Metallic Adhesion and Tunneling at the Atomic Scale André Sêhirrneisen Center for the Physics of Materials Department of Physics, McGill University Montréal, Canada June 1999 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy @ André Schinneisen, 1999 l*l National Library Bibliothèque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KlA ON4 Ottawa ON KIA ON4 Canada Canada Your fi& Votre référence Our lye Notre rëfdrence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfom, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation, Abstract The metallic adhesion and tueLing properties of an atomicaliy defined junction were measured and analyzed. The junction consisted of a tip opposing a flat surface in the scanning probe microscopy (SPM) con£îguration. Measurements were performed in ultrahigh vacuum (UHV) at 150 K. Sub-nN force resolution was achieved on a stiff cantilever beam employing an in-situ differential int erferometer. Tips were pre- pared from W and Ir wire and imaged with atomic resolution in-situ using field ion microscopy (FIM). Ultrasharp tips Nith an apex radius of 20-30 A were fabricated from single crystal W(111) wire and engineered with FIM to terminate in only three atoms. Calculations indicate that for those tips metallic adhesion forces dominate over van der Waals and capacitive electrostatic forces. The sample was a thin (111) oriented Au film. Metallic adhesion forces and the tunneling curent were measured simultaneously for the W-Au system as a function of tip sample separation. In con- trat to theoretical simulations the system featured exceptional mechanical stabiliv with adhesive forces of up to 5 nN. In particular no indications of a sudden jumpto- contact, which is cornmonly believed to be an inherent property of metallic contacts, were found. Furtherrnore, the range over which the metallic adhesion forces act is four times larger than expected. Experiments with sharp but not atomicdy dehed W tips corroborate those results. The observed long interaction range is discussed in the framework of various models. Some of the consequences of this new property for force microscopy applications are pointed out. Résumé L'adhésion métallic et les proprietés de l'effet tunnel d'une jonction charcterisée a l'échelle atomique on été mesurées et analysées. La jonction, configurée comme un microscope de sonde a balayage (SPM), consiste d'une pointe opposée à une sur- face plane. Les expériences ont été conduites sous la ultra-vide (UW) à 150 K. L'utilisation d'un interfrometre differentiel in-situ, pour mesuré les forces sur un can- tilevier rigide, a permis d'atteindre une résolution superieure au nN. Les pointes furent préparées à partir de fils de W et Ir, puis mise en image in situ à l'échelle atomique à l'aide d'un microscope a champs ionique. A partir d'un crystal W(111), des pointes ultrapointues ont été fabriquées avec un raycn au sommet de 20-30 A- Elles ont ensuite été taillées à l'aide d'un microscope à champs ionque, ne laissant que 3 atomes à leur pointes. D'après les calculs effectués sur ces pointes, les forces d'adhésion métallique dominent comparativement aux forces de van der Waals et aux forces électrostatique. L'échantillon utilisé etait une fine couche Au(ll1). Les forces d'adhésion métallique et le courant tunnel, pour le système W-Au, ont été mesurés simultanément en fonction de la séparation entre l'échantillon et la pointe. A la différence des simulations théoriques, le système a demontré une stabilité méchanique exceptionnelle pour une force d'adhésion ne dépassant pas 5 nN. En particulier, au- cune indication d'un soudain 'saut-au-contact', qui est généralement regardé comme une propriété inherente des contacts métalliques, n'a été observé. De plus, la distance sur laquelle la force d'adhésion métallique agit est quatre fois plus grande que prévue. Des expériences faites avec des pointes de W pointues mais non définies à l'échelle atomique, confirment ces résultats. Une discussion de cette longue interaction est présentée en pmallèle à de nombreux modéles. Quelques conséquences de cette nou- velle propriété concernant les applications en microscopie de force sont ainsi mises en evidence. Acknowledgements First of al1 1 would like to th& my supervisor Peter Grutter for continuous support and fnendship throughout rny entire work in his research group. He possesses the unique ability to motivate, excite and guide his students in their research, which makes it so very enjoyable to work in his group. Much advise and help was also povided by Urs Dürig. Graham Cross has contributed to the success of this thesis in countless mays, as a good friend and research partner at the same the. His enthusiasrn and good humor have made our team work a mernorable experience. Thanks go to Phil LeBlanc for evaporating films on the cantilevers and Vincent Tabard-Cossa for help with the scans and the translation. 1 am also grateful to the rest of the research group, where everybody contributed to the pleasant working atmosphere. Furthemore, 1w ant to use this opportunity to thank my friends in Montréal who have made this stay such a unique experience. In particular there are Pietro 'PouPou7 Pucella, Tiago 'Diablo' deJesus, Florence, May, Narly, the 'new' Wai and al1 the rest of the gang. Many thanks go to Camille, the flying Dutchman. Special mentions go to Sarah, Copacabana and the staff at QStix. 1a m grateful to Danny for all the love she has given to me. Financial support from the Hydro Québec McGill Major scholarship is gratefully acknowledged. I am indebted to my family for their ever present help. Only the continuous support of my parents in many ways have made my stay in Canada and this work in particular possible. Contents Abstract Résumé Acknowledgments iii List of Figures 1 Introduction 2 Experimental Set-up 3 3 The Probe 8 3.1 Probe Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . 3.2 Macroscopic Tip Shape: Electrochemical Etching 10 3.3 Treatment in U W . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Annealing 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Field Emission 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Self Sputtering 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4 Oxygen Etchhg 22 3.4 Atomic Scale Engineering: Field Ion Microscopy . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Working Principle 23 . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Image Interpret ation 32 . . . . . . . . . . . . . . . . . . . . 3.4.3 Electric Field of Nanotips 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Experimental Issues 40 3.5.1 Tip Cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2 Gold on Tungsten: FM . . . . . * . . . . . . . . . . . . . . . 41 3.5.3 Field Emission Stability . . . . . . . . . . . . . . . . . . . . . 44 3.5.4 Background Forces . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 The Sample 52 4.1 Preparation of Au Sample . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Surface Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Cleaning Procedure . . . . . . . . . . . . . . . . . . . . . . . . 53 . 4.2.2 Force versus Tunneling . . . . . . . . . . . . . . . . . . . . . . 54 5 Adhesion Experiments 59 5.1 Theoretical Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.1 Metallic Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.2 Mechanical Relaxation Effects . . . . . . . . . . . . . . . . . . 65 5.2 First Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4 Preliminary Studies: UndeGned Tip . . . . . . . . . . . . . . . . . . . 70 5.5 WonAuexperiments . . . . . . . . . . . . . . . . .. . . . . . . . . 81 5.5.1 Part A : Structural Stability . . . . . . . . . . . . . . . . . . . 81 5.5.2 Part B : Scaling Length and Tunneling . . . . . . . . . . . . . 87 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Conclusion and Outlook 104 List of Figures 2.1 Schematic representation for the experimental set-up. The combined FIM/AFM/STM is housed in a UHV chamber with p=2xl0-"mbar and cooled at 150 K. The sample stage can be quickly moved to switch between FIM and AFM/STM mode using piezoelectric motors. . - - . 6 3.1 Experimental set-up for electrochemical etching. The W tip is dipped into20%KOHsolution. ThecathodeismadeofWwireaswell. . . . Il 3.2 The drop-off method while etching W wire in KOH solution. Etching products collect at the end of the wire giving rise to preferential etching at the liquid air interface: necking occurs. The top graph shows the current during the process, indicating the sudden change in current, when the drop-off occurs. . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Etched W tip as viewed through optical microscope. Left lOOx and right 500x magnification (using polarized light to enhance contrast) . 13 3.4 Set-up for etching iridium tips. The hole in the center of the shallow bath, with the tip placed in it, forces the neck formation. The liquid container is made of stainless steel and acts as the counter-electrode at the same time. The voltage is applied in form of pulses (see text). 14 3.5 Etched iridium tip as viewed through optical microscope. Left 100 x and right 1000x magnification. . . . . . . . . . . . . . . . . . . . . . 15 3.6 TEM micrograph of an e~ectrochemicallye tched W tip. A thick amor- phous oxide layer covers the tip apex(image courtesy of A. Zaluska). . 16 Potential diagram governing field emission. With no field applied, the workfunction determines the energy an electron at the Fermi edge needs to escape fiom the material. The applied field, though, lowers the potential. At a critical distance, the energy needed for the elec- tron to leave the metal becomes zero and it can tunnel through the effective potential barrier. The image potential is a correction due to the induced charge in the metal caused by the electron. . . . . . . . . The Fowler-Nordheim plot as measured for a polycrystalline W tip. The slope of 7760 V gives k R = 11952.1 , from which one can calculate the tip radius (knowing the field reduction factor k). . . . . . . . . . . FIM images of a W tip. Graph a) shows a typical (111) orïented W tip imaged at 5.0 kV. Subsequently the tip was treated with field emission, extracting currents of 5pA for 1 min. Graph b) shows the tip apex right after, imaging at 4.5 kV, indicating rearrangement of the atoms. In c) and d) the original apex is recovered. . . . . . . . . . . . . . . . Field ion microscopy images of a (111) oriented W tip treated with oxygen etching. Image a) shows the tip before, and image b) after the treatment. The larger FIM mapification in b) indicates an overall sharpening of the apex. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 The imaging process in field ion microscopy. The image gas is attracted towards the tip, ionized and then repelled along the field lines. A screen 5-10 cm away from the tip visuahes the He atoms. . . . . . . . . . . 3.12 Potential diagram for the electron of an image gas atom close to a metal surface at high fields typical for FIM. Only at a critical distance the electron can tunnel fiom the atomic level of the image gas into the metal surface, into an empty level just above the Fermi energy. If the atom is too close, the atomic Ievel is actually beiow the Fermi energy, and there is no fiee state for the tunneling electron. If the atom is too far kom the surface, the tunneling probability is negligibly small. . . vii 3.13 FIA4 image of a polycrystRlline W tip indicating the different crystal- lographic planes. Imaging was done with He at 5.6 kV and 140 K. . . 3.14 FIM images of a (111) oriented W tip taken at room temperature using He at 5.1 kV. In between each image the voltage was increased to 6.0 kV for the field evaporation of single atoms. . . . . . . . . . . . 3-15 Potential diagram for the process of field evaporation. As described in the text, the ionic (field evaporated) state is at higher potential than the atomic state, unless a strong external field is applied. Then, at a certain distance x,;t;,r, the ionic state has a Lotver potential energy and field evaporation can occur. . . . . . . . . . . . . . . . . . . . . . 3.16 W(111) tip imaged at different voltages, demonstrating atomic resolu- tion FIM at 2 kV,w here the regular image forms only at 4 kV. . . . . 3.17 W(111) tip terminating in one single atom. FIM image taken with He at 2.3 kV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 FIM image (left) of a (110) oriented W tip and the corresponding projection map (right), indicating the different crystallographic poles (from reference [30]). The grey circle in the map outlines the area imaged in the FIM graph. . . . . . . . . . . . . . . . . . . . . . . . . 3.19 FIM image of a polycrystalline W tip (left) and the reduced facet projection map (right) of a (110) oriented bcc crystal. The grey circle shows the area seen in the FIM image. . . . . . . . . . . . . . . . . . 3.20 FIM image of W(111) tip (left) and the reduced facet projection map (right) of a (111) orïented bcc crystal. . . . . . . . . . . . . . . . . . . 3.21 FIM image of polycrystalline Ir tip (left) and the reduced facet projec- tion map (right) of a 100 oriented fcc crystai. The grey circle outlines the area image in the FIM graph. . . . . . . . . . . . . . . . . . . . . V ..mlll
Description: