THEJOURNALOFBIOLOGICALCHEMISTRYVOL.286,NO.1,pp.1–11,January7,2011 ©2011byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Metformin Activates AMP Kinase through Inhibition of AMP Deaminase Receivedforpublication,March9,2010,andinrevisedform,November5,2010 Published,JBCPapersinPress,November8,2010,DOI10.1074/jbc.M110.121806 JiangyongOuyang‡,RahulkumarA.Parakhia§,andRaymondS.Ochs§1 Fromthe‡DepartmentofPathology,NewYorkUniversitySchoolofMedicine,NewYork,NewYork10010andthe§Departmentof PharmaceuticalSciences,SchoolofPharmacy,St.John’sUniversity,Queens,NewYork11439 ThemechanismforhowmetforminactivatesAMPK(AMP- olism.Theenzymeisbroadlydistributed,andestablishedasa activatedkinase)wasinvestigatedinisolatedskeletalmuscle keyregulatorofskeletalmusclemetabolism(4–6). L6cells.Awidelyheldnotionisthatinhibitionofthemito- TheregulationofAMPKisillustratedinFig.1.AMPKacti- chondrialrespiratorychainiscentraltothemechanism.We vationrequiresphosphorylationataspecificthreonineresi- alsoconsideredotherproposalsformetforminaction.Asmet- due(7).Inmuscle,themajorkinasecatalyzingthisreaction abolicpathwaymarkers,wefocusedonglucosetransportand hasbeensuggestedtobeLKB1(8).Thus,theupstreamkinase fattyacidoxidation.Wealsoconfirmedmetforminactionson ofAMPKisapotentialregulatorysite(7).Infact,ithasbeen othermetabolicprocessesinL6cells.Metforminstimulated proposedthatinlivercellsLKB1activationisthemechanism bothglucosetransportandfattyacidoxidation.Themito- formetforminactivationofAMPK,basedontheobservation chondrialComplexIinhibitorrotenonealsostimulated thatgeneticablationoftheLKB1eliminatedtheabilityof glucosetransportbutitinhibitedfattyacidoxidation,inde- metformintoactivateAMPKinvivo(9).However,evidence pendentlyofmetformin.Theperoxynitritegenerator3-mor- alsoexistsagainstthepossibilitythatLKB1isthetargetof pholinosydnoniminestimulatedglucosetransport,butinhib- metforminaction(10,11). itedfattyacidoxidation.Additionofthenitricoxideprecursor Thereareotherproposalsforhowmetforminmightacti- argininetocellsdidnotaffectglucosetransport.Thesestudies vateAMPK,andalloftheseinvolveincreasedproductionof differentiatemetforminfrominhibitionofmitochondrialres- AMP.Thisnucleotide,whereaspresentinnearmillimolar pirationandfromactivenitrogenspecies.Knockdownofad- concentrationsincells,ispresentinitsfreestateinthecy- enylatekinasealsofailedtoaffectmetforminstimulationof tosolatmicromolarconcentrations(12).IncreasingAMP glucosetransport.Hence,anymeansofincreaseinADPap- concentrationsfavoritsbindingtoAMPK,bothpromoting pearsnottobeinvolvedinthemetforminmechanism.Knock- andmaintainingtheactivephosphorylatedform(13). downofLKB1,anupstreamkinaseandAMPKactivator,did Acommonlyproposedmechanismformetforminactionis notaffectmetforminaction.Havingruledoutexistingpropos- aninhibitionofmitochondrialrespirationatComplexI.This als,wesuggestanewone:metforminmightincreaseAMP interruptionofenergyproductionwoulddecreaseATPpro- throughinhibitionofAMPdeaminase(AMPD).Wefoundthat ductionandhenceelevatetheconcentrationofADP.Thisin metformininhibitedpurifiedAMPdeaminaseactivity.Fur- turnwouldelevatetheconcentrationofAMPthroughthe thermore,aknowninhibitorofAMPDstimulatedglucoseup- actionofadenylatekinase(14–17).Thisisconsistentwithan takeandfattyacidoxidation.BothmetforminandtheAMPD increaseinglucosetransportthatoccurswithmitochondrial inhibitorsuppressedammoniaaccumulationbythecells. respiratoryinhibition(18). KnockdownofAMPDobviatedmetforminstimulationofglu- Avariantonthemitochondrialrespirationinhibitionisthe cosetransport.WeconcludethatAMPDinhibitionisthe possibilitythatareactivenitrogen(19)and/oroxygenspecies mechanismofmetforminaction. (20)isresponsibleforactivationofAMPK.Thusnitricoxide ortheadductperoxinitrateofnitricoxideplussuperoxide (whichisformedwhenmitochondrialrespirationisblocked), MetforminiscurrentlythemostwidelyuseddrugforType havebeenshowntoactivateAMPK,andcouldalsoaccount IIdiabetes,anditsuseisindicatedforotherdiseasesrelated forincreasedglucoseuptake(19). tometabolicsyndrome(1).Althoughthedrughasbeenused However,itisalsoknownthatinbothliverandmuscleother forover50years(2),itsmechanismremainsunclear.Re- metabolicprocessesareaffectedbymetformin.Inbothofthese cently,itwasdiscoveredthatmetformincausesanactivation tissues,metforminstimulatesfattyacidoxidation(21–24).Itis oftheenzymeAMP-activatedkinase(AMPK)2(3),whichis difficulttorationalizeaninhibitionofrespirationwithastimula- nowestablishedasacentralregulatorofintermediarymetab- tionoffattyacidoxidation.Wethereforeassessedcurrentlypro- posedmechanismsofactionformetforminfortheirabilityto stimulatebothglucoseuptakeandfattyacidoxidation.Asnone 1Towhomcorrespondenceshouldbeaddressed.Tel.:718-990-1678;Fax: ofthecurrentproposalsmettheseconditions,weformedanew 718-990-1936;E-mail:[email protected]. 2Theabbreviationsusedare:AMPK,AMP-activatedproteinkinase;ACC, hypothesis:AMPdeaminase(representingAMPbreakdown) acetyl-CoAcarboxylase;AK1,adenylatekinase1;AMPD,AMPdeaminase; EHNA,erythro-9-(2-hydroxy-3-nonyl)-adenine;KHB,Krebs-Henseleit buffer;MCD,malonyl-CoAdecarboxylase;(cid:1)-MEM,(cid:1)-minimumessential SIN-1,3-morpholinosydnonimine;BisTris,2-[bis(2-hydroxyethyl)amino]-2- medium;MTT,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide; (hydroxymethyl)propane-1,3-diol. JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 1 This is an Open Access article under the CC BY license. ActivatingAMPKinasethroughAMPDeaminase takenforenzymaticendpointassay(26)usingtheHTS7000 BioPlateReader. GlycogenContentMeasurement—Glycogencontentwas assessedbyusingmodifiedamyloglucosidaseassayasprevi- ouslydescribed(27,28).Afteraspirationofthemedium,ad- herentcellmonolayerswereextractedwith400(cid:2)lof30% (w/v)KOHandboiledfor15min.Aliquotswerespottedonto Whatman3Tpaper,whichwasthenimmersedinice-cold 66%(v/v)ethanol.Thepaperswerewashedtwicewith66% FIGURE1.AMPKinmuscle.Theproposedmechanismsfortheactionof ethanol,anddriedpaperscontainingprecipitatedglycogen metformininstimulatingAMPKcanbemappedtothisdiagram.Theen- zymeneedstobephosphorylated(1),whichiscatalyzedprincipallybyLBK1 wereincubatedin2mlof0.4Macetatebuffer(pH4.8)con- inliverandmuscle.Dephosphorylation(2)inactivatestheenzyme;how- taining25units/mlof(cid:1)-amyloglucosidasefor90minat37°C. ever,bindingtoAMPleadstoactivation(3)bymakingAMPKapoorersub- Glucosereleasedfromglycogenwasmeasuredbyusingan strateforthephosphatase.Normally,energydemand(4)canincreaseADP andconsequentlyAMPconcentrationbymeansofincreasedflowthrough enzymaticendpointassayforglucoseusinghexokinase. adenylatekinase(5).Alternatively,AMPmayarisebyanincreasedADPdue GlucoseUptakeAssay—Glucoseuptakewasdeterminedas tointerruptionofmitochondrialenergysupply,whichwouldalsoincrease AMPconcentrationinvolvingflow-throughadenylatekinase(5).Thepres- therateof2-deoxy-D-[2,6-3H]glucoseuptake,usingamodifi- entworksupportsanewsiteofactionformetformin,theAMPdeaminase cationofapreviousmethod(29).Thecellswerefirstincu- (6).Alsoshownareseveralmetabolicprocessesknowntobeaffectedby batedfor15minwithKHB,glucose,andotheragentsasindi- AMPKactivationviametformin:glucoseuptake,fattyacidoxidation,glyco- gensynthesis,andlactateformation. cated.Atthispoint,thelabeleddeoxyglucose(0.6(cid:2)Ci)was addedtoeachwellandtheincubationcontinuedfor45min. Themediumwasaspirated,andthewellswerewashedthree mightbeinhibitedbymetformin.Wepresentevidenceconsist- timeswithice-coldKHBtoremoveexogenouslabel.Thecells entwiththishypothesis. werelysedbytheadditionof0.1%TritonX-100(1ml).Sam- plesofeachwellweremixedwithaqueousscintillationfluid EXPERIMENTALPROCEDURES andmeasuredbyliquidscintillationcounting. Materials—Metformin,andmostchemicals,includingBSA PalmitateOxidationAssay—Palmitateoxidationwasdeter- (bovineserumalbumin,essentiallyfattyacidfree),wereob- minedbyamodificationofquantitativemeasuringtherateof tainedfromSigma.Priortouse,BSAwasdialyzedextensively 14CO productionfrom14C-labeledpalmiticacidasdescribed 2 againstKrebs-Henseleitbicarbonatebuffer(KHB).Palmitic previously(30).TheKHBfortheseincubationswassupple- acidwasfromNu-ChekPrepInc.(Elysian,MN).Dulbecco’s mentedwithfattyacid-pooralbumindialyzedagainstthe modifiedEagle’smedium(DMEM),(cid:1)-minimumessential samebuffer(threechanges).Thefinalalbuminconcentration medium((cid:1)-MEM),Hanks’balancedsaltsolution,fetalbovine was1%.Afteraninitial10minofincubation,allsamplesre- serum(FBS),horseserum,trypsin,andNuPAGE4–12%Bis- ceived2mMcarnitineand[1-14C]palmiticacid(1(cid:2)Ci/mmol), Trisgel,andLipofectaminetransfectionreagentswerefrom andotheradditionsasnoted,andincubationswerecontinued Invitrogen.ScintillationvialswereobtainedfromWheaton for3h.Aliquotsof0.8mlweretakenfromeachwelltoan (Millville,NJ)andScintisafe(30%advancedsafetyLSCmix- Eppendorftube.Eachtubehadacircularpieceoffilterpaper, ture)fromFischerScientific(Fairlawn,NJ).Cellcultureplates producedwithapaperpunch,attachedtotheinsideofthelid, andflaskswereobtainedfromCorningInc.(Corning,NY). towhich15(cid:2)lof2MNaOHwasadded.200(cid:2)lof3Mper- 2-Deoxy-D-[2,6-3H]glucose,[1-14C]palmiticacid,and chloricacidwascarefullyaddedtothe0.8mltoensureno D-[U-14C]glucosewerefromAmershamBiosciences.Nitro- acidwasdepositedonthesideofthetube,andthelidwas cellulosemembraneswereobtainedfromBio-Rad.Adenylate quicklyclosed.Thetubeswereincubatedovernighttoallow kinase1siRNA(siGenomeduplexAK1),DharmaFECT3 the[14C]CO tobeabsorbedintothewick.Thecapswere 2 siRNAtransfectionreagent,negativecontrolsiRNA detachedandplacedin10mlofliquidscintillationfluidfor (siCONTROLNon-TargetingsiRNA),5(cid:1)siRNAbuffer,and counting. transfectionmediumwereobtainedfromDharmaconInc. GlycogenSynthesis—Glycogensynthesiswasdeterminedby (Chicago,IL).AK1antibody,LKB1siRNA,andAMPDsiRNA amodificationoftheincorporationofD-[U-14C]glucoseinto werefromSantaCruzBiotechnology.Allotherantibodies glycogenaspreviouslydescribed(31,32).Afterincubation, includingAMPK(cid:1)antibodyandP-AMPK(cid:1)antibody(phos- cellswerewashedwithice-coldKHBandlysedin0.5mlof phor-Thr172specific)werefromCellSignalingTechnology KOH(30%).Aliquotsof0.2mlwerespottedontoWhatman (Danvers,MA). 3Tpaper,andglycogenwasprecipitatedbyimmersingthe CellCulture—L6ratskeletalmusclecellswereculturedin papersinice-cold66%(v/v)ethanolovernight.Whatman3T DMEMsupplementedwith10%FBS.Cellswereconvertedto papercontainingprecipitatedglycogenwastransferredto myotubesbyswitchingto(cid:1)-MEMwith2%horseserumfor1 scintillationvialsforradioactivitycounting. day,andthento(cid:1)-MEMwith1%horseserumfor5–8days TransfectionofsiRNA—L6cellsweretransfectedwith100 priortouseforexperiments.Detailsofthecellpreparation nMAK1/LKB1/AMPDsiRNAfor3daysbythefollowingpro- areprovidedinapriorpublication(25). cedure:104cells/wellwereseededin12-wellplatesthatwere LactateFormation—Forlactateformation,cellswereincu- incubatedwithDMEMwith10%FBSfor2hbeforetransfec- batedfor4h,afterwhich125(cid:2)lofincubationmediumwas tionwith2(cid:2)MsiRNAsolutionin1(cid:1)siRNAbufferorcontrol 2 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase RNase-freesolution.siRNAandtransfectionreagentwere imidazole-HCl(pH7.0),2mMAMP,and150mMKCl.The dilutedwithtransfectionmedium,addedtocellsinDMEM enzymeactivityisexpressedasmicromolesofIMPproduced and10%FBS,andincubatedat37°Cin5%CO for2days. perminpermgofsolubleprotein. 2 Themediumwaschangedto(cid:1)-MEMwith1%horseserum AmmoniaAssay—Ammoniawasmeasuredasdescribedby withtransfectionsolutionfor1day.Finally,themediumwas Kun(35).Anendpointanalysiswasperformedmeasuring switchedto(cid:1)-MEMwith1%horseserumwithouttransfec- (cid:1)-ketoglutaricacid-dependentNADHoxidationat340nm, tionsolutionforanother4days.Forexperiments,cellswere drivenbyglutamatedehydrogenase. incubatedwithserum-freemediumfor2h,treatedwithor StatisticalAnalysis—Statisticalevaluationwasperformed without10mMmetformininthepresenceof5mMglucosefor usingStudent’sttestorone-wayanalysisofvariancefollowed 2h.Expressedproteincontent(AK1,LKB1,andAMPD)was bytheStudent-Newman-Keulsposthoctestasappropriate. visualizedbyWesternblot. Dataareexpressedasmean(cid:2)S.E.(errorbars),andthelevel WesternBlot—Toextracttotalprotein,cellswerelysed ofsignificancewassetatp(cid:3)0.05. with100(cid:2)lofbuffercontaining2%(w/v)SDS,62.5mMTris RESULTS (pH6.8),10%glycerol,50mMDTT,and0.01%(w/v)brom- phenolblue.Theprocedureofthecommercialsourceofthe MetabolicCharacterizationofMetformininL6Skeletal antibody(CellSignalingTechnology)wasessentiallyfollowed. MuscleCellCultures—Todemonstratecharacteristicmet- Thelysateswereheatedat95–100°Cfor5minandcooledon forminactioninourmodel,wemeasuredanumberofparam- ice.Aliquotsof20(cid:2)gofproteinwereloadedontoa10%SDS- eterslinkedtometformin.Theseincluded:glucoseuptake, PAGEgel,andsubsequentlyelectroblottedontonitrocellulose fattyacidoxidation,lactateformation,andthephosphoryla- membranes.Membraneswereincubatedatroomtempera- tionofAMPK.Forthekeyprocessesofglucoseuptakeand turefor1hinblockingbuffercontainingTris-bufferedsaline, fattyacidoxidation,weadditionallyincubatedcellswithsub- 0.1%Tween20,and5%nonfatdrymilk.Membraneswere strateconcentrationsrepresentingsubmaximalandmaximal thenincubatedwith1:1000dilutionofprimaryantibodyin10 concentrationstoassessthisvariableinmetforminaction. mlofblockingbufferovernightat4°C.Thenmembranes Theknownabilityofmetformintocausephosphorylation wereincubatedwithhorseradishperoxidase-conjugatedsec- ofAMPKwasconfirmed(Fig.2A).Wehaveconfirmedand ondaryantibody(1:2000)andhorseradishperoxidase-conju- extendedmetforminstimulationofglucosetransportforL6 gatedanti-biotinantibody(1:1000)todetectbiotinylatedpro- cells,usingtwoseparateconcentrationsofmediumglucose teinmarkersin10mlofblockingbufferfor1hatroom (Fig.2B).Metforminalsostimulatedpalmitateoxidationat temperature.Immunoreactiveproteinswererevealedusing twolevelsofthissubstrate:submaximal(60(cid:2)M)andnearsat- enhancedchemiluminescencedetection(LumiGLOTM,Cell urating(120(cid:2)M)palmitateconcentration,asevidentinFig. Signaling). 2C.Wealsoexploredthemetabolicconsequencesofthe AMPDeaminasePurification—RabbitskeletalmuscleAMP knownglycogensynthaseinhibitionbyAMPKactivation(36, deaminasewaspurifiedbyusingcellulosephosphateasde- 37).AsevidentfromFig.2D,metformininhibitedglycogen scribedbySmileyetal.(33).Briefly,frozenrabbitmusclewas synthesis,althoughnochangeintotalglycogencontentwas ground,mixedwith3.3timesitsweightofextractionbuffer observed(Fig.2E).Wealsoconfirmedanincreaseinlactate (0.18MKCl,0.054MKH PO ,0.035MK HPO ,pH6.5),and productionbymetformin(Fig.2F),onceagainatdifferent 2 4 2 4 homogenizedfor15sinaWaringBlender.Theslurrywas concentrationsofmediumglucose. stirredatroomtemperaturefor1handcentrifugedat Thepercentstimulationofbothglucosetransportandfatty 14,000(cid:1)gfor15min.Thesupernatantfractionwaspoured acidoxidationinthisstudywasusuallybetween30and50%; throughtwolayersofcheesecloth,afterwhichdrycellulose lactateformationwasstimulatedsomewhatmore(about phosphate,whichwaspreviouslywashedandequilibrated 60%).Thechangeswereunaffectedbysubstrateconcentra- withtheextractionbuffer,wasadded.Afterstirringatleast10 tions(glucose,palmitate). min,thecellulosephosphatewasallowedtosettle.Thecellu- ComparisonofMetformintoRotenone—Severalreports losephosphateslurrywastransferredtoasinteredglassfilter, suggestthatmetforminactsthroughinhibitionofmitochon- andwashedrepeatedlywithextractionbufferfollowedbya drialrespirationbyinhibitingcomplexIoftheelectrontrans- solutioncontaining0.45MKCladjustedtopH7with1M portchain(38–40).Toinvestigatethismechanismweused K HPO .Whennomoreproteinwasdetectedinthewash, rotenone,amitochondrialrespirationinhibitorknowntoact 2 4 thecellulosephosphatewaselutedwith1MKCl(pH7).The atComplexI.Itiswellknownthatrotenonecanstimulate A :A ratioforthefinalelutewas1.8orhighershowing bothglucosetransportandAMPKphosphorylation(41). 280 260 littleornocontaminationbynucleicacids.Theenzymewas However,rotenonedidnotreplicatemetforminactionson precipitatedbytheadditionof0.26gofsolidK HPO for fattyacidoxidation.Whereasmetforminstimulatedfattyacid 2 4 eachmilliliterofsolution.Aftercentrifugation,theprecipitate oxidation,rotenoneinhibitedthisprocess,atanyconcentra- wasdissolvedinaminimalvolumeof0.45MKC1atpH7to tionupto250(cid:2)M(Fig.3A).Althoughthestimulationoffatty formanearsaturatedsolutionatroomtemperature. acidoxidationbymetforminiswellestablished,andtheinhi- EnzymeAssay—AMPdeaminaseactivitywasmeasuredas bitionofmitochondrialrespirationbyrotenoneisalsowell describedbyAshbyandFrieden(34).Theassaymonitored known,thisisthefirstreporttodemonstratebothwithinthe theabsorbancechangeat285nmasaresultofAMPconver- contextofmetforminaction.Thisstronglybringsintoques- siontoIMPinareactionvolumeof2mlcontaining50mM tionthepossibilitythatmetforminactsasaninhibitorofmi- JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 3 ActivatingAMPKinasethroughAMPDeaminase 4 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase FIGURE3.Effectofrotenoneonfattyacidoxidationandglucoseuptake.A,effectofdifferentconcentrationsofrotenoneonmetformin-inducedpalmi- tateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithoutdifferentconcentrationsofrotenoneand10mMmet- forminfor3h,thenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”Control(darkbar)orwithmetformin(lightbar);*,p(cid:3) 0.05.B,effectofrotenoneonglucoseuptakeinL6cells.L6cellswereincubatedwith5mMglucosewithorwithout250(cid:2)Mrotenone.Dataareexpressedas permgofcellularprotein. tochondrialrespiration.Weconfirmedtherotenonestimula- factstimulateglucosetransport(Fig.4C),itinhibitedfatty tionofglucosetransportatthehighestlevelofrotenoneused acidoxidation(Fig.4D).Thus,itsbehaviormimickedrote- forfattyacidoxidation(Fig.3B).Thepercentstimulationof none,ratherthanmetformin. palmitateoxidationbymetforminwasabout30%inthisseries ExplorationofaRoleforLKB1—LKB1isanupstreamki- ofexperiments,andwasunaffectedbythevariousconcentra- naseofAMPK,proposedasthemediatorofmetforminaction tionsofrotenone. inliver(9)andestablishedastheprincipalkinaseforconvert- PossibleRoleofReactiveNitrogenSpeciesinMetformin ingAMPKtotheactiveforminmuscle(10).Todetermineits Mechanism—Analternativeproposalforthemechanismof possibleroleinmetforminactioninL6cells,aknockdownof metforministheinvolvementofnitricoxide(42).Asonetest LKB1proteinwasperformedusingaselectivesiRNA.As ofthispossibility,weincubatedL6cellswitharginine,apre- showninFig.5A,thesiRNAforLKB1,butnotthecontrol cursorofnitricoxideandmeasuredeffectsonglucosetrans- siRNAsubstantiallyreducedLKB1proteinlevels.Asshownin port.However,evenatlevelsupto40mM,argininehadno Fig.5B,ablationofLKB1hadnoeffectontheabilityofmet- effectonglucosetransport(Fig.4A).Asaconverseexperi- formintostimulateglucoseuptake. ment,wedeterminedifmetforminstimulationcouldbean- PossibleInvolvementofAdenylateKinaseinMetformin tagonizedbyinhibitionofarginase.However,asshowninFig. Action—Adenylatekinasecatalyzesthenearequilibriumreac- 4B,additionoftwodifferentselectivearginaseinhibitorsdid tionofADPwithATPandAMP;theprincipalmuscleiso- notaffectmetforminstimulationofglucosetransport. formisAK1(45).IfmetforminactioncausesincreasedATP Arelatedpossibilityisthatthereactivenitrogenspecies turnoverbyanymeans,adenylatekinasefluxwouldbere- peroxynitrite(ONOO(cid:4)),theadductofnitricoxidewithsu- quiredfortheincreasedAMPtoactivateAMPK.Totestthis peroxide,istheintermediateformetforminactivationof possiblerole,aknockdownofAK1wasperformedwithase- AMPK(19).Totestthis,weusedthecompoundSIN-1, lectivesiRNA.Fig.6AshowsthatthesiRNAforAK1reduced knownasageneratorofONOO(cid:4)(43).AlthoughSIN-1didin proteinexpressiontoverylowlevels.Asadenylatekinaseisin FIGURE2.MetaboliceffectsofmetformininL6myotubes.A,effectofmetforminonAMPK(cid:1)phosphorylationinL6myotubes.L6cellswereincubated withorwithout10mMmetforminfor2h,andthenAMPK(cid:1)phosphorylationatThr172wasmeasuredbyWesternblot;AMPK(cid:1)wasusedasacontrol. P-AMPK(cid:1),phosphorylatedAMPK(cid:1).AMPK(cid:1)andP-AMPK(cid:1)wereprobedwithseparateselectiveantibodies.Con,control;Met,metformin.B,effectofmet- forminonglucoseuptakeinL6myotubes.L6cellswereincubatedwithlow(0.5mM)orhigh(5mM)glucosewithorwithout10mMmetforminfor2h,and thenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus5mMglucose(5mMGlu);*,p(cid:3)0.05versus0.5mM glucose(0.5mMGlu);Met,metformin.C,effectofmetforminonpalmitateoxidationinL6myotubes.L6cellswereincubatedwith60or120(cid:2)Mpalmiticacid withorwithout10mMmetforminfor3h,andthenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus60 (cid:2)Mpalmiticacid(60(cid:2)MPA)and120(cid:2)Mpalmiticacid(120(cid:2)MPA),respectively;Met,metformin.D,effectofmetforminonglycogensynthesisinL6myo- tubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor2h,andthenglycogensynthesiswasmeasuredasdescribed under“ExperimentalProcedures.”*,p(cid:3)0.05versus0.5mMglucose(0.5mMGlu)and5mMglucose(5mMGlu),respectively;Met,metformin.E,effectofmet- forminonglycogencontentinL6myotubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor4h,andthentotalgly- cogencontentwasmeasuredasdescribedunder“ExperimentalProcedures.”Glu,glucose;Met,metformin.F,effectofmetforminonlactateformationinL6 myotubes.L6cellswereincubatedwith0.5or5mMglucosewithorwithout10mMmetforminfor4h,andthenlactateformationwasmeasuredasde- scribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versus0.5mMglucose(0.5mMGlu)and5mMglucose(5mMGlu),respectively.Dataareexpressedas permgofcellularprotein. JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 5 ActivatingAMPKinasethroughAMPDeaminase FIGURE4.Effectofarginineandreactivenitrogenspeciesonmetforminaction.A,effectofdifferentconcentrationsofarginineonglucoseuptakeinL6 myotubes.L6cellswereincubatedwith5mMglucosewithorwithoutdifferentconcentrationsofargininefor2h.B,effectofarginaseinhibitorsonmet- formin-inducedglucoseuptakeinL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout10mMmetformin,andcombinedwith10 (cid:2)MNOHAor1(cid:2)MBECfor2h,andthenglucoseuptakewasmeasured.Met,metformin;NOHA,N(cid:3)-hydroxy-nor-L-arginine;BEC,(S)-(2-boronoethyl)-L- cysteine,HCl.*,p(cid:3)0.05versuscontrol.C,effectofSIN-1onglucoseuptakeinL6myotubes.L6cellswereincubatedwith5mMglucosewithorwith- out1mMSIN-1for2h,andthenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.D,effectof SIN-1onpalmitateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithout1mMSIN-1for3h,andthenpalmi- tateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedaspermgofcellular protein. veryhighconcentrationsinmuscle,weperformedafurther controltoassessthefunctionalknockdownofAK1,shownin Fig.6B.Weusedpotassiumdepolarizationasameanstoin- creaseATPturnover,whichshouldthenincreaseAMPby fluxthroughadenylatekinase.Fig.6Bshowsthattheknock- downitselfdidnotaffectglucoseuptake,nordidsub-thresh- oldlevelsofpotassium.However,80mMorhigherlevelsof potassiumdidincreaseglucosetransport,andunderthese circumstances,concomitantknockdownofadenylatekinase ledtoinhibitionofglucosetransportbelowcontrollevels. Thisestablishedthevalidityofdepolarizationasacontrolfor adenylatekinaseinvolvement. WethenexaminedtheeffectoftheAK1knockdownonmet- forminstimulationofglucosetransport.Wefoundthat,unlikeK depolarization,metforminstimulationofglucoseuptakewas unaffectedbytheablationofadenylatekinase(Fig.6C). AMPDeaminaseInhibitionasaLocusofMetforminAction— Havingruledoutexistingproposalsfortheactionofmet- formin,weconsideredanewpossibility:ratherthan metforminincreasingtheformationofAMP,perhapsit attenuatesitsremoval.BecausethefirststepofAMPre- FIGURE5.EffectofLKB1onmetforminaction.A,LKB1proteinexpres- movalisdeaminationtoIMP,weexaminedthepossibility siontreatedwithLKB1siRNA.B,effectofLKB1siRNAonmetformin-in- thatAMPdeaminase(AMPD)mightbeinhibitedby ducedglucoseuptakeinL6myotubes.AfterLKB1siRNAtransfection,L6 cellswereincubatedwith5mMglucosewithorwithout10mMmet- metformin. forminfor2h,andthenglucoseuptakewasmeasuredasdescribedun- Fig.7Ashowsthatmetformininhibitedtheactivityofpuri- der“ExperimentalProcedures.”Dataareexpressedaspermgofcellular protein.*,p(cid:3)0.05versusnometformin. fiedAMPD,obtainedfromrabbitmuscle.Wehavefoundin- 6 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase FIGURE6.Effectofadenylatekinaseonmetforminaction.A,AK1proteinexpressionafterablationwithAK1siRNA.B,effectofadenylatekinaseknock- downonpotassiumgluconateactionsonglucoseuptake.Potassiumgluconatewaspresentat40mM(40K),80mM(80K),and120mM(120K).C,control; A,AK1siRNA;K,potassiumgluconate.#,p(cid:3)0.05comparedwithcontrol.*,p(cid:3)0.05comparewith80and120KwithoutAK1siRNA.C,metformin-induced glucoseuptakeinL6myotubes.AftertransfectedbyAK1siRNA,L6cellswereincubatedwith5mMglucosewithorwithout10mMmetforminfor2h,and thenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”Met,metformin.*,p(cid:3)0.05comparedwithnometformin.Dataareex- pressedaspermgofcellularprotein. FIGURE7.EffectofmetforminonAMPdeaminaseactivity.A,theeffectof10mMmetforminonenzymeactivityofisolatedAMPdeaminaseatvarious substrate(AMP)concentrations.*,p(cid:3)0.05versuscontrolatdifferentconcentrationofAMP,respectively.Dataareexpressedaspermgofsolubleprotein. B,effectofmetforminonammoniaproductioninL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout10mMmetforminfor2h,and ammoniaproductionwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedaspermgofcellu- larprotein. distinguishableresultsusingcommerciallyobtainedadeno- 7B)thatmetformindecreasedammoniaaccumulationinthe sinedeaminase(datanotshown).Thisisprobablyduetothe medium. factthattheenzymemechanismsareextremelysimilar;in Asaseparatetest,wecomparedtheactionofaknown factbothenzymesareequallysensitivetothesameinhibitors AMPDinhibitorerythro-9-(2-hydroxy-3-nonyl)-adenine (46). (EHNA)withmetformin.AsshowninFig.8,AandB,EHNA Afurtherpredictionbasedonthehypothesisthatmet- didinfactstimulatebothglucosetransportandfattyacidoxi- forminactsthroughAMPDinhibitionisthatammoniafor- dationlikemetformin,andthattheactionsofthetwoagents mationshouldbereducedwhencellsareincubatedwithmet- werenotadditive.Fig.8Cshowsthat,likemetformin,EHNA formin.Inagreementwiththisexpectation,wefound(Fig. alsoledtoanincreasedphosphorylationofAMPK.EHNA JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 7 ActivatingAMPKinasethroughAMPDeaminase FIGURE8.EffectofEHNA,metformin,orbothonglucoseuptakeinL6myotubes.A,L6cellswereincubatedwith5mMglucosewithorwithout10mM metformin,100(cid:2)MEHNA,orbothfor2h,andthenglucoseuptakewasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol. B,effectofEHNA,metformin,orbothonpalmitateoxidationinL6myotubes.L6cellswereincubatedwith120(cid:2)Mpalmiticacidwithorwithout10mMmet- formin,100(cid:2)MEHNA,orbothfor3h,andthenpalmitateoxidationwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol. C,effectofEHNAonAMPK(cid:1)phosphorylationinL6myotubes.L6cellswereincubatedwithorwithout100(cid:2)MEHNAfor2h,andthenAMPK(cid:1)phosphoryla- tionatThr172wasmeasuredbyWesternblot;AMPK(cid:1)wasusedasacontrol.P-AMPK(cid:1),phosphorylatedAMPK(cid:1).AMPK(cid:1)andP-AMPK(cid:1)wereprobedwith separateselectiveantibodies.D,effectofEHNAonammoniaproductioninL6myotubes.L6cellswereincubatedwith5mMglucosewithorwithout100(cid:2)M EHNAfor2h,andthenammoniaproductionwasmeasuredasdescribedunder“ExperimentalProcedures.”*,p(cid:3)0.05versuscontrol.Dataareexpressedas permgofcellularprotein. alsoreplicatedthemetformin-inducedinhibitionofammonia formationbyL6cells,andthisactionwasnotadditivetothat ofmetformin(Fig.8D). Finally,weconductedknockdownofAMPD1usingsiRNA inL6cells.Ifourhypothesisiscorrect,thistreatmentshould preventmetforminstimulationofglucosetransport.Asis evidentinFig.9,theknockdownexperimentgreatlyreduced AMPDprotein,andobviatedthemetforminstimulationof glucoseuptakebythecells. DISCUSSION Boththeinterruptionofmitochondrialenergyformation andthepresenceofmetforminleadtothesameendpoint:the activationofAMPK(3,20).Itisthereforenotsurprisingthat thehypothesisemergedthatmetformincausesrespiratory inhibition,andtherebyactivatesAMPK(40).Allthreeevents: mitochondrialinhibition,thepresenceofmetformin,andthe activationofAMPK,alsocorrelatewithastimulationofglu- coseuptake(7,48). Ifweconsideronlyglucoseuptakeandmitochondrialalter- ations,theeffectsseemconsistentwithfundamentalcellregu- latoryproperties.Thenotionthatadecreasedmitochondrial FIGURE9.EffectofAMPDonmetforminaction.A,AMPdeaminasepro- teinexpressiontreatedwithAMPDsiRNA.B,effectofAMPDsiRNAonmet- activityincreasesglycolysisisknownastheCrabtreeeffect formin-inducedglucoseuptakeinL6myotubes.AfterAMPDsiRNAtransfec- (49,50),theoppositeofthePasteureffect(decreasedglucose tion,L6cellswereincubatedwith5mMglucosewithorwithout10mM metforminfor2h,andthenglucoseuptakewasmeasuredasdescribed utilizationuponadmissionofoxygentocells).However,the under“ExperimentalProcedures.”Dataareexpressedaspermgofcellular widerconsiderationoffattyacidoxidationdevelopedinthis protein.*,p(cid:3)0.05versusnometformin. 8 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011 ActivatingAMPKinasethroughAMPDeaminase studyunderscoresthecomplicationofdrawingtheconclu- notmetformin,anditbecomesclearthataseparatemecha- sionthatmetforminactsbymitochondrialrespiratoryinhibi- nismformetforminactionisneeded. tion.Itislikelythattheresponseofthecelltoenergyinter- Weconcludethattherearetwodistinctmeansofactivating ruptionisadistinctmeansofAMPKactivationfromthe AMPK.Oneoftheseisrepresentedbyinterruptionofmito- responsetometformin. chondria,andphysiologicallyrepresentedbyanaerobicme- Arecentdebatehighlightedthepositionsfor(11)and tabolism.Becausefattyacidoxidationisnotpossibleinthis against(51)thenotionthatmetformininhibitsmitochondrial condition,theonlyenergypathwayavailable,glycolysis,is energyproduction.Akeyargumentagainstaninvivorolefor enhancedbytheAMPK-directedstimulationofglucosetrans- metforminactingasamitochondrialinhibitoristhefactthat port.Metforminalsostimulatesglucoseuptakebutaddition- theextentofinhibitionismodest.Afurthercomplicationis allystimulatesfattyacidoxidationandcanthereforeoperate thefactthatinsulinresistanceofdiabetescanbeameliorated aerobically.TheabilitytoinhibitAMPDpresentsaseparate bysuppressingtheoxidativedamagethatarisesfrommito- meansofincreasingAMPK,leadingtoincreasedutilizationof chondrialinhibition(52).Thismakesmitochondrialinhibi- bothmajorenergyfuels,glucoseandfat. tionanunlikelysiteofactionformetformin,adrugthatim- Wewereunabletofindevidencethatreactivenitrogenspe- provesratherthanexacerbatesinsulinsensitivity. cieswereinvolvedinthemechanismofmetforminaction. Thestimulationoffattyacidoxidationisanestablished Nitricoxideitselfappearedtohavenoeffectoneitherglucose actionofmetformin(24).Byusingthispathwayinadditionto uptakeorfattyacidoxidation.Theperoxynitrategenerator glucosetransport,wefoundthatnoneofthecurrentlypro- SIN-1wasabletostimulateglucoseuptake,butinhibitedfatty posedhypothesesformetforminweremetabolicallyconsis- acidoxidation,suggestingthatittoomayactinamanner tent.Moreover,thefindingthatablationofadenylatekinase similartorotenone,thatis,inhibitionofrespiration.This doesnotaffectmetforminactionsuggeststhatanymecha- wouldimplythatanyagent,whichsuppressesmitochondrial nismthatinvolvesincreasedAMPformationdrivenbyATP respiration,mightalsostimulateglucoseuptakeandactivate turnover(andhence,increasedADPformation)isunlikely. AMPK,buttheyarenotreplicatingtheactionofmetformin, Afunctionalcontrolfortheadenylatekinaseknockdownis butrathermitochondrialenergysupplyinterruption.One importantbecausethisenzymeisabundantinskeletalmuscle. recentstudy(55)didfindthatSIN-1couldincreaseinsulin Infact,itwasfirstdiscoveredinthistissue,asisevidentfrom sensitivityandfattyacidoxidation,usingtheC2C12muscle itsoriginalname,myokinase(53).Itisofinteresttonotealso cellculture.However,thosefindingswerenotcomparable,as thatdepolarizingconcentrationsofpotassiumthatstimulate theSIN-1wasnotanacutetreatment,butincubatedseveral glucoseuptakecausedaninhibitionofthisprocesswhenad- hours. enylatekinasewasattenuated.Thisimpliesthatadenylate AseparatesiteofAMPKactionproposedrecentlyisthe kinaseisneededtomaintainthephosphorylationpotentialof pyruvatedehydrogenasecomplex(56).Thiswouldbeconsis- thecelltosupportglucoseuptake. tentwiththemetabolicalterationsobservedhereformet- Inonestudy(16)itwassuggestedthatmethylsuccinate formin;inparticular,anincreaseinfattyacidoxidationwould couldantagonizemetformininculturedisletcells.Thisim- beexpectedtodepressPDCactivity.Futureexperimentsex- pliesthatmetforminindeedinhibitsrespirationatcomplexI, aminingmoremetabolictargetswilladdweighttothecon- andthatoncesuccinatecouldbeintroduced,itovercomesthe nectionsbetweenmetformin,AMPD,andAMPK. inhibitionbyprovidingelectronstoubiquinone.However,the ThepossibilitythatmetforminactsthroughLKB1,theup- actualevidenceinthatstudywasindirect.Theinvestigators streamkinaseandaseparateactivatorofAMPK,wasraised usedatetrazoliumdye(3-(4,5-dimethylthiazol-2-yl)-2,5-di- forliverby(9).However,ithassubsequentlybeenshownthat phenyltetrazoliumbromide),commonlyknownasMTT. metformindoesnotactthroughLKB1(10,11);wehavecon- Priorstudiesdidsuggestthatincreased(MTT)reductioncor- firmedinthisstudythatsiRNAknockdownofLKB1hadno relatestoglucoseavailability(54).However,therearesome effectonmetforminstimulationofglucoseuptake. difficultiesinacceptingtheconclusionsofthemethylsucci- ItisestablishedthatactivationofAMPKrequiresphosphor- natestudy(16).First,thedyeacceptselectronsfromubiqui- ylation(13),andLKB1isamajorAMPKkinase(57).Thusour none,butisnotasteadystatemeasureofrespiration.More- findingthatablationofLKB1didnotpreventtheactionof over,intheactualdataofthatstudy,MTTreductionwas metforminissurprising.However,thereareotherupstream inhibitedbymetforminwhethermethylsuccinatewaspresent AMPKkinases,suchastheCa2(cid:5)-calmodulinproteinkinase ornot.Infact,therewasmerelymorereductioninthepres- (58).Moreover,itisknownthatelevationinAMPconcentra- enceofmethylsuccinate. tionsalonecanactivateandphosphorylateAMPK,evenwith- AsitiswellknownthatAMPKcaninfactbeactivatedby outalterationsintheupstreamkinases,asAMPbindingto aninhibitionofrespiration(18),itmayseemirresistibleto AMPKmakesitbothabetterphosphorylationsubstrateanda concludethatmetforminmustworkinthesameway.How- poorerproteinphosphatasesubstrate(59). ever,theknownstimulationoffattyacidoxidationbymet- ThenotionthatAMPDinhibitioncouldincreaseAMPand formininthisstudyandothers(21–24)isincommensurate activateAMPKwasraisedpreviouslybyBorkowskietal.(60) withmitochondrialrespiratoryinhibition.Addtothatthe inthecontextoftheknowncorrelationbetweenAMPDdefi- currentfindingthatdirectinhibitionbyrotenonedidnot ciencyandcardioprotection(seealsoRef.61).Althoughthe stimulaterespirationatanylevel,andthefactthatadenylate authorsraisethenotionbasedlargelyontheprotectivefunc- kinaseknockdownpreventsstimulationbydepolarizationbut tionofdeaminaseinhibitors,itisconsistentwiththeproposal JANUARY7,2011•VOLUME286•NUMBER1 JOURNALOFBIOLOGICALCHEMISTRY 9 ActivatingAMPKinasethroughAMPDeaminase advancedinthisstudy.Moreover,theauthorssuggestthat 7. Towler,M.C.,andHardie,D.G.(2007)Circ.Res.100,328–341 inhibitionofAMPDcouldbeapharmacologicallyusefultool. 8. Sakamoto,K.,McCarthy,A.,Smith,D.,Green,K.A.,Grahame,H.D., Hardie,D.,Ashworth,A.,andAlessi,D.R.(2005)EMBOJ.24, Ourresultssuggestthat,asthemechanismofmetforminac- 1810–1820 tion,itisalreadywidelyemployed,andourfindingssupplyan 9. Shaw,R.J.,Lamia,K.A.,Vasquez,D.,Koo,S.H.,Bardeesy,N.,Depinho, explanation. R.A.,Montminy,M.,andCantley,L.C.(2005)Science310,1642–1646 Ourresultsdonotprecludeanyconnectionbetweenmet- 10. Sakamoto,K.,Go¨ransson,O.,Hardie,D.G.,andAlessi,D.R.(2004) forminandnitricoxide,particularlyintheinvivocasewhere Am.J.Physiol.Endocrinol.Metab.287,E310-E317 anactionascentraltometabolismasincreasingAMPKisin- 11. Hardie,D.G.(2006)Gastroenterology131,973–975 12. Veech,R.L.,Lawson,J.W.,Cornell,N.W.,andKrebs,H.A.(1979) volved.However,theydomakelesslikelythenotionthatni- J.Biol.Chem.254,6538–6547 tricoxideisdirectlyinvolvedintheabilityofmetforminto 13. Davies,S.P.,Helps,N.R.,Cohen,P.T.,andHardie,D.G.(1995)FEBS activateAMPK.Itisalsopossiblethatnitricoxidecaninde- Lett.377,421–425 pendentlyleadtoAMPKactivation,justasanoxiacandoso, 14. Brunmair,B.,Staniek,K.,Gras,F.,Scharf,N.,Althaym,A.,Clara,R.,Ro- againinaseparatewayfrommetformin.Thedatashowing den,M.,Gnaiger,E.,Nohl,H.,Waldha¨usl,W.,andFu¨rnsinn,C.(2004) stimulationofglucoseuptake,butinhibitionoffattyacidoxi- Diabetes53,1052–1059 15. El-Mir,M.Y.,Nogueira,V.,Fontaine,E.,Ave´ret,N.,Rigoulet,M.,and dationwithSIN-1resemblerotenoneaction. Leverve,X.(2000)J.Biol.Chem.275,223–228 Inconclusion,ourpresentevidenceinfavorofthenewhy- 16. Hinke,S.A.,Martens,G.A.,Cai,Y.,Finsi,J.,Heimberg,H.,Pipeleers,D., pothesisofAMPdeaminaseinhibitionbymetforminincludes: andVandeCasteele,M.(2007)Br.J.Pharmacol.150,1031–1043 directinhibitionbymetforminoftheisolatedenzyme,andan 17. Owen,M.R.,Doran,E.,andHalestrap,A.P.(2000)Biochem.J.348, AMPdeaminaseinhibitorleadingtothestimulationofglu- 607–614 cosetransport,thestimulationoffattyacidoxidation,thein- 18. Kang,J.,Heart,E.,andSung,C.K.(2001)Am.J.Physiol.Endocrinol. Metab.280,E428-E435 hibitionofammoniaaccumulation,andtheeliminationof 19. Zou,M.H.,Kirkpatrick,S.S.,Davis,B.J.,Nelson,J.S.,Wiles,W.G.,4th, metforminactionfollowingknockdownofAMPD.Itisnot Schlattner,U.,Neumann,D.,Brownlee,M.,Freeman,M.B.,andGold- clearhowaninhibitionofAMPdeaminasewouldaffectother man,M.H.(2004)J.Biol.Chem.279,43940–43951 aspectsofcellularmetabolism.However,ithasbeensug- 20. Kim,W.H.,Lee,J.W.,Suh,Y.H.,Lee,H.J.,Lee,S.H.,Oh,Y.K.,Gao, gestedthatgeneticdeficienciesinthisenzymehavelittleif B.,andJung,M.H.(2007)Cell.Signal.19,791–805 21. Misra,P.(2008)ExpertOpin.Ther.Targets12,91–100 anydetrimentaleffectsonmusclemetabolism(62),which 22. Musi,N.(2006)Curr.Med.Chem.13,583–589 mayexplainhowthisenzymecouldbeinhibitedandyethave 23. Misra,P.,andChakrabarti,R.(2007)IndianJ.Med.Res.125,389–398 fewothercomplications. 24. Collier,C.A.,Bruce,C.R.,Smith,A.C.,Lopaschuk,G.,andDyck,D.J. AMPDispartofthepurinenucleotidecycle(63),apro- (2006)Am.J.Physiol.Endocrinol.Metab.291,E182-E189 posedroutethat,indeaminatingandreaminatingAMP,con- 25. Wingertzahn,M.A.,andOchs,R.S.(1999)Proc.Soc.Exp.Biol.Med. vertsaspartatetofumarateandcantherebyservean 221,234–241 26. Bergmeyer,H.U.(1974)MethodsofEnzymaticAnalysis,2Ed.,Verlag, anapleuoricroleintheKrebscycle.Ifthisisoperatinginthe NewYork musclecells,itwouldexplainthelarge(over70%)inhibition 27. Ceddia,R.B.,Somwar,R.,Maida,A.,Fang,X.,Bikopoulos,G.,and ofammoniaformationinFig.7Bexertedbymetformin,be- Sweeney,G.(2005)Diabetologia48,132–139 causeammoniaisaproductofthecycle.Furtherexperiments 28. Passonneau,J.V.,andLauderdale,V.R.(1974)Anal.Biochem.60, willbenecessarytotestthismechanism. 405–412 Previously,wehavepresentedanabstractofthiswork(47). 29. Sarabia,V.,Lam,L.,Burdett,E.,Leiter,L.A.,andKlip,A.(1992)J.Clin. Invest.90,1386–1395 Morerecently,wehaveconductedstudiestosynthesizemore 30. Saddik,M.,andLopaschuk,G.D.(1991)J.Biol.Chem.266,8162–8170 selectiveinhibitorsofAMPDtodeterminetheirabilitiesto 31. Cuendet,G.S.,Loten,E.G.,Jeanrenaud,B.,andRenold,A.E.(1976) mimicmetformin.Amanuscriptofthatworkisinprepara- J.Clin.Invest.58,1078–1088 tion,andapatentapplicationwassubmittedfortheuseofthe 32. Blair,A.S.,Hajduch,E.,Litherland,G.J.,andHundal,H.S.(1999) compoundsasagentsforthetreatmentofdiabetesandre- J.Biol.Chem.274,36293–36299 lateddisorders.3 33. Smiley,K.L.,Jr.,Berry,A.J.,andSuelter,C.H.(1967)J.Biol.Chem.242, 2502–2506 REFERENCES 34. Ashby,B.,andFrieden,C.(1978)J.Biol.Chem.253,8728–8735 35. Kun,E.,Loh,H.H.,andEl-Fiky,S.B.(1966)Mol.Pharmacol.2, 1. Hardie,D.G.(2008)FEBSLett.582,81–89 481–490 2. Halimi,S.(2006)DiabetesMetab.32,555–556 36. Jørgensen,S.B.,Nielsen,J.N.,Birk,J.B.,Olsen,G.S.,Viollet,B.,An- 3. Zhou,G.,Myers,R.,Li,Y.,Chen,Y.,Shen,X.,Fenyk-Melody,J.,Wu,M., dreelli,F.,Schjerling,P.,Vaulont,S.,Hardie,D.G.,Hansen,B.F.,Rich- Ventre,J.,Doebber,T.,Fujii,N.,Musi,N.,Hirshman,M.F.,Goodyear, ter,E.A.,andWojtaszewski,J.F.(2004)Diabetes53,3074–3081 L.J.,andMoller,D.E.(2001)J.Clin.Invest.108,1167–1174 37. Halse,R.,Fryer,L.G.,McCormack,J.G.,Carling,D.,andYeaman,S.J. 4. Bertrand,L.,Ginion,A.,Beauloye,C.,Hebert,A.D.,Guigas,B.,Hue,L., (2003)Diabetes52,9–15 andVanoverschelde,J.L.(2006)Am.J.Physiol.HeartCirc.Physiol. 38. Batandier,C.,Guigas,B.,Detaille,D.,El-Mir,M.Y.,Fontaine,E.,Ri- 5. Hardie,D.G.,andSakamoto,K.(2006)Physiology21,48–60 goulet,M.,andLeverve,X.M.(2006)J.Bioenerg.Biomembr.38,33–42 6. Sakoda,H.,Ogihara,T.,Anai,M.,Fujishiro,M.,Ono,H.,Onishi,Y., 39. Fryer,L.G.,Parbu-Patel,A.,andCarling,D.(2002)J.Biol.Chem.277, Katagiri,H.,Abe,M.,Fukushima,Y.,Shojima,N.,Inukai,K.,Kikuchi, 25226–25232 M.,Oka,Y.,andAsano,T.(2002)Am.J.Physiol.Endocrinol.Metab. 40. Ota,S.,Horigome,K.,Ishii,T.,Nakai,M.,Hayashi,K.,Kawamura,T., 282,E1239-E1244 Kishino,A.,Taiji,M.,andKimura,T.(2009)Biochem.Biophys.Res. Commun.388,311–316 3Ochs,R.S.,andTalele,T.(November25,2009)U.S.Patent61,264,321, 41. Hayashi,T.,Hirshman,M.F.,Fujii,N.,Habinowski,S.A.,Witters,L.A., patentpending. andGoodyear,L.J.(2000)Diabetes49,527–531 10 JOURNALOFBIOLOGICALCHEMISTRY VOLUME286•NUMBER1•JANUARY7,2011
Description: