Metamaterial Surface Plasmon Based Transmission Lines and Antennas Amin Kianinejad B. Sc., Shiraz University of Technology, Iran M. Sc., Sharif University of Technology, Iran A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2017 Supervisors: PROFESSOR CHEN ZHI NING ASSOCIATE PROFESSOR QIU CHENG-WEI Examiners: PROFESSOR YEO TAT SOON ASSOCIATE PROFESSOR CHEN XUDONG PROFESSOR FRANCISCO JOSE GARCIA VIDAL, AUTONOMOUS UNIVERSITY OF MADRID Declaration I, Amin Kianinejad declare that the thesis submitted is my own original work. I declare that the thesis contains research reported in co-authored work that has been published, accepted for publication, or submitted for publication. I declare that the thesis does not contain material which has been accepted, or submitted, for any other degree or diploma at a university or other institution of higher learning. Signed: Date: January 2017 ii Acknowledgment Firstly, I would like to express my sincere gratitude to my advisors Prof. Zhi Ning Chen and Prof. Cheng-Wei Qiu for the continuous support of my Ph.D study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. Besides my advisor, I would like to thank the rest of my thesis advisory committee: Prof. Tat Soon Yeo, Prof. Xudong Chen, and Prof. Minghui Hong, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives. A special thanks to my family. Words cannot express how grateful I am to my mother, Nasrin, my father, Abodlrahim and my brothers Iman and Mohammad for all of the sacrifices that they’ve made on my behalf. Their prayer for me was what sustained me thus far. I would also like to thank all of my friends in MMIC lab, specially, Wei Liu, Srien Sithara, Andong Huang, Yuanyan Su and Ashraf Adam Salih who supported me in writing, and incented me to strive towards my goal. I would also like to thank my friends outside NUS specially Sajjad Seifozzakerini, Hossein Dehghani Tafti, Mohammad Danesh and Rasool Maghareh who made the journey more rewarding and enjoyable. iii Summary Current electronic systems are composed of the guiding wave-based electronic devices and components with double-metal configurations. Recently, the Spoof Surface Plasmon (SSP) modes have been proposed as a novel platform for electronic circuits. With their high field confinement, the SSPs do not suffer from the compactness limitations of traditional circuits and are capable of playing the crucial role of an alternative platform for the future generation of electronic circuits and electromagnetic systems. Despite the vast number of research effort that have been devoted to the SSP modes, a deep theoretical study and a reliable and repeatable modeling for the SSP structures are strongly demanded. Here, we tackle the quest by elaborating the basic requirements for the implementation of the SSP modes in microwave circuits to enable the SSP-based circuit components designs. In Chapter 1, the background of this study is discussed. The equivalent circuit models for the electromagnetic structures are important for analysis and the design of their characteristics. In Chapter 2, the equivalent circuit models are presented for the characterization of the SSP structures and to serve as an insightful guideline to design the SSP-based circuits. To efficiently excite the SSP modes, it is necessary to couple the SSP structures to the guiding mode-based microwave sources and transmission lines. In Chapter 3, a new type of efficient transitions is developed for the connection of the SSP cells to the conventional TLs in order to form slow wave transmission-lines (SW-TLs). The simulation and experiments verify that the proposed SW-TL achieves as low as half of the ohmic loss of the traditional counterparts. Moreover, the low cross-talk between the proposed SW-TLs is iv numerically and experimentally substantiated to be up to 10 dB lower than that between the conventional microstrip TLs. In Chapter 4, a spoof plasmon (SP)-based slow-wave antenna feeding network is proposed, experimentally verified and exploited to excite the fundamental TE mode of dielectric resonator antennas (DRAs). The simulation and measurement evidence the unique features of TE mode such as the lower thickness-dependency of the resonant 01δ frequencies, ultra-compactness, and horizontally polarized omnidirectional radiation pattern. In Chapter 5, a single-layered leaky-wave antenna (SL-LWA) using a meander SSP structure is presented and the simulation and experiment evidence the consistent gain variation less than 2.5 dB of scanning beams within the 10-dB reflection bandwidth of 10.4-24.5 GHz (or 80%). In addition, the proposed antenna provides the wideband broadside radiation with 1-dB gain variation within the frequency range of 16.5-17.2 GHz (or 4.2%). In Chapter 6, the future of this research is discussed. v Table of Contents Declaration ………………………………………………………........………..………i Acknowledgment……………………………...…………………….….…..….………ii Summary…………………………………………...………………….…..….………iii List of Tables………………………………………………………………….…..…viii List of Figures……….………………………………………………………..…..…...ix List of Abbreviations………………………………………………………..………...xi List of Symbols……………………………………………………………...………..xii 1 Introduction ........................................................................................................... 1 1.1 Physical concept of spoof surface plasmon modes ............................................. 2 1.2 Surface wave-based single line transmission lines ............................................. 4 1.3 SSP based microwave components ..................................................................... 5 1.4 Motivation and organization of this thesis .......................................................... 6 1.5 My published papers related to this work ........................................................... 8 2 Spoof Surface Plasmon Modes Modeling Using Circuit Elements ................. 10 2.1 Field confinement of SSP modes ...................................................................... 11 2.2 Principles of circuit modeling ........................................................................... 16 2.3 Equivalent circuit models for SSP cells ............................................................ 18 vi 2.3.1 U-shaped SSP cells ........................................................................................... 19 2.3.2 Symmetric SSP cells ......................................................................................... 22 2.3.3 Meander SSP cells ............................................................................................ 23 2.4 SSP-based circuit design using circuit models ................................................. 26 2.5 Conclusion ........................................................................................................ 30 3 SSP-Based Transmission Lines (TLs) ............................................................... 32 3.1 Conversion of SSP modes to guided waves ...................................................... 32 3.1.1 Polarization matching ....................................................................................... 32 3.1.2 Momentum Matching ........................................................................................ 34 3.1.3 Impedance matching ......................................................................................... 34 3.2 Transition design from SSPs to conventional TLs ............................................ 36 3.2.1 Transition from U-shaped cells to microstrip TLs ............................................ 36 3.2.2 Transition from the symmetric cells to CPW lines ........................................... 44 3.2.3 Transition from meander cells to CPWs ........................................................... 46 3.3 Loss in SW-TLs ................................................................................................ 47 3.3.1 The leaky loss ................................................................................................... 48 3.3.2 Ohmic loss ........................................................................................................ 49 3.3.3 Equivalent circuit models of lossy SW-TLs: .................................................... 49 3.4 Mutual coupling between SW-TLs ................................................................... 52 3.5 Conclusion ........................................................................................................ 54 4 Spoof Surface Plasmon Excitation of Dielectric Resonator Antennas ........... 56 vii 4.1 Resonance modes of cylindrical DRAs ............................................................ 56 4.2 Feeding configuration design ............................................................................ 59 4.3 Excitation of the TE modes ............................................................................... 61 4.4 The radiation performance ................................................................................ 63 4.5 Conclusion ........................................................................................................ 65 5 Spoof surface plasmon-based Leaky-Wave Antenna (LWA) ......................... 66 5.1 Radiation mechanism ........................................................................................ 68 5.1.1 Single-layered leaky-wave antenna .................................................................. 68 5.1.2 SL-LWA without 2nd converter ......................................................................... 70 5.1.3 Comparison with other LW structures similar to SL-LWA .............................. 71 5.1.4 Effect of dielectric and metal ............................................................................ 73 5.2 Design procedure and optimization .................................................................. 75 5.3 Experimental verification .................................................................................. 78 5.4 Conclusion ........................................................................................................ 81 6 Future Work ........................................................................................................ 82 6.1 Spoof surface plasmon modes in antenna design .............................................. 83 6.2 Spoof surface plasmon-based circuit design ..................................................... 84 A Excitation of TE-dominant higher order modes in DRAs ............................... 86 B Farfield Radiation Pattern Results of SL-LWA ............................................... 91 References ............................................................................................................ 94 viii List of Tables Table 2.1. Circuit element parameters of the U-shaped SSP cells ................................ 19 Table 2.2- Equivalent circuit elements for six symmetric SSP cells ............................. 23 Table 2.3- Circuit element parameters for meander SSP cells. ..................................... 27 Table 2.4- Four sets of resistors. ................................................................................... 29 Table 3.1. Relation between parameters of strip connector .......................................... 37 Table 3.2. Five parameter sets for mode converter ....................................................... 41 Table 3.3. Parameters of U-shaped SW–TL.................................................................. 41 Table 3.4- Five parameter sets for mode converter. ...................................................... 44 Table 3.5- Geometrical parameters of two SW-TLs ..................................................... 49 ix List of Figures Fig. 2.1. A symmetric SSP cell. .................................................................................... 11 Fig. 2.2. Dispersion of SSP cells. .................................................................................. 13 Fig. 2.3. Field distribution of SSP cells. ........................................................................ 14 Fig. 2.4. The circuit model for U-shaped SSP cells. ..................................................... 18 Fig. 2.5. The circuit model for symmetric SSP cells. .................................................... 22 Fig. 2.6. The circuit model for meander SSP cells. ....................................................... 24 Fig. 2.7. Meander SSP cells: dispersion curves and characteristic impedance. ............ 25 Fig. 2.8. Loading design for symmetric SW-TLs.......................................................... 28 Fig. 2.9. Reflection results from loaded SW-TLs. ........................................................ 29 Fig. 3.1. Polarization transformation of mode converter............................................... 33 Fig. 3.2. Dispersion conversion. .................................................................................... 34 Fig. 3.3. Impedance matching of mode converter. ........................................................ 35 Fig. 3.4. Mode converter design for U-shaped SSP cells. ............................................. 36 Fig. 3.5. Mode converter design for U-shaped SSP cells. ............................................. 38 Fig. 3.6. Effect of ground connector. ........................................................................... 39 Fig. 3.7. Mode converter design for U-shaped SSP cells. ............................................. 40 Fig. 3.8. Experimental evaluation of U-shaped SW-TL. ............................................... 42 Fig. 3.9. Mode converter design for symmetric SSP cells. ........................................... 43 Fig. 3.10. S-parameter results of symmetric SW-TL. ................................................... 45 Fig. 3.11. Meander SW-TL. .......................................................................................... 46 Fig. 3.12. Loss in symmetric SW-TLs. ......................................................................... 48
Description: