ebook img

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays PDF

244 Pages·2008·2.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays by Mohamed A.Y. Abdalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto (cid:176)c Copyright by Mohamed Abdalla 2009 Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays Mohamed A.Y. Abdalla Doctor of Philosophy, 2009 Graduate Department of Electrical and Computer Engineering University of Toronto Abstract This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modified gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13µm CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index(PRI/NRI)phaseshifters, arepresentedinthisthesis. Theprintedphaseshifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of ii theTLs,whichallowsforasingleMMICimplementation. Detailedexperimentalresults are presented in the thesis. As an example, the printed design achieves a phase of -40o to +34o at 2.5GHz. AsanotherapplicationfortheTAI,areconfigurableCMOSdirectionalcouplerispre- sented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high iso- lation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broad- side direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continu- ously steering its main beam from -27o to +22o off the broadside direction with a gain of 8.4dBi at 2.4GHz. iii Acknowledgments I would like to gratefully acknowledge the enthusiastic supervision of my advisors Pro- fessor Khoman Phang, and Professor George Eleftheriades for their continuous guid- ance, and inspiration. Throughout the course of my Ph.D. I have learned alot from them, and I will always remain indebted to them. I would like to thank Professor Khoman Phang for consistently being there for me, week after week to meet and dis- cuss all the different aspects of this work. As for Professor George Eleftheriades, I would like to deeply thank him for his invaluable advice and feedback, without which this work would not have been accomplished. Iwouldalsoliketoextendmythankstheformerandcurrentgraduatestudentsinmy research group as well as in the electro-magnetics group for their invaluable technical assistance and friendship from which I have learned alot. From the electronics group, I would like to thank Dr. Anas Hamoui, Dr. Ahmed Gharbiya, Dr. Mohammad Ha- jirostam, Joseph Aziz, Pradip Thachile, Masum Hossain, Farsheed Mahmoudi, Stephen Liu, Euhan Chong, Kentaro Yamamoto, Dr. Faisal Musa, Robert Wang, Dr. Afshin Haftbaradaran, Imran Ahmed, Navid Yaghini, Oleksiy Tyshchenko, Kevin Banovic, Tony Kao, David Allred, Akram Nafee, Trevor Caldwell, Samir Parikh, and Nasim Nikkhoo. From the Electro-magnetics group, I would like to thank Marco Antoniades for all the long hours we spent in technical discussions, and also Rubaiyat Islam, Dr. Omar iv Acknowledgements Siddiqui, Ashwin Iyer, Joshua Wong, and Peter Wang. Also, I would like to thank Tse Chan and Gerald Dubois for their continuous technical support. I would also like to extend my thanks the Canadian Microelectronics Corporation (CMC) for providing the fabrication facilities, and for NORTEL Networks, and the Natural Sciences and Engineering Research Council (NSERC) of Canada for financially supporting this work. Lastly, I would like to thank my beloved wife Aliaa, my parents, and my sister for their continuous support, and encouragement throughout the course of my Ph.D., and last but not least, I would like to thank my daughter Jana, whom without knowing has been a motivation for my accomplishments. The least I can do is to dedicate this work to them. v List of Related Publications The material presented in this thesis has been presented in part in the following journal and conference publications. Journal Publications 1. M. Abdalla, K. Phang, and G. V. Eleftheriades, “A 0.13µm CMOS phase shifter usingtunablepositive/negativerefractiveindextransmissionline,”IEEE Microw. Wireless Components Lett., Vol. 16, no. 12, pp. 705-707, Dec. 2006. 2. M. Abdalla, K. Phang, and G. V. Eleftheriades, “Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors,” IEEE Trans. Microw. Theory and Tech., Vol. 55, no. 8, pp. 1611-1623, August 2007. 3. M. Abdalla, K. Phang, and G. V. Eleftheriades, “A compact highly- reconfig- urable CMOS MMIC directional coupler,” IEEE Trans. Microw. Theory and Tech., Vol. 56, no. 2, pp. 305-3019, Feb. 2008. 4. M. Abdalla, K. Phang, and G. V. Eleftheriades, “A Planar Electronically Steer- ablePatchArrayUsingTunablePRI/NRIPhaseShifters,” IEEE Trans. Microw. Theory and Tech., accepted for publication Dec. 2008. vi Conference Publications 1. M. Abdalla, and K. Phang , “A 0.13µm CMOS active inductor based on a modi- fied gyrator-C architecture,” Micronet Annual Workshop, Ottawa, Canada, May 2005. 2. M. Abdalla, G. V. Eleftheriades, and K. Phang, “A differential 0.13µm CMOS active inductor for high frequency phase shifters,” Proc. IEEE Circuits and Sys- tems ISCAS 06, Kos, Greece, pp. 3341-3344, May 2006. 3. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “a tunable metamaterial phase-shifter structure based on a 0.13µm CMOS active inductor,” Proc. 36th European Microwave Conf., Manchester, Great Britain, pp. 325-328, Sept. 2006. 4. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A bi-directional elec- tronically tunable CMOS phase shifter using the high-pass topology,” 2007 IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, Hawaii, pp. 2173-2176, June 2007. 5. M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A steerable series-fed phased array architecture using tunable PRI/NRI phase shifters,” Invited paper, Int. Workshop on Antenna Tech. iWAT 08, Chiba, Japan, March 2008. vii Contents List of Figures xii List of Tables xviii List of Acronyms xx List of Symbols xxii 1 Introduction 1 1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Phased Antenna Array Front-Ends . . . . . . . . . . . . . . . . . . . . 1 1.3 Thesis Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Background 8 2.1 Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Metamaterial Applications . . . . . . . . . . . . . . . . . . . . . 10 2.2 Tunable Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 MEMS Tunable Inductors . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Varactor-Based Tunable Inductors . . . . . . . . . . . . . . . . . 12 2.2.3 Transmission-Line Tunable Inductors . . . . . . . . . . . . . . . 13 2.2.4 Gyrator-C Tunable Inductors . . . . . . . . . . . . . . . . . . . 13 2.3 Phase Shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Switched-Line Phase Shifters . . . . . . . . . . . . . . . . . . . . 23 viii Contents 2.3.2 Reflection-Type Phase Shifters . . . . . . . . . . . . . . . . . . . 24 2.3.3 Transmission-Type Phase Shifters . . . . . . . . . . . . . . . . . 25 2.3.4 Lumped-Element L-C Phase Shifters . . . . . . . . . . . . . . . 26 2.3.5 PRI/NRI Metamaterial Phase Shifters . . . . . . . . . . . . . . 30 2.4 Directional Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 Branch-Line Directional Couplers . . . . . . . . . . . . . . . . . 34 2.4.2 Coupled-Line Directional Couplers . . . . . . . . . . . . . . . . 35 2.4.3 Lumped-Element L-C Directional Couplers . . . . . . . . . . . . 36 2.4.4 PRI/NRI Metamaterial Directional Couplers . . . . . . . . . . . 38 2.5 Phased Antenna Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Antenna Arrays Basics . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 Microstrip Patch Antenna . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Phased Array Feed Network Topologies . . . . . . . . . . . . . . 45 2.5.4 Metamaterial Phased Antenna Arrays . . . . . . . . . . . . . . . 51 3 CMOS Tunable Active Inductors 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Traditional Gyrator-C Architecture . . . . . . . . . . . . . . . . . . . . 54 3.2.1 Quality Factor Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Q-Enhancement Technique For Gyrator-C TAIs . . . . . . . . . 57 3.3 The Modified Gyrator-C Architecture . . . . . . . . . . . . . . . . . . . 58 3.4 A Grounded 0.13µm CMOS TAI . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 TAI Small-Signal Analysis . . . . . . . . . . . . . . . . . . . . . 64 3.4.3 TAI Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.4 Physical Realization and Experimental Characterization . . . . 68 4 Wide Tuning Range CMOS Phase Shifters 83 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 High-pass Phase Shifter . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Design and Physical Implementation . . . . . . . . . . . . . . . 90 4.2.3 Experimental Characterization . . . . . . . . . . . . . . . . . . . 91 4.3 TL PRI/NRI Phase Shifter . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.2 Design and Physical Implementation . . . . . . . . . . . . . . . 99 4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4 MMIC PRI/NRI Phase Shifter . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4.2 Design and Physical Implementation . . . . . . . . . . . . . . . 108 ix Contents 4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 110 4.5 Passive MMIC PRI/NRI Phase Shifter . . . . . . . . . . . . . . . . . . 115 4.5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5.2 Design and Physical Implementation . . . . . . . . . . . . . . . 120 4.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 121 4.6 Discussion and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 124 4.6.1 Group Delay of PRI/NRI Phase Shifters . . . . . . . . . . . . . 128 5 A Highly-Reconfigurable Directional Coupler 131 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.1 Tunable Coupling Coefficient Directional Couplers . . . . . . . . 133 5.1.2 Tunable Operating Frequency Directional Couplers . . . . . . . 133 5.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.2.1 Analysis of the MMIC Directional Coupler . . . . . . . . . . . . 134 5.2.2 MMIC Directional Coupler Modes of Operation . . . . . . . . . 138 5.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.1 MMIC Directional Coupler Design . . . . . . . . . . . . . . . . 144 5.4 Physical Implementation and Experimental Results . . . . . . . . . . . 146 5.4.1 Physical Implementation . . . . . . . . . . . . . . . . . . . . . . 146 5.4.2 Experimental Characterization of the MMIC Directional Coupler 148 5.5 Effect Of The TAI On The Coupler Noise Performance . . . . . . . . . 162 6 Electronically Steerable Series-Fed Patch Array 166 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.2.1 Antenna Array Architecture . . . . . . . . . . . . . . . . . . . . 168 6.2.2 Feed Network Design . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2.3 Interstage Phase Shifters . . . . . . . . . . . . . . . . . . . . . . 176 6.3 Antenna Array Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.4 Physical Implementation and Experimental Results . . . . . . . . . . . 182 6.4.1 Interstage Phase Shifter . . . . . . . . . . . . . . . . . . . . . . 182 6.4.2 Steerable Antenna Array . . . . . . . . . . . . . . . . . . . . . . 186 6.5 Antenna Array Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.6 Discussion and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 197 7 Conclusion 202 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 x

Description:
M. Abdalla, K. Phang, and G. V. Eleftheriades, “A 0.13µm CMOS phase shifter using tunable positive/negative refractive index transmission line,” IEEE Microw.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.