and150mMKCl.The dilutedwithtransfectionmedium,addedtocellsinDMEM enzymeactivityisexpressedasmicromolesofIMPproduced and10%FBS,andincubatedat37°Cin5%CO for2days. perminpermgofsolubleprotein. 2 Themediumwaschangedto(cid:1)-MEMwith1%horseserum AmmoniaAssay—Ammoniawasmeasuredasdescribedby withtransfectionsolutionfor1day.Finally,themediumwas Kun(35).Anendpointanalysiswasperformedmeasuring switchedto(cid:1)-MEMwith1%horseserumwithouttransfec- (cid:1)-ketoglutaricacid-dependentNADHoxidationat340nm, tionsolutionforanother4days.Forexperiments,cellswere drivenbyglutamatedehydrogenase. incubatedwithserum-freemediumfor2h,treatedwithor StatisticalAnalysis—Statisticalevaluationwasperformed without10mMmetformininthepresenceof5mMglucosefor usingStudent’sttestorone-wayanalysisofvariancefollowed 2h.Expressedproteincontent(AK1,LKB1,andAMPD)was bytheStudent-Newman-Keulsposthoctestasappropriate. visualizedbyWesternblot. Dataareexpressedasmean(cid:2)S.E.(errorbars),andthelevel WesternBlot—Toextracttotalprotein,cellswerelysed ofsignificancewassetatp(cid:3)0.05. with100(cid:2)lofbuffercontaining2%(w/v)SDS,62.5mMTris RESULTS (pH6.8),10%glycerol,50mMDTT,and0.01%(w/v)brom- phenolblue.Theprocedureofthecommercialsourceofthe MetabolicCharacterizationofMetformininL6Skeletal antibody(CellSignalingTechnology)wasessentiallyfollowed. MuscleCellCultures—Todemonstratecharacteristicmet- Thelysateswereheatedat95–100°Cfor5minandcooledon forminactioninourmodel,wemeasuredanumberofparam- ice.Aliquotsof20(cid:2)gofproteinwereloadedontoa10%SDS- eterslinkedtometformin.Theseincluded:glucoseuptake, PAGEgel,andsubsequentlyelectroblottedontonitrocellulose fattyacidoxidation,lactateformation,andthephosphoryla- membranes.Membraneswereincubatedatroomtempera- tionofAMPK.Forthekeyprocessesofglucoseuptakeand turefor1hinblockingbuffercontainingTris-bufferedsaline, fattyacidoxidation,weadditionallyincubatedcellswithsub- 0.1%Tween20,and5%nonfatdrymilk.Membraneswere strateconcentrationsrepresentingsubmaximalandmaximal thenincubatedwith1:1000dilutionofprimaryantibodyin10 concentrationstoassessthisvariableinmetforminaction. mlofblockingbufferovernightat4°C.Thenmembranes Theknownabilityofmetformintocausephosphorylation wereincubatedwithhorseradishperoxidase-conjugatedsec- ofAMPKwasconfirmed(Fig.2A).Wehaveconfirmedand ondaryantibody(1:2000)andhorseradishperoxidase-conju- extendedmetforminstimulationofglucosetransportforL6 gatedanti-biotinantibody(1:1000)todetectbiotinylatedpro- cells,usingtwoseparateconcentrationsofmediumglucose teinmarkersin10mlofblockingbufferfor1hatroom (Fig.2B).Metforminalsostimulatedpalmitateoxidationat temperature.Immunoreactiveproteinswererevealedusing twolevelsofthissubstrate:submaximal(60(cid:2)M)andnearsat- enhancedchemiluminescencedetection(LumiGLOTM,Cell urating(120(cid:2)M)palmitateconcentration,asevidentinFig. Signaling). 2C.Wealsoexploredthemetabolicconsequencesofthe AMPDeaminasePurification—RabbitskeletalmuscleAMP knownglycogensynthaseinhibitionbyAMPKactivation(36, deaminasewaspurifiedbyusingcellulosephosphateasde- 37).AsevidentfromFig.2D,metformininhibitedglycogen scribedbySmileyetal.(33).Briefly,frozenrabbitmusclewas synthesis,althoughnochangeintotalglycogencontentwas ground,mixedwith3.3timesitsweightofextractionbuffer observed(Fig.2E).Wealsoconfirmedanincreaseinlactate (0.18MKCl,0.054MKH PO ,0.035MK HPO ,pH6.5),and productionbymetformin(Fig.2F),onceagainatdifferent 2 4 2 4 homogenizedfor15sinaWaringBlender.Theslurrywas concentrationsofmediumglucose. stirredatroomtemperaturefor1handcentrifugedat Thepercentstimulationofbothglucosetransportandfatty 14,000(cid:1)gfor15min.Thesupernatantfractionwaspoured acidoxidationinthisstudywasusuallybetween30and50%; throughtwolayersofcheesecloth,afterwhichdrycellulose lactateformationwasstimulatedsomewhatmore(about phosphate,whichwaspreviouslywashedandequilibrated 60%).Thechangeswereunaffectedbysubstrateconcentra- withtheextractionbuffer,wasadded.Afterstirringatleast10 tions(glucose,palmitate). min,thecellulosephosphatewasallowedtosettle.Thecellu- ComparisonofMetformintoRotenone—Severalreports losephosphateslurrywastransferredtoasinteredglassfilter, suggestthatmetforminactsthroughinhibitionofmitochon- andwashedrepeatedlywithextractionbufferfollowedbya drialrespirationbyinhibitingcomplexIoftheelectrontrans- solutioncontaining0.45MKCladjustedtopH7with1M portchain(38–40).Toinvestigatethismechanismweused K HPO .Whennomoreproteinwasdetectedinthewash, rotenone,amitochondrialrespirationinhibitorknowntoact 2 4 thecellulosephosphatewaselutedwith1MKCl(pH7).The atComplexI.Itiswellknownthatrotenonecanstimulate A :A ratioforthefinalelutewas1.8orhighershowing bothglucosetransportandAMPKphosphorylation(41). 280 260 littleornocontaminationbynucleicacids.Theenzymewas However,rotenonedidnotreplicatemetforminactionson precipitatedbytheadditionof0.26gofsolidK HPO for fattyacidoxidation.Whereasmetforminstimulatedfattyacid 2 4 eachmilliliterofsolution.Aftercentrifugation,theprecipitate oxidation,rotenoneinhibitedthisprocess,atanyconcentra- wasdissolvedinaminimalvolumeof0.45MKC1atpH7to tionupto250(cid:2)M(Fig.3A).Althoughthestimulationoffatty formanearsaturatedsolutionatroomtemperature. acidoxidationbymetforminiswellestablished,andtheinhi- EnzymeAssay—AMPdeaminaseactivitywasmeasuredas bitionofmitochondrialrespirationbyrotenoneisalsowell describedbyAshbyandFrieden(34).Theassaymonitored known,thisisthefirstreporttodemonstratebothwithinthe theabsorbancechangeat285nmasaresultofAMPconver- contextofmetforminaction.Thisstronglybringsintoques- siontoIMPinareactionvolumeof2mlcontaining50mM tionthepossibilitythatmetforminactsasaninhibitorofmi- JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 3 ActivatingAMPKinasethroughAMPDeaminase 4 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase FIGURE3.Effectofrotenoneonfattyacidoxidationandglucoseuptake.A,effectofdifferentconcentrationsofrotenoneonmetformin-inducedpalmi- tateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithoutdifferentconcentrationsofrotenoneand10mMmet- forminfor3h,thenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”Control(darkbar)orwithmetformin(lightbar);*,p(cid:3) 0.05.B,effectofrotenoneonglucoseuptakeinL6cells.L6cellswereincubatedwith5mMglucosewithorwithout250(cid:2)Mrotenone.Dataareexpressedas permgofcellularprotein. tochondrialrespiration.Weconfirmedtherotenonestimula- factstimulateglucosetransport(Fig.4C),itinhibitedfatty tionofglucosetransportatthehighestlevelofrotenoneused acidoxidation(Fig.4D).Thus,itsbehaviormimickedrote- forfattyacidoxidation(Fig.3B).Thepercentstimulationof none,ratherthanmetformin. palmitateoxidationbymetforminwasabout30%inthisseries ExplorationofaRoleforLKB1—LKB1isanupstreamki- ofexperiments,andwasunaffectedbythevariousconcentra- naseofAMPK,proposedasthemediatorofmetforminaction tionsofrotenone. inliver(9)andestablishedastheprincipalkinaseforconvert- PossibleRoleofReactiveNitrogenSpeciesinMetformin ingAMPKtotheactiveforminmuscle(10).Todetermineits Mechanism—Analternativeproposalforthemechanismof possibleroleinmetforminactioninL6cells,aknockdownof metforministheinvolvementofnitricoxide(42).Asonetest LKB1proteinwasperformedusingaselectivesiRNA.As ofthispossibility,weincubatedL6cellswitharginine,apre- showninFig.5A,thesiRNAforLKB1,butnotthecontrol cursorofnitricoxideandmeasuredeffectsonglucosetrans- siRNAsubstantiallyreducedLKB1proteinlevels.Asshownin port.However,evenatlevelsupto40mM,argininehadno Fig.5B,ablationofLKB1hadnoeffectontheabilityofmet- effectonglucosetransport(Fig.4A).Asaconverseexperi- formintostimulateglucoseuptake. ment,wedeterminedifmetforminstimulationcouldbean- PossibleInvolvementofAdenylateKinaseinMetformin tagonizedbyinhibitionofarginase.However,asshowninFig. Action—Adenylatekinasecatalyzesthenearequilibriumreac- 4B,additionoftwodifferentselectivearginaseinhibitorsdid tionofADPwithATPandAMP;theprincipalmuscleiso- notaffectmetforminstimulationofglucosetransport. formisAK1(45).IfmetforminactioncausesincreasedATP Arelatedpossibilityisthatthereactivenitrogenspecies turnoverbyanymeans,adenylatekinasefluxwouldbere- peroxynitrite(ONOO(cid:4)),theadductofnitricoxidewithsu- quiredfortheincreasedAMPtoactivateAMPK.Totestthis peroxide,istheintermediateformetforminactivationof possiblerole,aknockdownofAK1wasperformedwithase- AMPK(19).Totestthis,weusedthecompoundSIN-1, lectivesiRNA.Fig.6AshowsthatthesiRNAforAK1reduced knownasageneratorofONOO(cid:4)(43).AlthoughSIN-1didin proteinexpressiontoverylowlevels.Asadenylatekinaseisin FIGURE2.MetaboliceffectsofmetformininL6myotubes.A,effectofmetforminonAMPK(cid:1)phosphorylationinL6myotubes.L6cellswereincubated withorwithout10mMmetforminfor2h,andthenAMPK(cid:1)phosphorylationatThr172wasmeasuredbyWesternblot;AMPK(cid:1)wasusedasacontrol. P-AMPK(cid:1),phosphorylatedAMPK(cid:1).AMPK(cid:1)andP-AMPK(cid:1)wereprobedwithseparateselectiveantibodies.Con,control;Met,metformin.B,effectofmet- forminonglucoseuptakeinL6myotubes.L6cellswereincubatedwithlow(0.5mM)orhigh(5mM)glucosewithorwithout10mMmetforminfor2h,and thenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus5mMglucose(5mMGlu);*,p(cid:3)0.05versus0.5mM glucose(0.5mMGlu);Met,metformin.C,effectofmetforminonpalmitateoxidationinL6myotubes.L6cellswereincubatedwith60or120(cid:2)Mpalmiticacid withorwithout10mMmetforminfor3h,andthenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus60 (cid:2)Mpalmiticacid(60(cid:2)MPA)and120(cid:2)Mpalmiticacid(120(cid:2)MPA),respectively;Met,metformin.D,effectofmetforminonglycogensynthesisinL6myo- tubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor2h,andthenglycogensynthesiswasmeasuredasdescribed under“ExperimentalProcedures.”*,p(cid:3)0.05versus0.5mMglucose(0.5mMGlu)and5mMglucose(5mMGlu),respectively;Met,metformin.E,effectofmet- forminonglycogencontentinL6myotubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor4h,andthentotalgly- cogencontentwasmeasuredasdescribedunder“ExperimentalProcedures.”Glu,glucose;Met,metformin.F,effectofmetforminonlactateformationinL6 myotubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor4h,andthenlactateformationwasmeasuredasde- scribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus0.5mMglucose(0.5mMGlu)and5mMglucose(5mMGlu),respectively.Dataareexpressedas permgofcellularprotein. JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 5 ActivatingAMPKinasethroughAMPDeaminase FIGURE4.Effectofarginineandreactivenitrogenspeciesonmetforminaction.A,effectofdifferentconcentrationsofarginineonglucoseuptakeinL6 myotubes.L6cellswereincubatedwith5mMglucosewithorwithoutdifferentconcentrationsofargininefor2h.B,effectofarginaseinhibitorsonmet- formin-inducedglucoseuptakeinL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout10mMmetformin,andcombinedwith10 (cid:2)MNOHAor1(cid:2)MBECfor2h,andthenglucoseuptakewasmeasured.Met,metformin;NOHA,N(cid:3)-hydroxy-nor-L-arginine;BEC,(S)-(2-boronoethyl)-L- cysteine,HCl.*,p(cid:3)0.05versuscontrol.C,effectofSIN-1onglucoseuptakeinL6myotubes.L6cellswereincubatedwith5mMglucosewithorwith- out1mMSIN-1for2h,andthenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.D,effectof SIN-1onpalmitateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithout1mMSIN-1for3h,andthenpalmi- tateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedaspermgofcellular protein. veryhighconcentrationsinmuscle,weperformedafurther controltoassessthefunctionalknockdownofAK1,shownin Fig.6B.Weusedpotassiumdepolarizationasameanstoin- creaseATPturnover,whichshouldthenincreaseAMPby fluxthroughadenylatekinase.Fig.6Bshowsthattheknock- downitselfdidnotaffectglucoseuptake,nordidsub-thresh- oldlevelsofpotassium.However,80mMorhigherlevelsof potassiumdidincreaseglucosetransport,andunderthese circumstances,concomitantknockdownofadenylatekinase ledtoinhibitionofglucosetransportbelowcontrollevels. Thisestablishedthevalidityofdepolarizationasacontrolfor adenylatekinaseinvolvement. WethenexaminedtheeffectoftheAK1knockdownonmet- forminstimulationofglucosetransport.Wefoundthat,unlikeK depolarization,metforminstimulationofglucoseuptakewas unaffectedbytheablationofadenylatekinase(Fig.6C). AMPDeaminaseInhibitionasaLocusofMetforminAction— Havingruledoutexistingproposalsfortheactionofmet- formin,weconsideredanewpossibility:ratherthan metforminincreasingtheformationofAMP,perhapsit attenuatesitsremoval.BecausethefirststepofAMPre- FIGURE5.EffectofLKB1onmetforminaction.A,LKB1proteinexpres- movalisdeaminationtoIMP,weexaminedthepossibility siontreatedwithLKB1siRNA.B,effectofLKB1siRNAonmetformin-in- thatAMPdeaminase(AMPD)mightbeinhibitedby ducedglucoseuptakeinL6myotubes.AfterLKB1siRNAtransfection,L6 cellswereincubatedwith5mMglucosewithorwithout10mMmet- metformin. forminfor2h,andthenglucoseuptakewasmeasuredasdescribedun- Fig.7Ashowsthatmetformininhibitedtheactivityofpuri- der“ExperimentalProcedures.”Dataareexpressedaspermgofcellular protein.*,p(cid:3)0.05versusnometformin. fiedAMPD,obtainedfromrabbitmuscle.Wehavefoundin- 6 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase FIGURE6.Effectofadenylatekinaseonmetforminaction.A,AK1proteinexpressionafterablationwithAK1siRNA.B,effectofadenylatekinaseknock- downonpotassiumgluconateactionsonglucoseuptake.Potassiumgluconatewaspresentat40mM(40K),80mM(80K),and120mM(120K).C,control; A,AK1siRNA;K,potassiumgluconate.#,p(cid:3)0.05comparedwithcontrol.*,p(cid:3)0.05comparewith80and120KwithoutAK1siRNA.C,metformin-induced glucoseuptakeinL6myotubes.AftertransfectedbyAK1siRNA,L6cellswereincubatedwith5mMglucosewithorwithout10mMmetforminfor2h,and thenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”Met,metformin.*,p(cid:3)0.05comparedwithnometformin.Dataareex- pressedaspermgofcellularprotein. FIGURE7.EffectofmetforminonAMPdeaminaseactivity.A,theeffectof10mMmetforminonenzymeactivityofisolatedAMPdeaminaseatvarious substrate(AMP)concentrations.*,p(cid:3)0.05versuscontrolatdifferentconcentrationofAMP,respectively.Dataareexpressedaspermgofsolubleprotein. B,effectofmetforminonammoniaproductioninL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout10mMmetforminfor2h,and ammoniaproductionwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedaspermgofcellu- larprotein. distinguishableresultsusingcommerciallyobtainedadeno- 7B)thatmetformindecreasedammoniaaccumulationinthe sinedeaminase(datanotshown).Thisisprobablyduetothe medium. factthattheenzymemechanismsareextremelysimilar;in Asaseparatetest,wecomparedtheactionofaknown factbothenzymesareequallysensitivetothesameinhibitors AMPDinhibitorerythro-9-(2-hydroxy-3-nonyl)-adenine (46). (EHNA)withmetformin.AsshowninFig.8,AandB,EHNA Afurtherpredictionbasedonthehypothesisthatmet- didinfactstimulatebothglucosetransportandfattyacidoxi- forminactsthroughAMPDinhibitionisthatammoniafor- dationlikemetformin,andthattheactionsofthetwoagents mationshouldbereducedwhencellsareincubatedwithmet- werenotadditive.Fig.8Cshowsthat,likemetformin,EHNA formin.Inagreementwiththisexpectation,wefound(Fig. alsoledtoanincreasedphosphorylationofAMPK.EHNA JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 7 ActivatingAMPKinasethroughAMPDeaminase FIGURE8.EffectofEHNA,metformin,orbothonglucoseuptakeinL6myotubes.A,L6cellswereincubatedwith5mMglucosewithorwithout10mM metformin,100(cid:2)MEHNA,orbothfor2h,andthenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol. B,effectofEHNA,metformin,orbothonpalmitateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithout10mMmet- formin,100(cid:2)MEHNA,orbothfor3h,andthenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol. C,effectofEHNAonAMPK(cid:1)phosphorylationinL6myotubes.L6cellswereincubatedwithorwithout100(cid:2)MEHNAfor2h,andthenAMPK(cid:1)phosphoryla- tionatThr172wasmeasuredbyWesternblot;AMPK(cid:1)wasusedasacontrol.P-AMPK(cid:1),phosphorylatedAMPK(cid:1).AMPK(cid:1)andP-AMPK(cid:1)wereprobedwith separateselectiveantibodies.D,effectofEHNAonammoniaproductioninL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout100(cid:2)M EHNAfor2h,andthenammoniaproductionwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedas permgofcellularprotein. alsoreplicatedthemetformin-inducedinhibitionofammonia formationbyL6cells,andthisactionwasnotadditivetothat ofmetformin(Fig.8D). Finally,weconductedknockdownofAMPD1usingsiRNA inL6cells.Ifourhypothesisiscorrect,thistreatmentshould preventmetforminstimulationofglucosetransport.Asis evidentinFig.9,theknockdownexperimentgreatlyreduced AMPDprotein,andobviatedthemetforminstimulationof glucoseuptakebythecells. DISCUSSION Boththeinterruptionofmitochondrialenergyformation andthepresenceofmetforminleadtothesameendpoint:the activationofAMPK(3,20).Itisthereforenotsurprisingthat thehypothesisemergedthatmetformincausesrespiratory inhibition,andtherebyactivatesAMPK(40).Allthreeevents: mitochondrialinhibition,thepresenceofmetformin,andthe activationofAMPK,alsocorrelatewithastimulationofglu- coseuptake(7,48). Ifweconsideronlyglucoseuptakeandmitochondrialalter- ations,theeffectsseemconsistentwithfundamentalcellregu- latoryproperties.Thenotionthatadecreasedmitochondrial FIGURE9.EffectofAMPDonmetforminaction.A,AMPdeaminasepro- teinexpressiontreatedwithAMPDsiRNA.B,effectofAMPDsiRNAonmet- activityincreasesglycolysisisknownastheCrabtreeeffect formin-inducedglucoseuptakeinL6myotubes.AfterAMPDsiRNAtransfec- (49,50),theoppositeofthePasteureffect(decreasedglucose tion,L6cellswereincubatedwith5mMglucosewithorwithout10mM metforminfor2h,andthenglucoseuptakewasmeasuredasdescribed utilizationuponadmissionofoxygentocells).However,the under“ExperimentalProcedures.”Dataareexpressedaspermgofcellular widerconsiderationoffattyacidoxidationdevelopedinthis protein.*,p(cid:3)0.05versusnometformin. 8 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase studyunderscoresthecomplicationofdrawingtheconclu- notmetformin,anditbecomesclearthataseparatemecha- sionthatmetforminactsbymitochondrialrespiratoryinhibi- nismformetforminactionisneeded. tion.Itislikelythattheresponseofthecelltoenergyinter- Weconcludethattherearetwodistinctmeansofactivating ruptionisadistinctmeansofAMPKactivationfromthe AMPK.Oneoftheseisrepresentedbyinterruptionofmito- responsetometformin. chondria,andphysiologicallyrepresentedbyanaerobicme- Arecentdebatehighlightedthepositionsfor(11)and tabolism.Becausefattyacidoxidationisnotpossibleinthis against(51)thenotionthatmetformininhibitsmitochondrial condition,theonlyenergypathwayavailable,glycolysis,is energyproduction.Akeyargumentagainstaninvivorolefor enhancedbytheAMPK-directedstimulationofglucosetrans- metforminactingasamitochondrialinhibitoristhefactthat port.Metforminalsostimulatesglucoseuptakebutaddition- theextentofinhibitionismodest.Afurthercomplicationis allystimulatesfattyacidoxidationandcanthereforeoperate thefactthatinsulinresistanceofdiabetescanbeameliorated aerobically.TheabilitytoinhibitAMPDpresentsaseparate bysuppressingtheoxidativedamagethatarisesfrommito- meansofincreasingAMPK,leadingtoincreasedutilizationof chondrialinhibition(52).Thismakesmitochondrialinhibi- bothmajorenergyfuels,glucoseandfat. tionanunlikelysiteofactionformetformin,adrugthatim- Wewereunabletofindevidencethatreactivenitrogenspe- provesratherthanexacerbatesinsulinsensitivity. cieswereinvolvedinthemechanismofmetforminaction. Thestimulationoffattyacidoxidationisanestablished Nitricoxideitselfappearedtohavenoeffectoneitherglucose actionofmetformin(24).Byusingthispathwayinadditionto uptakeorfattyacidoxidation.Theperoxynitrategenerator glucosetransport,wefoundthatnoneofthecurrentlypro- SIN-1wasabletostimulateglucoseuptake,butinhibitedfatty posedhypothesesformetforminweremetabolicallyconsis- acidoxidation,suggestingthatittoomayactinamanner tent.Moreover,thefindingthatablationofadenylatekinase similartorotenone,thatis,inhibitionofrespiration.This doesnotaffectmetforminactionsuggeststhatanymecha- wouldimplythatanyagent,whichsuppressesmitochondrial nismthatinvolvesincreasedAMPformationdrivenbyATP respiration,mightalsostimulateglucoseuptakeandactivate turnover(andhence,increasedADPformation)isunlikely. AMPK,buttheyarenotreplicatingtheactionofmetformin, Afunctionalcontrolfortheadenylatekinaseknockdownis butrathermitochondrialenergysupplyinterruption.One importantbecausethisenzymeisabundantinskeletalmuscle. recentstudy(55)didfindthatSIN-1couldincreaseinsulin Infact,itwasfirstdiscoveredinthistissue,asisevidentfrom sensitivityandfattyacidoxidation,usingtheC2C12muscle itsoriginalname,myokinase(53).Itisofinteresttonotealso cellculture.However,thosefindingswerenotcomparable,as thatdepolarizingconcentrationsofpotassiumthatstimulate theSIN-1wasnotanacutetreatment,butincubatedseveral glucoseuptakecausedaninhibitionofthisprocesswhenad- hours. enylatekinasewasattenuated.Thisimpliesthatadenylate AseparatesiteofAMPKactionproposedrecentlyisthe kinaseisneededtomaintainthephosphorylationpotentialof pyruvatedehydrogenasecomplex(56).Thiswouldbeconsis- thecelltosupportglucoseuptake. tentwiththemetabolicalterationsobservedhereformet- Inonestudy(16)itwassuggestedthatmethylsuccinate formin;inparticular,anincreaseinfattyacidoxidationwould couldantagonizemetformininculturedisletcells.Thisim- beexpectedtodepressPDCactivity.Futureexperimentsex- pliesthatmetforminindeedinhibitsrespirationatcomplexI, aminingmoremetabolictargetswilladdweighttothecon- andthatoncesuccinatecouldbeintroduced,itovercomesthe nectionsbetweenmetformin,AMPD,andAMPK. inhibitionbyprovidingelectronstoubiquinone.However,the ThepossibilitythatmetforminactsthroughLKB1,theup- actualevidenceinthatstudywasindirect.Theinvestigators streamkinaseandaseparateactivatorofAMPK,wasraised usedatetrazoliumdye(3-(4,5-dimethylthiazol-2-yl)-2,5-di- forliverby(9).However,ithassubsequentlybeenshownthat phenyltetrazoliumbromide),commonlyknownasMTT. metformindoesnotactthroughLKB1(10,11);wehavecon- Priorstudiesdidsuggestthatincreased(MTT)reductioncor- firmedinthisstudythatsiRNAknockdownofLKB1hadno relatestoglucoseavailability(54).However,therearesome effectonmetforminstimulationofglucoseuptake. difficultiesinacceptingtheconclusionsofthemethylsucci- ItisestablishedthatactivationofAMPKrequiresphosphor- natestudy(16).First,thedyeacceptselectronsfromubiqui- ylation(13),andLKB1isamajorAMPKkinase(57).Thusour none,butisnotasteadystatemeasureofrespiration.More- findingthatablationofLKB1didnotpreventtheactionof over,intheactualdataofthatstudy,MTTreductionwas metforminissurprising.However,thereareotherupstream inhibitedbymetforminwhethermethylsuccinatewaspresent AMPKkinases,suchastheCa2(cid:5)-calmodulinproteinkinase ornot.Infact,therewasmerelymorereductioninthepres- (58).Moreover,itisknownthatelevationinAMPconcentra- enceofmethylsuccinate. tionsalonecanactivateandphosphorylateAMPK,evenwith- AsitiswellknownthatAMPKcaninfactbeactivatedby outalterationsintheupstreamkinases,asAMPbindingto aninhibitionofrespiration(18),itmayseemirresistibleto AMPKmakesitbothabetterphosphorylationsubstrateanda concludethatmetforminmustworkinthesameway.How- poorerproteinphosphatasesubstrate(59). ever,theknownstimulationoffattyacidoxidationbymet- ThenotionthatAMPDinhibitioncouldincreaseAMPand formininthisstudyandothers(21–24)isincommensurate activateAMPKwasraisedpreviouslybyBorkowskietal.(60) withmitochondrialrespiratoryinhibition.Addtothatthe inthecontextoftheknowncorrelationbetweenAMPDdefi- currentfindingthatdirectinhibitionbyrotenonedidnot ciencyandcardioprotection(seealsoRef.61).Althoughthe stimulaterespirationatanylevel,andthefactthatadenylate authorsraisethenotionbasedlargelyontheprotectivefunc- kinaseknockdownpreventsstimulationbydepolarizationbut tionofdeaminaseinhibitors,itisconsistentwiththeproposal JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 9 ActivatingAMPKinasethroughAMPDeaminase advancedinthisstudy.Moreover,theauthorssuggestthat 7. Towler,M.C.,andHardie,D.G.(2007)Circ.Res.100,328–341 inhibitionofAMPDcouldbeapharmacologicallyusefultool. 8. Sakamoto,K.,McCarthy,A.,Smith,D.,Green,K.A.,Grahame,H.D., Hardie,D.,Ashworth,A.,andAlessi,D.R.(2005)EMBOJ.24, Ourresultssuggestthat,asthemechanismofmetforminac- 1810–1820 tion,itisalreadywidelyemployed,andourfindingssupplyan 9. Shaw,R.J.,Lamia,K.A.,Vasquez,D.,Koo,S.H.,Bardeesy,N.,Depinho, explanation. R.A.,Montminy,M.,andCantley,L.C.(2005)Science310,1642–1646 Ourresultsdonotprecludeanyconnectionbetweenmet- 10. Sakamoto,K.,Go¨ransson,O.,Hardie,D.G.,andAlessi,D.R.(2004) forminandnitricoxide,particularlyintheinvivocasewhere Am.J.Physiol.Endocrinol.Metab.287,E310-E317 anactionascentraltometabolismasincreasingAMPKisin- 11. Hardie,D.G.(2006)Gastroenterology131,973–975 12. Veech,R.L.,Lawson,J.W.,Cornell,N.W.,andKrebs,H.A.(1979) volved.However,theydomakelesslikelythenotionthatni- J.Biol.Chem.254,6538–6547 tricoxideisdirectlyinvolvedintheabilityofmetforminto 13. Davies,S.P.,Helps,N.R.,Cohen,P.T.,andHardie,D.G.(1995)FEBS activateAMPK.Itisalsopossiblethatnitricoxidecaninde- Lett.377,421–425 pendentlyleadtoAMPKactivation,justasanoxiacandoso, 14. Brunmair,B.,Staniek,K.,Gras,F.,Scharf,N.,Althaym,A.,Clara,R.,Ro- againinaseparatewayfrommetformin.Thedatashowing den,M.,Gnaiger,E.,Nohl,H.,Waldha¨usl,W.,andFu¨rnsinn,C.(2004) stimulationofglucoseuptake,butinhibitionoffattyacidoxi- Diabetes53,1052–1059 15. El-Mir,M.Y.,Nogueira,V.,Fontaine,E.,Ave´ret,N.,Rigoulet,M.,and dationwithSIN-1resemblerotenoneaction. Leverve,X.(2000)J.Biol.Chem.275,223–228 Inconclusion,ourpresentevidenceinfavorofthenewhy- 16. Hinke,S.A.,Martens,G.A.,Cai,Y.,Finsi,J.,Heimberg,H.,Pipeleers,D., pothesisofAMPdeaminaseinhibitionbymetforminincludes: andVandeCasteele,M.(2007)Br.J.Pharmacol.150,1031–1043 directinhibitionbymetforminoftheisolatedenzyme,andan 17. Owen,M.R.,Doran,E.,andHalestrap,A.P.(2000)Biochem.J.348, AMPdeaminaseinhibitorleadingtothestimulationofglu- 607–614 cosetransport,thestimulationoffattyacidoxidation,thein- 18. Kang,J.,Heart,E.,andSung,C.K.(2001)Am.J.Physiol.Endocrinol. Metab.280,E428-E435 hibitionofammoniaaccumulation,andtheeliminationof 19. Zou,M.H.,Kirkpatrick,S.S.,Davis,B.J.,Nelson,J.S.,Wiles,W.G.,4th, metforminactionfollowingknockdownofAMPD.Itisnot Schlattner,U.,Neumann,D.,Brownlee,M.,Freeman,M.B.,andGold- clearhowaninhibitionofAMPdeaminasewouldaffectother man,M.H.(2004)J.Biol.Chem.279,43940–43951 aspectsofcellularmetabolism.However,ithasbeensug- 20. Kim,W.H.,Lee,J.W.,Suh,Y.H.,Lee,H.J.,Lee,S.H.,Oh,Y.K.,Gao, gestedthatgeneticdeficienciesinthisenzymehavelittleif B.,andJung,M.H.(2007)Cell.Signal.19,791–805 21. Misra,P.(2008)ExpertOpin.Ther.Targets12,91–100 anydetrimentaleffectsonmusclemetabolism(62),which 22. Musi,N.(2006)Curr.Med.Chem.13,583–589 mayexplainhowthisenzymecouldbeinhibitedandyethave 23. Misra,P.,andChakrabarti,R.(2007)IndianJ.Med.Res.125,389–398 fewothercomplications. 24. Collier,C.A.,Bruce,C.R.,Smith,A.C.,Lopaschuk,G.,andDyck,D.J. AMPDispartofthepurinenucleotidecycle(63),apro- (2006)Am.J.Physiol.Endocrinol.Metab.291,E182-E189 posedroutethat,indeaminatingandreaminatingAMP,con- 25. Wingertzahn,M.A.,andOchs,R.S.(1999)Proc.Soc.Exp.Biol.Med. vertsaspartatetofumarateandcantherebyservean 221,234–241 26. Bergmeyer,H.U.(1974)MethodsofEnzymaticAnalysis,2Ed.,Verlag, anapleuoricroleintheKrebscycle.Ifthisisoperatinginthe NewYork musclecells,itwouldexplainthelarge(over70%)inhibition 27. Ceddia,R.B.,Somwar,R.,Maida,A.,Fang,X.,Bikopoulos,G.,and ofammoniaformationinFig.7Bexertedbymetformin,be- Sweeney,G.(2005)Diabetologia48,132–139 causeammoniaisaproductofthecycle.Furtherexperiments 28. Passonneau,J.V.,andLauderdale,V.R.(1974)Anal.Biochem.60, willbenecessarytotestthismechanism. 405–412 Previously,wehavepresentedanabstractofthiswork(47). 29. Sarabia,V.,Lam,L.,Burdett,E.,Leiter,L.A.,andKlip,A.(1992)J.Clin. Invest.90,1386–1395 Morerecently,wehaveconductedstudiestosynthesizemore 30. Saddik,M.,andLopaschuk,G.D.(1991)J.Biol.Chem.266,8162–8170 selectiveinhibitorsofAMPDtodeterminetheirabilitiesto 31. Cuendet,G.S.,Loten,E.G.,Jeanrenaud,B.,andRenold,A.E.(1976) mimicmetformin.Amanuscriptofthatworkisinprepara- J.Clin.Invest.58,1078–1088 tion,andapatentapplicationwassubmittedfortheuseofthe 32. Blair,A.S.,Hajduch,E.,Litherland,G.J.,andHundal,H.S.(1999) compoundsasagentsforthetreatmentofdiabetesandre- J.Biol.Chem.274,36293–36299 lateddisorders.3 33. Smiley,K.L.,Jr.,Berry,A.J.,andSuelter,C.H.(1967)J.Biol.Chem.242, 2502–2506 REFERENCES 34. Ashby,B.,andFrieden,C.(1978)J.Biol.Chem.253,8728–8735 35. Kun,E.,Loh,H.H.,andEl-Fiky,S.B.(1966)Mol.Pharmacol.2, 1. Hardie,D.G.(2008)FEBSLett.582,81–89 481–490 2. Halimi,S.(2006)DiabetesMetab.32,555–556 36. Jørgensen,S.B.,Nielsen,J.N.,Birk,J.B.,Olsen,G.S.,Viollet,B.,An- 3. Zhou,G.,Myers,R.,Li,Y.,Chen,Y.,Shen,X.,Fenyk-Melody,J.,Wu,M., dreelli,F.,Schjerling,P.,Vaulont,S.,Hardie,D.G.,Hansen,B.F.,Rich- Ventre,J.,Doebber,T.,Fujii,N.,Musi,N.,Hirshman,M.F.,Goodyear, ter,E.A.,andWojtaszewski,J.F.(2004)Diabetes53,3074–3081 L.J.,andMoller,D.E.(2001)J.Clin.Invest.108,1167–1174 37. Halse,R.,Fryer,L.G.,McCormack,J.G.,Carling,D.,andYeaman,S.J. 4. Bertrand,L.,Ginion,A.,Beauloye,C.,Hebert,A.D.,Guigas,B.,Hue,L., (2003)Diabetes52,9–15 andVanoverschelde,J.L.(2006)Am.J.Physiol.HeartCirc.Physiol. 38. Batandier,C.,Guigas,B.,Detaille,D.,El-Mir,M.Y.,Fontaine,E.,Ri- 5. Hardie,D.G.,andSakamoto,K.(2006)Physiology21,48–60 goulet,M.,andLeverve,X.M.(2006)J.Bioenerg.Biomembr.38,33–42 6. Sakoda,H.,Ogihara,T.,Anai,M.,Fujishiro,M.,Ono,H.,Onishi,Y., 39. Fryer,L.G.,Parbu-Patel,A.,andCarling,D.(2002)J.Biol.Chem.277, Katagiri,H.,Abe,M.,Fukushima,Y.,Shojima,N.,Inukai,K.,Kikuchi, 25226–25232 M.,Oka,Y.,andAsano,T.(2002)Am.J.Physiol.Endocrinol.Metab. 40. Ota,S.,Horigome,K.,Ishii,T.,Nakai,M.,Hayashi,K.,Kawamura,T., 282,E1239-E1244 Kishino,A.,Taiji,M.,andKimura,T.(2009)Biochem.Biophys.Res. Commun.388,311–316 3Ochs,R.S.,andTalele,T.(November25,2009)U.S.Patent61,264,321, 41. Hayashi,T.,Hirshman,M.F.,Fujii,N.,Habinowski,S.A.,Witters,L.A., patentpending. andGoodyear,L.J.(2000)Diabetes49,527–531 10 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011

Description:
Mar 9, 2010 down of LKB1, an upstream kinase and AMPK activator, did not affect . 66% (v/v ) ethanol. Activating AMP Kinase through AMP Deaminase.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.