ebook img

Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals PDF

3.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed13January2015 (MNLATEXstylefilev2.2) Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals 5 1 I-Ting Ho1, Rolf-Peter Kudritzki1,2, Lisa J. Kewley1,3, H. Jabran Zahid4, 0 2 Michael A. Dopita3,5, Fabio Bresolin1, and David S. N. Rupke6 n 1InstituteforAstronomy,UniversityofHawaii,2680WoodlawnDrive,Honolulu,HI96822,USA a 2UniversityObservatoryMunich,Scheinerstr.1,D-81679Munich,Germany J 3ResearchSchoolofAstronomyandAstrophysics,AustralianNationalUniversity,CotterRoad,WestonACT2611,Australia 2 4Harvard-SmithsonianCenterforAstrophysics,60GardenStreetMS-20,Cambridge,MA02138,USA 1 5AstronomyDepartment,KingAbdulazizUniversity,P.O.Box80203,Jeddah,SaudiArabia 6DepartmentofPhysics,RhodesCollege,Memphis,TN38112,USA ] A G Accepted2015January10.Received2015January9;inoriginalform2014October23 . h p ABSTRACT - o r We present metallicity gradientsin 49 local field star-forminggalaxies. We derivegas- t phase oxygen abundances using two widely adopted metallicity calibrations based on the s a [OIII]/Hβ, [NII]/Hα and [NII]/[OII] line ratios. The two derived metallicity gradients are [ usually in good agreement within ±0.14 dex R2−51 (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionisation parameters change 1 v systematically with radius. We investigate the metallicity gradients as a function of stellar 8 mass (8 < log(M∗/M⊙) < 11) and absolute B-band luminosity (−16 > MB > −22). 6 Whenthemetallicitygradientsareexpressedindexkpc−1,weshowthatgalaxieswithlower 6 mass and luminosity, on average, have steeper metallicity gradients. When the metallicity 2 gradientsareexpressedindexR−1,wefindnocorrelationbetweenthemetallicitygradients, 25 0 and stellar mass and luminosity.We providea local benchmarkmetallicity gradientof field . 1 star-forminggalaxiesusefulforcomparisonwithstudiesathighredshifts.Weinvestigatethe 0 originofthelocalbenchmarkgradientusingsimplechemicalevolutionmodelsandobserved 5 gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest 1 thatthelocalbenchmarkgradientisadirectresultofthecoevolutionofgasandstellar disk : under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes v i high(≫0.3).Thesemodelsimplylowcurrentmassaccretionrates(.0.3×SFR),andlow X massoutflowrates(.3×SFR)inlocalfieldstar-forminggalaxies. r a Keywords: 1 INTRODUCTION Rupkeetal.2008;Kewleyetal.2010;Rupkeetal.2010a,b).The relationsbetween metallicityandother fundamental propertiesof The content of heavy elements in a galaxy is one of the key galaxiescanplacetightconstraintsontheprocessesgoverningthe properties for understanding its formation and evolutionary his- evolutionofgalaxies. tory. Thegas-phase oxygen abundance intheinterstellar medium The correlation between global metallicity and stellar mass (ISM) of a galaxy (or “metallicities”), defined as the number in star-forming galaxies, i.e. the mass-metallicity relation, is one ratio of oxygen to hydrogen atom and commonly expressed as of the fundamental relations for measuring the chemical evolu- 12+log(O/H),isregulatedbyvariousprocessesduringtheevo- tionofgalaxies(Lequeuxetal.1979;Tremontietal.2004).Whilst lutionary history of a galaxy. Whilethe oxygen is predominately the mass-metallicity relation was first established locally, mod- synthesisedinhigh-massstars(>8M⊙)andsubsequentlyreleased ern spectroscopic surveys have enabled precise measurements of totheISMbystellarwindsandsupernova explosion, theoxygen metallicity out to high redshifts on large numbers of galaxies intheISMcould alsobeexpelled tothecircumgalactic medium, (e.g.,Savaglioetal.2005;Erbetal.2006;Zahidetal.2011,2013, or potentially become gravitationallyunbound, via feedback pro- 2014b;Wuytsetal.2014;Steideletal.2014;Sandersetal.2014) cesses,e.g.galactic-scaleoutflows.Gasinflowstriggeredbymerg- andlaidthefoundationforsubsequentinvestigationintothephys- ersandinflowsofpristinegasfromtheintergalacticmediumcould ical origin of the relation. Various physical processes including also dilute the metallicity of a galaxy (e.g. Kewleyetal. 2006a; metalenrichedoutflows(e.g.,Larson1974;Tremontietal.2004), 2 Ho et al. accretionofmetal-freegas(e.g.Dalcantonetal.2004),andvaria- B-band luminosity or higher total mass have shallower metallic- tionintheinitialmassfunction(Ko¨ppenetal.2007)orstarforma- ity gradients (Vila-Costas&Edmunds 1992; Garnettetal. 1997); tionefficiency(e.g.,Brooksetal.2007;Caluraetal.2009)haveall however, such behaviour is not pronounced in some measure- been proposed tobe responsible for shaping themass-metallicity ments(e.g.,vanZeeetal.1998;Prantzos&Boissier2000).Some relation.Themass-metallicityrelationmayalsohaveanadditional studies find that non-barred galaxies show a statistically signif- dependency on star formation rate (SFR; e.g., Mannuccietal. icant correlation between metallicity gradient and Hubble Type, 2010;Lara-Lo´pezetal.2010;Yatesetal.2012).Spatiallyresolved whereearliertypeshaveshallowermetallicitygradientsthanlater studies have shown that the mass-metallicity relation also holds types(Vila-Costas&Edmunds1992;Oey&Kennicutt1993),but onsmallerscalesforindividualstar-formingregionswithingalax- considerable scatter exists in other measurements (Zaritskyetal. ies (Rosales-Ortegaetal. 2012). Recent work suggests that the 1994).Moststudiesfindnocorrelationwhenmetallicitygradients mass-metallicity relation could be a direct result of some more arenormalisedtosomescale-length(i.e.,R25,thediskscale-length fundamental relationsbetweenmetallicity,stellarandgascontent R ,ortheeffectiveradiusR 2).Thecontradictoryresultsofsome d e (Zahidetal.2014c;Ascasibaretal.2014). earlierstudies might be due tothesmall samplesizes andincon- The spatial distribution of metals in a disk galaxy can also sistentmethodologiesofmeasuringmetallicitygradients.Applying providecriticalinsightintoitsmassassemblyhistory.Diskgalax- differentmetallicitydiagnosticscanintroduceconsiderablesystem- ies in the local Universe universally exhibit negative metallic- aticerrors(Kewley&Ellison2008). ity gradients, i.e., the centre of a galaxy has a higher metallicity Advances in instrumentation such as multi-slit spectroscopy thantheoutskirts(e.g.,Zaritskyetal.1994;Moustakasetal.2010; and wide-field integral field spectroscopy (IFS) is in the pro- Rupkeetal.2010b;Sa´nchezetal.2014,andreferencestherein).In cess of revolutionising statistical studies of metallicity gradients severalcases,wheremeasurementsarepossibleouttoverylarger in the local Universe (e.g., Sa´nchezetal. 2014). Large on-going radii(2×R251),themetallicitygradientsflattenintheouterdisks, and future large IFS surveys include the Calar Alto Legacy In- suggestinginner-to-outertransportationofmetalsviamechanisms tegral Field Area Survey (CALIFA; Sa´nchezetal. 2012a), the such as galactic fountains (e.g., Werketal. 2011; Bresolinetal. Sydney-AAOMulti-objectIntegralfieldspectrograph(SAMI)Sur- 2012; Kudritzkietal. 2014; Sa´nchezetal. 2014). Extreme exam- vey(Croometal.2012;Bryantetal.2014;Allenetal.2014),the plesofmetalmixingoccursininteractinggalaxies,wherethenon MappingNearbyGalaxiesatApachePointObservatory(MaNGA) axis-symmetric potential induces radial inflows of gas. Both ob- Survey,theHectorSurvey(Lawrenceetal.2012;Bland-Hawthorn servations and simulations confirm that mergers of disk galaxies 2014),andmanyothers.TheseIFSsurveysarenotonlyextremely presentshallowermetallicitygradientsthanisolateddiskgalaxies efficientincollectinglargenumbersofspectrasimultaneouslyand duetoeffectivegasmixing(e.g.,Kewleyetal.2010;Rupkeetal. seamlessly across anentire galaxy, but alsohave desirable wave- 2008,2010a,b;Torreyetal.2012;Richetal.2012). lengthcoveragetocapturemultiplekeyemissionlinesforderiving Sophisticated modelling of the evolution of metallicity gra- metallicity. Such features pose a unique opportunity to eliminate dients in disk galaxies has shed light on the formation, gas ac- systematicerrorsusingstatisticalapproaches. cretion, and star formation history of the disks. Whilethedetails Inthispaper,westudythemetallicitygradientsinasampleof varyfrommodeltomodel,typicalassumptionsofinside-outdisk 49localfieldstar-forminggalaxies.Wederivemetallicitygradients growth,noradialmatterexchange,andclosed-boxchemicalevolu- using different abundance calibrations and discuss potential sys- tioncansuccessfullyreproducethecurrentgradientsinlocalgalax- tematiceffectsinducedbythecalibrationsadopted.Weinvestigate ies (e.g., Chiappinietal. 2001; Fuetal. 2009). However, some whether metallicitygradients infieldstar-forminggalaxiescorre- models predict that metallicity gradients steepen with time (e.g., latewiththeirphysicalproperties.Weshowthatthereisacommon Chiappinietal.1997,2001;seealsoMottetal.2013whoincluded metallicitygradientinlocalfieldstar-forminggalaxiesandwepro- radialinflow), whileotherspredict theopposite(e.g.,Mollaetal. vide some benchmark values. Finally, we adopt simple chemical 1997; Prantzos&Boissier 2000; Fuetal. 2009; Pilkingtonetal. evolutionmodelstoexplaintheformationofthecommonmetallic- 2012). Testing the model predictions using observations of high itygradient. redshiftgalaxiesarechallenging(e.g.,Yuanetal.2011;Jonesetal. Thepaperisstructuredasfollows.Wedescribeoursamples, 2010,2013, andreferencestherein).Inaddition,systematiceffects observationsanddatareductioninSection2,andourdataanalysis frominsufficientresolutionand/orbinningofthedataunfortunately inSection3.InSection4,wedetailourmethodology ofderiving can seriously the reliability of metallicity gradients measured at themetallicity, ionisation parameter, and metallicitygradients. In highredshifts(Yuanetal.2013;Mastetal.2014). Section 5, we present our measurements of metallicity gradients, Statistical studies of metallicity gradients in the local Uni- discuss thesystematiceffects, and compare themetallicitygradi- verse provide an alternative approach to constrain the theoreti- entswithstellarmassesandabsoluteB-bandmagnitudes.Wepro- calsimulations. Althoughthemeasurements aretime-consuming, videabenchmarkmetallicitygradientinSection6andinvestigate sample sizes of few tens of galaxies have been achieved in the theoriginofthebenchmarkgradientinSection7usingthesimple past using long-slit spectroscopy. These samples gave intriguing chemicalevolutionmodels.Finally,asummaryandconclusionsare (and sometimes contradictory) correlations between metallicity giveninSection8.Throughoutthispaper,weassumethestandard gradients and physical properties of the disk galaxies. For exam- Λ cold dark matter cosmology with H0 = 70 km s−1 Mpc−1, ple, barred galaxies tend to exhibit shallower metallicity gradi- ΩM =0.3andΩΛ =0.7. ents than non-barred galaxies even when galaxy sizes are taken into account (e.g., Vila-Costas&Edmunds 1992; Zaritskyetal. 1994),butsuchdiscrepancyisinsignificantinsomerecentstudies (Sa´nchezetal.2014).Forunbarredgalaxies,galaxieswithhigher 2 Theeffectiveradiusistheradiusatwhichtheintegratedfluxishalfofthe totalone.Comparingtothediskscale-lengthfortheclassicalexponential 1 Radiusofthe25thmagnitude/arcsec2 isophoteinB-band. profile,Re=1.67835Rd. Metallicitygradientsin localfieldstar-forminggalaxies 3 2 SAMPLES massderivedbytheMPA/JHUgroupasareferencefortargetse- lection(Kauffmannetal. 2003a; Salimetal.2007);thefinal stel- The 49 galaxies studied in this work are drawn from various lar masses adopted in this work are derived separately and con- sources,includingliteraturedata,publicdataandourtargetedob- sistently for all our samples. As a result of this selection, one of servations. Wedescribe thefour samplesinthenext foursubsec- theWiFeSgalaxiespresented hasasubstantially largerfinal stel- tions. The focus of this paper is to investigate field star-forming lar mass (log(M∗/M⊙) ∼ 10.2) due to the incorrect apertures galaxies,andthereforeweselectonlyfieldgalaxiesthatarenotun- adopted by MPA/JHU. We remove galaxies with AGN from our dergoingmajormergersandnotinclosepairs;noneofourgalaxies mothersampleusingtheopticallineratios[NII]/Hαand[OIII]/Hβ havemassivecompanions(i.e.stellarmasshigherthanone-thirdof (Kewleyetal. 2006b). We further constrained the mother sample themaingalaxies)within70kpcinprojectionand1000kms−1in tohavelowinclinationdisksandspatialextentcomparabletothe line-of-sightvelocityseparation. WideFieldSpectrograph(seeSection2.2.1).Wealsovisuallycon- firmedthatthesegalaxiesarenotundergoingmajormergeranddo not have massive companions. From the mother sample, we then 2.1 CALIFAgalaxiesinDataRelease1 selected our final targets based on observability and instrumental We use the publicly available IFS data from the first data re- sensitivity.Intotal,weobserved19galaxies,10ofwhichyieldre- lease(DR1) oftheCALIFAsurvey. Afulldescriptionofthesur- liablemetallicitygradientsandarepresentedinthispaper. veydesign,includingdetailsoftargetselectionanddatareduction scheme,canbefoundinSa´nchezetal.(2012a).Specificdetailsre- 2.0 latedtotheDR1canbefoundinHusemannetal.(2013,seealso Walcheretal.2014).Belowwebrieflysummarisetheinformation relevanttothiswork. 1.5 The CALIFA DR1 contains reduced IFS data of 100 local galaxies(0.005<z<0.03)coveredbytheSloanDigitalSkySur- vey(SDSS;Yorketal.2000;Abazajianetal.2009).Inthisstudy, x we focus only on spiral galaxies that are not undergoing a major de 1.0 n merger,andnotinclosepairs.Extremelyedge-onsystemswithin- i 2 clinationanglelargerthan70◦areexcludedfromouranalysissince 3N O de-projectingradialdistanceisuncertain.Systemswithoutenough sufficiently high signal-to-noise spaxels (S/N > 3) to measure SS 0.5 D emissionlinefluxesarealsoexcluded.Intotal,21CALIFAgalax- S iesareanalysed. The released CALIFA datacubes, as processed by the CAL- 0.0 IFA automatic data reduction pipeline, have a spatial size of ∼ y =x 74′′ × 64′′ on a rectangular 1′′ grid. The point spread func- y =x ±0.1 tion, as measured from field stars in the datacubes, has a me- dianfull-widthmeasuredathalf-maximum(FWHM)of3.7′′.Ev- −0.5 −0.5 0.0 0.5 1.0 1.5 2.0 ery CALIFA galaxy is observed using the fibre bundle integral WiFeScentral3”O3N2index field unit (IFU) PPak, and two different setups with the Pots- damMulti-ApertureSpectrophotometer(PMAS;Rothetal.2005; Kelzetal. 2006). The low-resolution (V500) and high-resolution Figure1.ComparisonoftheobservedO3N2index(Equation1)between (V1200) setup cover wavelength ranges of ∼ 3745–7500 A˚ and thosefromtheWiFeSandtheSDSSdata.Eachdotcorrespondstooneof ∼3650–4840A˚,respectively.TheV500reduceddatacubeshavea the10WiFeSgalaxiesthatwerealsoobservedbytheSDSSspectroscopic FWHMspectralresolutionof6.0A˚ (R∼850)andaspectralchan- survey. Toderive the O3N2 index from the WiFeS data, we extract line nel widthof 2.0A˚. TheV1200 reduced datacubes haveaFWHM fluxesin3′′aperturesatthelocationsoftheSDSSfibres.TheO3N2index spectral resolution of 2.3A˚ (R ∼ 1650) and a spectral channel derivedfromthetwodatasetsareconsistentwithinapproximately0.1dex. widthof0.7A˚. 2.2.1 Observationanddatareduction 2.2 WiFeSgalaxies Weobserved our low-mass galaxies using the WiFeSon the 2.3- TheCALIFAsamplewasselectedbasedontheangulariso-photal mtelescopeatSidingSpringObservatory inDecember 2012and diameter of the galaxies (45′′ < D25 < 80′′). Therefore, the April 2013. WiFeS is a dual beam, image-slicing IFU consisting CALIFA sample is inevitably biased towards galaxies of higher of 25 slitlets. Each slitlet is 38′′ long and 1′′ wide, yielding a mass (& 109 M⊙). To probe metallicity gradients in galaxies of 25′′×38′′ fieldofview.Forathoroughdescriptionoftheinstru- lowermassinastatisticallysignificantway,weconductedsupple- ment,seeDopitaetal.(2007)andDopitaetal.(2010).Eachgalaxy mental IFS observations to specifically target low mass systems was observed with the blue and red arms simultaneously using (i.e., log(M∗/M⊙) = 8–9). We first selected a mother sample theB3000andR7000gratings,respectively.Allgalaxieswereob- oflow-massgalaxiesfromtheSDSSDataRelease7value-added servedwithasingleWiFeSpointingexceptforJ031752.75-071804 catalogconstructedbytheMPA/JHUgroup3.Weusedthestellar whereweadopted atwo-point mosaic.Thetypicalexposuretime is∼1−2hourspergalaxyunderseeingconditionsof1.5−2.5′′. We reduce the data using the custom-built data reduction 3 http://www.mpa-garching.mpg.de/SDSS/DR7/ pipeline PYWIFES (Childressetal. 2014). The final reduced data 4 Ho et al. consistoftwodatacubeson1′′×1′′ spatialgridsforeachgalaxy. spaxelofCALIFAandWiFeSgalaxiesbyspectralfitting.Weuse Thebluecubecovers∼3500–5700A˚ withaFWHMvelocityreso- an earlier version of the spectral fitting tool LZIFU described in lutionof∼100kms−1atHβ(∼1.7A˚ orR∼3000)andaspec- Hoet al. (inpreparation; see alsoHoetal. 2014). Thefittingap- tralchannelwidthof∼0.8A˚.Theredcubecovers∼5500–7000A˚ proachesforthetwosamplesareverysimilar,thoughsomedetails withaFWHMvelocityresolutionof∼40kms−1atHα(∼0.9A˚ arefinetunedtoaccommodatethedifferencesinspectralcoverage orR∼7000)andaspectralchannelwidthof∼0.4A˚. andresolutionbetweenthetwodatasets.Below,wefirstelaborate TocompareourreducedWiFeSdatacubeswiththeSDSSfibre ourmethodfortheCALIFAgalaxiesbeforedescribingthedifferent spectra,wepresentinFigure1theemissionlineratios,theO3N2 treatmentsfortheWiFeSgalaxies. indexes(seebelow;Equation1),derivedfromthetwodatasets.For Priorto fittingtheCALIFAgalaxies, wefirst correct for the theSDSSdata,weadoptthelinefluxesfromtheMPA/JHUvalue- known spatial misalignment between the V500 and V1200 dat- addedcatalog;fortheWiFeSdata,weextractlinefluxeswithinthe acubes (Husemannetal. 2013). For each CALIFAgalaxy, were- correspondingfibreaperturesfromtheemissionlinemaps(seebe- alignthetwocubes bycorrelatingcontinuum imagesconstructed low).Figure1demonstratesthattheO3N2indexesfromtheWiFeS separately from the two cubes using a wavelength range covered andSDSSdataareconsistentwithinapproximately0.1dex. by both settings(4240–4620A˚). Typical misalignments are ∼ 1′′ to2′′ whileinseveralextremecases∼ 3′′ to5′′.Wethenrescale theV1200datatomatchtheV500datausingscalefactorsdeter- 2.3 GalaxiesfromSa´nchezetal.(2012b) minedfromthemedianfluxdensityratiosbetweenanoverlapped spectralcoverageof4000A˚ and4500A˚. Slightdifferencesinflux Tofurtherincreaseoursamplesize,weanalyse9fieldgalaxiespre- levelsmaybearesultofimperfectcalibrationandanyresidualsys- sentedinSa´nchezetal.(2012b,hereafterS12)withlowinclination angles(<50◦). tematicerrors. Wethenperformsimplestellarpopulation(SSP)synthesisto S12 studied ∼ 2600 HII regions in 38 nearby galaxies se- remove the underlying stellar continuum before fitting emission lected from the PINGS survey (Rosales-Ortegaetal. 2010) and lines.Tomodelthestellarcontinuum,weadoptthepenalisedpixel- Ma´rmol-Queralto´ etal.(2011).All38galaxieswereobservedwith PPak and PMAS, which deliver spectral coverages similar to the fitting routine (PPXF; Cappellari&Emsellem 2004) and employ CALIFAdataof∼ 3700−6900A˚.S12appliedasemi-automatic theempiricalMIUSCAT4SSPmodelsof13ages5and4metallic- ities6(Vazdekisetal.2010)whileassumingaSalpeterinitialmass procedure, HIIEXPLORER,to search for HII regions in IFU data function(IMF;Salpeter1955).Badpixels,skylinesandthevicin- under the assumptions that HII regions are peaky and isolated ity(±15A˚) of emission lines are masked prior to fittingthecon- line-emitting structures with typical physical sizes of few hun- tinuummodels.Aftersubtractingthecontinuum modelsfromthe dred parsecs (more details in S12). A very similar spectral fit- data,wefurtherremovelowfrequencyfluctuationsintheresiduals tingapproach(toSection3.1)wasappliedonsyntheticspectraof byfittingfourthorderb-splinemodels.Wenotethatthemajorgoal HII regions to decouple the underlying stellar contribution from ofperformingSSPsynthesisfittingistocorrectforstellarBalmer lineemissions.Thefinalpublicfluxcatalogscontainsevenstrong absorption; wedo not derive stellar age and metallicity from our lines, [OII] λλ3726,3729, Hβ, [OIII] λ5007, [OI] λ6300, Hα, SSPfits. [NII]λ6583,and[SII]λλ6716,6731. Subsequent to removing the continuum in the V500 All the 9 galaxies analysed in this study have multiple and V1200 datacubes separately, we model the strong emis- bright HII regions measured in all the strong lines including [OII] λλ3726,3729, which allows reliable constraints simultane- sion lines ([OII] λλ3726,3729, Hβ, [OIII] λλ4959,5007, ouslyonmetallicityandionisationparameterswithdifferentdiag- [NII]λλ6548,6583,Hα,and[SII]λλ6716,6731)assimplegaus- sians.Weperformaboundedvaluenonlinearleast-squaresfitusing nostics. theLevenberg-MarquardtmethodimplementedinIDL(Markwardt 2009,MPFIT).Weconstrain(1)alllinestohavethesamevelocity 2.4 GalaxiesfromRupkeetal.(2010b) and velocity dispersion, (2) the ratios [NII] λ6583/[NII] λ6548 and[OIII]λ5007/[OIII]λ4959totheirtheoreticalvaluesgivenby Rupkeetal.(2010b,hereafterR10)measuredmetallicitygradients quantummechanics,(3)thevelocitytobebetween+600 kms−1 ininteractingandnon-interactinggalaxies.Theyshowthat,onav- and −600 km s−1 to the systemic velocities as measured from erage, interacting systems present shallower metallicity gradients SDSS,and(4)thevelocitydispersiontobebetween50and1000 than non-interacting systems. Their control sample comprises 11 kms−1. non-interacting local galaxies and they measure their metallicity Figure 2 shows a typical spectrum and spectral fit. Thisfig- gradientsusingpublishedemissionlinedatafromHIIregions.Two urebestillustratestheaboveprocedureofdecouplingstellarcon- of these control sample galaxies overlaps with the S12 sample. tribution in each spaxel from emission lines originated predomi- We include their measurements for the remaining 9 galaxies in nantlyfromHII regions.Figure3showstwoemissionlinemaps, our analysis. Their methods of correcting for extinction and de- SDSScompositeimage,extinctionmap,velocityfieldmap,anda riving metallicityareexactly the same as our work and therefore keydiagnosticsline-ratiomapoftheCALIFAgalaxyNGC7321to we include their measurements of metallicitygradients without a demonstratethefinalproductsfromouranalysisdescribedabove. re-analysisofthedata. ForfittingtheWiFeSgalaxies,theaboveprocedureisadopted withsomeminormodificationstoaccommodatethedifferentspec- 3 ANALYSIS 3.1 Emissionlinemaps 4 http://miles.iac.es/pages/ssp-models.php 5 0.06,0.10,0.16,0.25,0.40,0.63,1.00,1.58,2.51,3.98,6.31,10.00,and Toplaceconstraintsonmetallicityandionisationparameterusing 15.85Gyr emissionlinediagnostics,wemeasureemissionlinefluxesineach 6 [M/H]=-0.71,-0.40,0.00,and0.22 Metallicitygradientsin localfieldstar-forminggalaxies 5 0.5 −1Å) 0.4 −2m −1s c 0.3 g er −160 0.2 V500 x (1 VV510200 0continuum model Flu 0.1 V1200 continuum model 0.0 4000 4500 5000 5500 6000 6500 7000 [OII] (V1200) Hbeta + [OIII] (V500) Halpha + [NII] (V500) [SII] (V500) 0.3 0.20 1.0 0.15 −2−1mÅ) 0.2 0.15 0.8 0.10 c 0.6 −1s 0.10 g 0.1 0.4 0.05 er −160 0.05 0.2 ux (1 0.0 0.00 0.0 0.00 Fl −0.1 −0.05 −0.2 −0.05 0.10 0.03 0.015 0.010 0.05 0.02 0.010 0.005 0.01 0.005 0.00 0.000 0.000 0.00 −0.005 −0.05 −0.01 −0.010 −0.005 −0.10 −0.02 −0.015 −0.010 3740 3760 3780 4900 5000 5100 6600 6640 6680 6780 6810 Wavelength Å Figure2.AnexampleofthespectralfittingapproachappliedontheCALIFAdata(seeSection3.1fordetails).Thegreyandblackthicklinesintheupper panelindicatethewavelengthrangeswherethedata(black:V500data;grey:V1200data)areadoptedtoconstrainthecontinuummodels(red:V500;pink: V1200).Badchannels,thevicinityofstrongemissionlinesandskylinesareexcludedfromthefit.Thefourmiddlepanelsshowemissionlines(red)fittothe continuumsubtractedspectra(black).Alllinesarefitsimultaneouslyandsharethesamevelocityandvelocitydispersion.Thebottomfourpanelsshowthe residuals,andthebluedashedlinesindicatethe±1σnoiselevels. tral coverages and resolutions. No correction for misalignment is a given measurement (i.e., a spaxel for the CALIFA and WiFeS requiredfortheWiFeSdatacubessincetheblueandreddatawere samples or an HII region for the S12 samples), we assume the observedsimultaneously.SSPsynthesisfittingisperformedsimul- classical extinction law by Cardellietal. (1989) with Rv=3.1 taneouslyonbothcubestotakefulladvantageofthe4000A˚ break, and Hα/Hβ = 2.86 under the case-B recombination of Te = animportantageindicator,capturedonlyinthebluedata.Fitting 10,000Kandne=100cm−3(Osterbrock&Ferland2006).This the red side separately would in principle increase the degenera- prescriptionisconsistentwiththatadoptedinR10. cies in SSPsynthesis fitting. We first down-grade the red data to the same spectral resolution as the blue data (R ∼ 3000), mask 3.3 Otherphysicalquantities out noisy parts of the spectra due to poor CCD sensitivities, and mergethetwodatacubestoformamasterdatacubewhichcovers 3.3.1 Stellarmass(M∗) ∼ 3700–6950A˚. We then use PPXF and theoretical SSP models, assumingPadovaisochrones,of18ages7and3metallicities8from Weuse the LE PHARE9 code developed by Arnouts, S.& Ilbert, Gonza´lezDelgadoetal.(2005)todeterminethecontributionfrom O.toestimatethegalacticstellarmass.LEPHAREcomparespho- differentstellarpopulationsandthedegreeofdustextinction.The tometry measurements with stellar population synthesis models, resultsarethenusedtoreconstructcontinuaoftheblueandreddata based on a χ2 template-fitting procedure, to determine mass-to- light ratios, which are then used to estimate the stellar mass of attheirnativespectralresolution.Thesamelinefittingapproachis thenappliedtothecontinuumsubtractedcubesandyieldsemission galaxies. The stellar templates of Bruzual&Charlot (2003) and linemaps. a Chabrier IMF (Chabrier 2003) are used to synthesise magni- tudes. The 27 models span three metallicities and seven expo- nentially decreasing star formation models (SFR ∝ e−t/τ) with 3.2 Extinctioncorrection τ =0.1,0.3,1,2,3,5,10,15and30Gyr.Weapplythedustatten- uationlawfromCalzettietal.(2000)allowingE(B−V)tovary We use a consistent method for all the galaxies to correct the from0to0.6andstellarpopulationagesrangingfrom0to13Gyr. wavelength-dependent extinction caused by dust attenuation. For Photometric measurements are collected from various sources.Forallthe21CALIFAgalaxies,10WiFeSgalaxies,and 5/9S12galaxies,weadoptvaluesfromtheSDSSDR7photometry 7 0.004, 0.006, 0.008, 0.011, 0.016, 0.022, 0.032, 0.045, 0.063, 0.089, 0.126,0.178,0.251,0.355,0.501,0.708,1.000,and1.413Gyr. 8 Z=0.004,0.008,and0.019. 9 http://www.cfht.hawaii.edu/∼arnouts/LEPHARE/lephare.html 6 Ho et al. NGC7321 Halpha [OII]3726,3729 SDSS composite 60 ec] s c et [ar 40 s off c. e D 20 0 0 20 40 60 R.A. offset [arcsec] E(B−V) Velocity field O3N2 −0.2 0.0 0.2 0.4 0.6 7000 7125 7250 7375 −0.4 0.0 0.4 0.8 [km/s] Figure3.Anexampleof2DmapsfromourspectralanalysisdescribedinSection3.1.ThefirstrowshowstheHαmap,[OII]λλ3726,3729map,andSDSS 3-colourimageofNGC7321,oneoftheCALIFAgalaxies.ThesecondrowshowstheE(B-V),velocityfield,andO3N2maps.Thebrightforegroundstarin theSDSSimageismaskedoutinalltheothermaps. catalog(Abazajianetal.2009)and2MASSextendedsourcecata- 3.3.2 Inclinationangle log(Skrutskieetal.2006).ThePetrosianmagnitudesofSDSSu,g, InclinationanglesofCALIFAgalaxiesareestimatedusingthecon- r,i,andz-bandarecorrectedfortheforegroundGalactic-extinction versionprovided byPadilla&Strauss(2008). Theeffectsof dust (Schlegeletal.1998).The2MASSJ,H,andK magnitudesmea- s extinctionandreddeningweretakenintoaccountintheiranalysis. sured from fit extrapolation are adopted to approximate the total Anestimateofinclinationangleforspiralgalaxyisinferredfrom magnitudes.Allthesegalaxieshavethe5-bandSDSSphotometry the measured axis ratio (b/a) and r-band absolute magnitudes. andthemajority(28/36)alsohavethe3-band2MASSphotometry. AxisratiosestimatedbytheCALIFAteamfromSDSSr-bandim- FortherestofthefourS12galaxiesandthenineR10galaxies,we agesareadopted. InclinationanglesofWiFeSgalaxiesaredrawn collectavailableU,B,V,andthe3-band2MASSphotometricmea- fromHyperleda(Patureletal.2003),whichassumestheclassical surements from NASA/IPAC Extragalactic Database (NED). All Hubbleformula(Hubble1926).InclinationanglesofS12galaxies thesegalaxieshavethe3-band2MASSphotometry.TheBandV- aretakendirectlyfromtable1inS12,whichalsoreferstovalues bandphotometryareavailableforallgalaxies,andtheU-bandpho- from Hyperleda. Inclination angles of R10 galaxies are taken di- tometryisavailableforabouthalfofthesegalaxies(6/13).These rectly from table 2 in R10, which is a compilation from various optical photometric measurements are also corrected foreground references. Galactic-extinction.Whenreasonableuncertaintiesofthemeasure- mentsareunavailable,weassume0.1dexfortheopticalbandsand 0.05dexfortheinfraredbands. 3.3.3 Sizeanddistance We note that the uncertainties in stellar mass are typically WecompilethesizesanddistancesofoursamplesfromNEDand dominated by systematic errors. Different stellar mass estimators Hyperleda.R25fromHyperledaisadoptedthroughoutthepaperto employdifferentalgorithmsandstellarlibraries,buttheestimated quantifysizesof the galaxies.Redshift independent distances are M∗ typically agrees within ∼ 0.3 dex, marking the degree of availableforallR10galaxiesinTable2ofR10.Redshiftindepen- systematic errors in the measurements (e.g., Droryetal. 2004; dentdistancesformostS12galaxies(7/10)areadoptedfromNED. Conroyetal.2009). Theseredshiftindependentdistances(d .30Mpc)aremeasured Metallicitygradientsin localfieldstar-forminggalaxies 7 from theTully-Fisher relation, tipof thered-giant brach method, isanalternativemetallicitydiagnosticthathasbeencalibratedby planetary nebulae, type-II supernovae, or Cepheid variables. For Kewley&Dopita (2002, hereafter KD02) using theoretical pho- CALIFA,WiFeS,andtherestofthethreeS12galaxies,weadopt toionisation models. We adopt the parametrisation for q = 2× Hubbledistancesinferredfromtheirredshifts. 107cms−1 inKD02toderivemetallicity.TheN2O2indexisin- sensitivetovariationofionisationparameterbyvirtueofthesim- ilarionisingpotential of N+ andO+.Despitetheinsensitivityto ionisationparameter, N2O2isnot oftenused inlocal studiespri- 4 DERIVATIONOFMETALLICITIESAND marily because some spectrographs are not sensitive enough at METALLICITYGRADIENTS ∼ 3700A˚ to observe [OII] λλ3726,3729. The N2O2 calibration In this section, we describe our methodology for using emission depends more on the assumed extinction law and extinction esti- lineratiostoderivemetallicities,metallicitygradientsandionisa- matethanO3N2duetothelargerwavelengthseparationbetween tionparameters. [NII]λ6583and[OII]λλ3726,3729.Wenotethatthevariationin theN/OratiowithO/Hcould be thelargest uncertainty affecting these strong line diagnostics (Henryetal. 2000). The strength of 4.1 Metallicity the[OII]λλ3726,3729linesarestronglyaffectedbytheelectron temperature,governedpredominatelybytheO/Hratioandionisa- The most direct way to determine an ISM metallicity is by first tionparameter,while[OIII]λ5007ismostlysensitivetotheioni- measuring electron temperatures (Te) with temperature sensitive sationparameter. line ratios, e.g., [OIII] λ4363 to [OIII] λ5007, and then convert A long standing problem in chemical studies has been that emissionmeasurestometallicityaftercorrectingforunseenstages different metallicity calibrations do not return consistent metal- of ionisation. Since[OIII]λ4363 istypicallyunavailable or only licity measurements. Kewley&Ellison (2008) applied 10 differ- detected in very limited (i.e. the hottest) regions in IFU surveys, ent metallicity calibrations on the same SDSS dataset and found measuringmetallicityusuallyreliesonempiricalortheoreticalcal- thatdifferentcalibrationsyielddifferentmass-metallicityrelations. ibrations(oracombinationofboth)basedonstrongemissionlines, Boththeslopesandtheinterceptsofthemass-metallicityrelation suchasthoseavailableinoursamples.Varioussuchcalibrationsare aresignificantlydifferentfromcalibrationtocalibration.Byallow- availableintheliteraturesandarewidelyadoptedtoderivemetal- ing the mass-metallicity relations derived with different calibra- licity(e.g.,Kewley&Dopita2002;Pettini&Pagel2004). tionstobeconvertedtothesamebases,Kewley&Ellison(2008) Wederivemetallicitieswithtwodifferentcalibrationselabo- derived empirical conversions between different calibrations. In ratedbelow.Throughoutthepaper,weexpressthemetallicityisin this paper, metallicitiesderived using the O3N2 method are sub- termsofthenumberratioas12+log(O/H). sequently converted to the KD02 scale using the conversion by Kewley&Ellison(2008). Wenotethat,whenderivingmetallicitiesusingacertaindiag- 4.1.1 O3N2index/PP04 nostic,weonlyusedatawithS/N>3onallthelinesassociatedto thatparticulardiagnostic.Thesamerulealsoappliestothederiva- TheO3N2index,definedas tionoftheionisationparameter(seeSection4.3). [OIII]λ5007/Hβ O3N2≡log , (1) [NII]λ6583/Hα 4.2 Theimportanceofnon-thermalexcitationanddiffuse is a widely used metallicity diagnostic in the literature. An em- ionisedgas pirical calibration isprovided by Pettini&Pagel (2004, hereafter PP04). The popularity of this diagnostics arises for two reasons. It is important to understand that all the above metallicity diag- Firstly, the four lines involved are usually easily measured in lo- nostics are calibrated empirically or theoretically using HII re- calgalaxiesouttolargeradiiusingmoderninstruments.Secondly, gions. This means, by applying the diagnostics, one implicitly becauseoftheminimumwavelengthdifferencesbetweenthetwo assumes that that all the nebular emission originates from pho- pairs of lines, the O3N2 index is virtually free from systematics toionisation and heating caused by the extreme ultraviolet pho- causedbytheassumptionofanextinctionlaworreddeninguncer- tons emitted by O and B-type stars. If other ionisation sources tainties. Nevertheless, the calibrationprovided by Pettini&Pagel are present, metallicity measurements would be contaminated. (2004)iscalibratedempiricallywithalinearfittometallicitiesof Other ionisation sources such as active galactic nuclei (AGNs) 137extragalacticHIIregions(131withTe-basedmetallicityand6 can have localised or even global effects on line ratios. Interstel- withdetailed photoionisation models). Variationof ionisationpa- lar shocks originating from AGN outflows, supernovae, or stel- rameter,q,isnotconsideredinthecalibration.Neglectofthispa- lar winds are also sources of non-thermal radiation and can af- rametermaycauseserioussystematicerrorsintheresults.Anup- fect emission line ratios. To remove measurements affected by datedcalibrationbasedonmanymoreTe-basedmetallicitiesofHII non-thermal radiation from our subsequent analyses, we use line regions (309) is provided by Marinoetal. (2013). Thisnew cali- ratio diagnostics commonly adopted to distinguish normal from brationpresentsasignificantlyshallowerslopebetweentheO3N2 active galaxies (i.e., [OIII] λ5007/Hβ v.s. [NII] λ6583/Hα or indexandmetallicitythanthePP04calibration. BPTdiagram; Baldwinetal.1981;Veilleux&Osterbrock1987). We adopted the empirically separation line derived from SDSS byKauffmannetal.(2003b,hereafterK03;seealsoKewleyetal. 4.1.2 N2O2index/KD02 2001 and Kewleyetal. 2006b) to exclude data contaminated by non-thermalexcitation. TheN2O2index,definedas Emission from the diffuse ionise gas (DIG; also known as [NII]λ6583 the warm ionised medium) can be a non-negligible component N2O2≡log[OII]λλ3726,3729, (2) in IFU measurements. The DIG is hot (∼ 104 K) and tenuous 8 Ho et al. ofHIIregionsineachgalaxyasasimplefunctionof 00..00 1.4 CHII = 1− f(fH0α), (4) 1.2 00..22 1.0 wheref(Hα)istheHαflux.Combiningequation3andequation4, a wefitsimultaneouslyZ′andf0,andshowthebestfitasthegreen SII]/H 00..44 00..68CHII creuarsvoenianblFyigwureell,4.buWtethteyptihceaollryetfiicnadl ebqausiastioofnt4hidsefsucnricbteiosntahlefdoarmta [ is unclear. The best fit provides a guide for imposing a criterion 00..66 0.4 on the Hα flux to reject spaxels below a characteristic covering 0.2 fractionof HII regions. Weexcludeallspaxelsbelow anHαflux 00..88 valueatwhichthecorrespondingCHII is0.8onthebestfitcurve. 110033 110044 110055 Althoughthiscriterionseemsarbitrarilystrict,changingthechar- Ha flux (arbitrary) acteristiccoveringfractiontozerohasonlyaminorimpactonthe metallicitygradients of individual galaxies, and none of our con- clusionschange. Figure4.AnExampleofdeterminingspaxelsheavilycontaminatedbythe ThereasonthatrejectingDIGdominatedspaxelshaslimited diffuseionisedgas.DetailsaredescribedinSection4.2.Theblackpoints effectisthatthecoveringfractioncutdoesnotremovemanyspax- areallstar-formingspaxelswith>3σdetectionsonthe[SII]λλ6716,6731 elsthathavenotalreadybeenrejectedbytheS/Ncutsformetal- andHαlines.Theblueandredsquaresarethosespaxelswith> 3σde- tections onalllines associated withtheO3N2index, i.e.,[OIII]λ5007, licitydiagnosticsandtheBPTcriterion(K03)fornon-thermalex- [NII]λ6583, Hα, and Hβ. The green curve indicates the best fit to the citation.ThestrictestcriteriainrejectingthedataaretheS/Ncuts blackpointsusingequations3and4,whichweadopttodeterminethecrit- ontheweak linessuch asHβ and[NII]λλ6548,6583. Sincethe icalHαfluxabovewhichthecoveringfractionofHIIregionexceeds80%. DIGhasintrinsicallylowsurfacebrightness,withthecurrentdepth Data below the critical Hα flux (red) are excluded from deriving O3N2 inCALIFAandWiFeSsamples,most spaxelssatisfyingmultiple metallicity. S/N > 3 criteriain lineemissions arethose with low DIG cov- eringfractions.WedemonstratethisinFigure4.Theblueandred pointsarethespaxelssatisfyingtheS/N>3criteriaintheO3N2 gas(∼ 10−1 cm−3)permeatingtheinterstellarspaceandextend- diagnosticandthecriterionontheBPT(K03).Theredpointsare thosefurtherrejectedbytheDIGcriterion. ing more than 1 kpc above the disk plane (see Mathis 2000 and WenotethatrejectingdatadominatedbytheDIGisonlyre- Haffneretal.2009forreviews).TheDIGgenerallypresentsmuch quired for spaxel-to-spaxel analysis, i.e. the CALIFA and WiFeS lowerHαsurfacebrightnessthantypicalHIIregionsanddisplays samples. For the S12 galaxies, the fluxes were measured on ex- distinctly different line ratios from HII regions. The primary ex- citationsourcesarethoughttobepredominatelyionisingphotons tractedspectraofHIIregions(i.e.,binningspaxelsinthevicinity ofbrightandcompactHαknots).ForR10,thefluxmeasurements escaping and traveling kilo-parcsec distances from O and B-type stars. Measurements in an IFU spaxel can contain both emission wereperformedbyplacinglong-slitsonHIIregions.DIGcontam- inationisexpectedtobenegligibleinthesetwocases. fromunderlying HII regionsandfromtheDIGalong theline-of- In principle, after the fractional contribution is determined, sight. oneshouldbeabletosubtractthecontributionfromtheDIGand To quantify the fractional contributions from the DIG and HII regions in a given spaxel, we adopt a similar approach as derive the fluxes from underlying HII regions (as in Blancetal. Blancetal. (2009). Spaxels dominated by the DIG are subse- 2009). However, line ratiosinvolving [OII] λλ3726,3729 for the DIGarenotwellconstrainedandcouldproducelargescatter(e.g., quentlyremovedfromouranalyses.Weconstrainthecontribution fromtheDIGwiththeobservedtheobserved[SII]/Hαratio [OII] λλ3726,3729/Hα; Mierkiewiczetal. 2006). Even for the well-measuredratios,suchas[SII]/Hαand[NII]/Hα,considerable [HSαII] = Z′ CHII([HSαII])HII +CDIG([HSαII])DIG , (3) cscoarrtteecrtiinognsanadncdorinredluactieonpobteetnwteiaelns[ySsItIe]m/[aNtiIcI]ecrorourldsc(Momapdlsiecnateettahle. (cid:20) (cid:21) 2006). In this work, we adopt the simplest approach of rejecting where[SII]denotesthetotalfluxof[SII]λ6716and[SII]λ6731. inappropriate data. Comprehensive theoretical modelling and ob- The terms CHII and CDIG represent fractions of emission lines servational constraints of DIG are crucial for extracting more in- originatedfromHIIregionsandtheDIG,respectively.Thesumof formationfromdeeperIFUdata. CHII andCDIG isunity.Z′ denotesmetallicityofthegalaxynor- malisedtothatoftheMilkyWay,i.e.Z′ = Z/Z .Following MW Blancetal.(2009),weadopt the value of ([SII]/Hα)HII as 0.11 4.3 Ionisationparameter and([SII]/Hα)DIG as0.34.Thesevaluesaresupportedbyobser- vationsofHIIregionsandtheDIGinourMilkyWay(Madsenetal. Theionisationparameterisquantifiedastheionisingphoton flux 2006). throughaunitareadividedbythelocalnumberdensityofhydro- Figure4showsatypical[SII]/HαversusHαfluxplotofthe gen atoms. The ionisation parameter can be measured by taking CALIFA galaxy NGC6497. All the data points (spaxels) are sig- the ratio of high ionisation to low ionisation species of the same nificantlydetected(>3σ)in[SII]andHα.SpaxelswithhighHα atom. Using the strong lines available in this study, we measure fluxes have low (high) [SII]/Hα, consistent with the low (high) the ionisation parameter using [OIII] λ5007/[OII] λλ3726,3729 lineratiosofHIIregions(DIG).HIIregionsaregenerallylocated (hereafter, [OIII]/[OII]). A theoretical calibration was first pre- onspiralarmsandDIGisgenerallylocatedininter-armregions. sentedinKD02andamoreuser-friendlyparametrisationisgiven SimilartoBlancetal.(2009),wemodelthecoveringfractions in Kobulnicky&Kewley (2004, hereafter KK04). The latter is Metallicitygradientsin localfieldstar-forminggalaxies 9 deproj. radius [kpc] deproj. radius [kpc] deproj. radius [kpc] 0 5 10 15 0 5 10 15 0 5 10 15 +log(O/H) O3N2 899...505 CALIFA:NGC4210 +log(O/H) N2O2 899...505 log(q) [cm/s] 777788......246802 2 2 7.0 1 8.0 1 8.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 deproj. radius[R ] deproj. radius [R ] deproj. radius [R 25 25 25 deproj. radius [kpc] deproj. radius [kpc] deproj. radius [kpc] 0 5 10 15 0 5 10 15 0 5 10 15 +log(O/H) O3N2 899...505 CALIFA:UGC03253 +log(O/H) N2O2 899...505 log(q) [cm/s] 777788......246802 2 2 7.0 1 8.0 1 8.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 deproj. radius[R ] deproj. radius [R ] deproj. radius [R 25 25 25 Figure5.Leftandmiddlepanels:Metallicity gradientsofindividual CALIFAgalaxies measuredusingthetwodifferentabundancediagnostics (seeSec- tion4.1).Thestraightlinesindicatethebestfits,andthedashedlinesindicate±1σerrors.Theerrorsoftheintercepts andtheslopesareestimatedfrom bootstrapping(seeSection4.4).Rightpanels:ionisationparameterasafunctionofradius.Theionisationparametersarederivedusingthe[OIII]/[OII]diag- nostic(KK04;seeSection4.3).EachpointintheseplotscorrespondstooneIFUspaxelwithsignificant(>3σ)detectionsonalltheemissionlinesassociated withthediagnostics.Spaxelscontaminatedbynon-thermalexcitationordominatedbyDIGemissionarerejected(seeSection4.2).Theverticaldashedlines correspondtotheradialcutoffwithinwhichthedataarenotconsideredinconstrainingthediskmetallicitygradients. deproj. radius [kpc] deproj. radius [kpc] deproj. radius [kpc] 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 +log(O/H) O3N2 899...505 S12:NGC3184 +log(O/H) N2O2 899...505 log(q) [cm/s] 777788......246802 2 2 7.0 1 8.0 1 8.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 deproj. radius[R ] deproj. radius [R ] deproj. radius [R 25 25 25 deproj. radius [kpc] deproj. radius [kpc] deproj. radius [kpc] 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 +log(O/H) O3N2 899...505 S12:UGC06410 +log(O/H) N2O2 899...505 log(q) [cm/s] 777788......246802 2 2 7.0 1 8.0 1 8.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 deproj. radius[R ] deproj. radius [R ] deproj. radius [R 25 25 25 Figure6.SameasFigure5,butfortheS12galaxies.EachpointcorrespondstooneHIIregionextracted fromtheIFUdata(seeSection2.3andS12for details). adoptedinthispaper.AsemphasisedinKD02,inadditiontoion- bustandmoresensitivetoboththeSSPmodelsandthealgorithms isationparameter,the[OIII]/[OII]ratioalsostrongly depends on adopted (e.g.,CidFernandesetal.2014, and referencestherein). metallicitythatneedstobeknownapriori.Weadoptthemetallic- TheWiFeSgalaxiesdonotsufferfromthiscontaminationbecause ityfromtheN2O2calibrationtoderivetheionisationparameterfor theselow-masssystemsaretypicallyemissiondominatedevenat eachspectrum. thecentres.TheS12andR10galaxiesalsodonotsufferfromthis artefactbecause theemissionlinesaredirectlymeasuredtowards HIIregions. 4.4 Measuringmetallicitygradients To derive metallicity gradients, we first convert the flux ratios to To estimate the errors in the metallicity gradients, we metallicities.Forbulge-dominated galaxiesorthosewithobvious adopt a bootstrapping approach similar to Kewleyetal. (2010), barstructuresintheCALIFAsample,wedonotincludedatawithin Rupkeetal. (2010b) and Richetal. (2012). We randomly draw (0.1–0.2)×R25.Atthecentresofthesegenerallyhigh-masssys- fromthemeasurementsthesamenumberofdatapointsbutwithre- tems, the optical spectrum isdominated by the stellar continuum placement,andperformanunweightedleast-squareslinearfitwith withstrongBalmerabsorptionoriginatingfromanoldstellarpopu- thedrawndata.Ineachgalaxy,thisprocessisrepeated1,000times lation.CorrectingforBalmerabsorptionsintheseregionsislessro- andeachfitresultisrecorded.Themedianandstandarddeviation 10 Ho etal. oftheslopesandinterceptsareconsideredasthebestestimatesof 5.2 Theeffectofionisationparameter themetallicitygradient. IntheleftpanelofFigure8,wecomparethemetallicitiesderived usingtheO3N2andN2O2calibrations.Eachpointrepresentsone measurement,i.e.,onespaxelfromtheCALIFAgalaxiesoroneHII regionfromtheS12galaxies.Wecolour-codethepointsbylog(q) derived usingthe [OIII]/[OII](KK04) calibration. Theleftpanel of Figure8clearly demonstrates that superficially thetwometal- 5 RESULT licitiesagreereasonablywell;57%/83%ofthemetallicitiesagree within±0.05/0.1dex.Similarcomparisonswerealsocarriedout 5.1 Metallicitygradientsofindividualgalaxies byRupkeetal.(2010b)wherecomparablescatteringalsoexists. InFigure5andFigure6,wepresent4metallicitygradientsmea- In the left panel of Figure 8, the scattering around the one- suredintwoCALIFAandtwoS12galaxies,respectively.Thetwo to-one line is not random, but correlates with ionisation param- differentmetallicitesareshowninthefirsttwopanels,andthelast eter. Spaxels or slits with high ionisation parameter have higher panelsshowradialprofilesoftheionisationparameter.Inthefirst N2O2 metallicitiesthan O3N2 metallicities.Those withlow ion- twopanels,straightlinesindicatethebestfitsofthegradients,and isationparameterhavelowerN2O2metallicitythanO3N2metal- dashed lines indicate 1σ errors as propagated using analytic ex- licities.IntherightpanelofFigure8,weshowthedifferencebe- pressions with bootstrapped errors. The rest of the CALIFA and tween metallicities derived with the O3N2 and N2O2 ratios ver- S12galaxiesarepresentedinFiguresA1andA2inAppendixA. sus ionisation parameter. The differences between the two diag- The metallicity gradients and the radial profiles of the ioni- nostics can be up to 0.2 – 0.4 dex at extreme values of ionisa- sation parameter of our 10 WiFeS galaxies are also presented in tion parameter (log(q) < 7.0 cm s−1 or log(q) > 8.2 cm s−1 FigureA3.ThemetallicityofthemajorityofWiFeSgalaxieshave ).Atlog(q) & (.)7.3cms−1,theO3N2diagnosticgiveshigher metallicities12+log(O/H)<8.4(inKD02scale),wherethecon- (lower) metallicity than the N2O2 diagnostic. Clearly, ionisation versionfromO3N2toN2O2isdifficulttodetermine,andtherefore parameteristhecauseofthediscrepancy. Asweemphasisedear- weareonlyabletoderivetheirN2O2metallicitygradients.These lier,O3N2iscalibratedempiricallywithouttakenintoaccountthe galaxiesareexcludedfromtherestofthecomparisonsbetweentwo changeofionisationparameter.AtheoreticalcalibrationofO3N2 metallicitycalibrations,butweincludethemlaterwhilecomparing will be presented in Kewley et al. (in preparation) and will rec- metallicitygradientsofdifferentgalaxies(Section5.4). oncile this discrepancy withnew stellar population synthesis and In Figure 7, we compare metallicity gradients derived photoionisationmodels. from O3N2 and from N2O2 for the CALIFA and S12 galax- ies. All the galaxies exhibit negative metallicity gradients in both calibrations, and 33%/73% of the galaxies agrees within 5.3 Discrepanciesamongmetallicitygradients ±0.05/±0.14 dex R−1. These values can be considered as the 25 We now return to discuss the cause of the discrepancies in the levelofresidualsystematicsinthemetallicitycalibrations.Notice- metallicitygradientsshowninFigure7. ablythereareseveraloutlierswellbelowtheone-to-onelinewhich Figure 5 (and Figure 6) show metallicity gradients for two welabelinFigure7.Theseobjectscouldprovideinsightintothe CALIFA(twoS12galaxies)thatarelabeledasoutliersinFigure7. cause of the disagreement between the two calibrations. We fur- ThesegalaxieshavesteeperO3N2thanN2O2metallicitygradients therinvestigatethecauseofthisdiscrepancyinthefollowingtwo because,atlargeradii,O3N2metallicitiesaresystematicallylower subsections. thanN2O2metallicities.AsshowninFigure8,lowerO3N2than N2O2 metallicities naturally arises when log(q) & 7.3 cm s−1. IndeedinthethirdpanelsofFigure5andFigure6,thesegalaxies 0.2 typically have log(q) & 7.3 cm s−1 at large radii. These galax- −1 R]25 0.0 ies all show indications of smooth rising of ionisation parameter x fromtheircentrestooutskirts,implyingacontinuousradialchange e d oftheirpropertiesoftheionisingradiation.Thehigherionisation nt [ −0.2 parameterscouldbecausedbythemoreactivestarformationac- e adi tivitieswithdifferent distributionsof molecular gas (Dopitaetal. y gr −0.4 UGC06410 2014). cit Inextremecases,thedifferencesinmetallicitygradientmea- etalli −0.6 NGC3184 sured with N2O2 and O3N2 can be up to a ∼ 0.4 dex R2−51 2 m UGC03253 +/− 0x.0=5y (e.g., NGC3184 in Figure 6). Similar findings are also reported N −0.8 +/− 0.14 in Rupkeetal. (2010b). These results have important implica- 3 CALIFA O S12 tions for metallicity gradient studies at high redshift, where typ- −1.0 NGC4210 ically only [NII] λλ6548,6583 and Hα are available (in some −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 N2O2 metallicity gradient [dex R−1 ] cases also [OIII] λλ4959,5007 and Hβ, e.g., Crescietal. 2010; 25 Yuanetal. 2011; Jonesetal. 2010, 2013; Queyreletal. 2012; Swinbanketal. 2012). While all the diagnostics using these four Figure7.Left:Comparisonbetweenthemetallicitygradients(dexR−251) lines,i.e.[NII]λ6583/HαandO3N2,aresensitivetothechangeof derivedusingtheO3N2andtheN2O2diagnostics (seeSection4.1).The ionisationparameter,quantitativeinterpretationofmetallicitygra- metallicitygradientsofthemajorityofthegalaxies(33%/73%)agreewithin ±0.05/±0.14dexR−1.Themetallicitygradientsofthefouroutliersla- dients should bear in mind the potential impact of ionisation pa- 25 rametergradientsingalaxies. beledareshowninFigure5andFigure6. ForgalaxiesnotlabeledinFigure7,wedonotfindobvious

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.