ebook img

Metal Fatigue PDF

263 Pages·1974·11.3 MB·263\263
by  FrostN.E.MarshK.J.PookL.P.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metal Fatigue

METAL FATIGUE N. E. Frost K.1. Marsh and L. ~ Pook DOVER PUBLICATIONS, INC. Mineola, New York Copyright Copyright© 1974byOxford UniversityPress New Preface to the Dover Edition copyright © 1999by N. E. Frost, K.1.Marsh, and L. P.Pook Allrights reserved. BibliographicalNote This Dover edition, first published in 1999,isan unabridged republi cation of the work originally published in the "Oxford Engineering ScienceSeries"byClarendonPress,Oxford,in1974.AnewPrefacetothe DoverEdition hasbeenspeciallyprepared forthepresentedition. Offset fromtheOxfordUniversityPresseditionofMetalFatiguebyN.E.Frost, K.1.Marsh and L. P.Pook. LibraryofCongressCataloging-in-Publication Data Frost, N.E.(NormanEdward), 1923- Metal fatigueIN.E. Frost, K.1.Marsh, and L.P.Pook. p.em. Originally published: Oxford, Eng. : Clarendon Press, c1974, in series:Oxfordengineeringscienceseries. Includesbibliographical referencesand index. ISBN0-486-40927-9(pbk.) 1. Metals-Fatigue. I. Marsh, K. 1. (Kenneth James), 1935 II. Pook,L. P.(LesliePhilip), 1935-III. Title. TA460.F76 1999 620.1'66-dc2I 99-048936 ManufacturedintheUnited Statesby CourierCorporation 40927902 www.doverpublications.com Preface to the Dover Edition Thisbook, published 25yearsago,signalledsomethingof aturningpoint in the literature ofmetal fatigue. Not only does it include a comprehen sivecollection of fatigue data published up to the early 1970s,but it was also thefirstmonograph to stressthe importanceof fatiguecrack propa gation in the interpretation of the fatigue phenomenon. This approach wascarried out within the then novel(but nowubiquitous)framework of linearelasticfracture mechanics.Similarly,itwasthefirstbookonfatigue to bewritten inSIunits.Thefatiguetestingof componentsand structures under realistic variable-amplitude simulations of service loading condi tions, using the then recentlyavailableservo-hydraulic testing equipment is described. This is a field in which considerable advances have been made,particularlythewidespreadstandardizationof testand designtech niques, and the advent of undreamt-of computing power. However, despite the technological advances made in the past 25 years the basic concepts of metal fatiguepresented inthe book arestillsound. January 1999 Cambridge N.E.F. Carlisle K. 1.M. Sevenoaks L. P. P. Contents 1. INTRODUCTION 1 References 5 2. CRACK INITIATION 6 2.1. Introduction 6 2.2. Surfaceexamination 7 2.3. Changesinbulkproperties 17 2.3.1. Hysteresisloopand dampingmeasurements 17 2.3.2. Changesinmechanicalproperties,stiffness, hardness,etc. 18 2.3.3. Changesinphysicalproperties 20 2.3.4. Strain-ageing effects: coaxing, rest-periods, intermittent heat-treatments 20 2.3.5. Diffusionand surfaceemissionstudies 23 2.3.6. X-raydiffractionstudies 24 2.4. Discussionofsurfacecrackinitiation 25 References 35 3. FATIGUESTRENGTH OF PLAIN SPECIMENS 40 3.1. Introduction 40 3.2. Thefatiguelimit,orfatiguestrengthat longendurances 40 3.3. Effectofsurfacefinish 48 3.3.1. Method ofmachining 49 3.3.2. Effectofelectropolishing 50 3.3.3. Effectofstress-relieving 51 3.3.4. Effectofforgedsurfaces 52 3.3.5. Discussion 52 3.4. Differenttestingmethodsand sizeeffects 54 3.4.1 Discussion 61 3.5. Effectofa meanstress 65 3.5.1. Discussion 74 3.6. Effectofcombinedstressesand anisotropy 75 3.6.1. Discussion 85 3.7. Effectof frequencyofstressapplication 87 viii Contents 3.8. Effectof temperature 90 3.8.1. Low-temperature fatigue 91 3.8.2. Elevated-temperaturefatigue 92 3.8.3. Thermalfatigue 101 3.8.4. Discussion 103 3.9. Effectofenvironment 105 3.9.1. Mechanismofcorrosion fatigue 107 3.9.2. Fatiguestrength inwaterand brine 109 3.9.3. Effectofhumidity 112 3.9.4. Protectivemeasures 113 3.9.5. Exclusionof theatmosphere 115 3.9.6. Discussion 119 References 122 4. EFFECT OF STRESS CONCENTRATIONS AND CRACKS ON FATIGUE STRENGTH 130 4.1. Introduction 130 4.2. Elasticstressdistribution around a notch 133 4.3. Behaviourofnotched laboratoryspecimensat zeromeanload 136 4.3.1. Experimentaldata 136 4.3.2. Kt-K relationships 143 t 4.4. Non-propagatingcracks in notchedspecimens 149 4.5. Theminimumalternatingstressrequired to propagate a crackofa givenlengthor depth at zeromeanstress 157 4.5.1. Testson specimenscontaining artificialcracks 157 4.5.2. Testsonplain specimenscontaining fatiguecracks 157 4.5.3. Testsonspecimenscontaining fatiguecracksgrownat notches 159 4.5.4. Tests to determine the relationship between crack length and the stress necessaryfor crack growth 160 4.6. Interpretation ofzero mean load notched fatigue data 166 4.6.1. Wrought materials 166 4.6.2. Castmaterials 173 4.7. Effectofa meanload 175 4.7.1. Notched specimens 175 4.7.2. Crackedspecimens 180 4.8. Effectofcombinedstresses 184 4.9. Effectoftemperature 187 4.10. Effectofenvironment 188 4.11. Additional implicationsofa macrocrack length-cyclicpropagation stressrelationship 195 Contents ix Fleferences 198 5. THE GFlOWTH OF FATIGUE CFlACKS 202 5.1. Introduction 203 5.2. Linearelasticfracture mechanics 205 5.2.1. Modesofcrackgrowth 205 5.2.2. Stressintensityfactor 206 5.2.3. Crack direction 210 5.2.4. Effectofyielding 210 5.2.5. Applicationto fatiguecrackgrowth 211 5.3. Fractographicaspectsofcrackgrowth 213 5.3.1. Macroscopicappearance 213 5.3.2. Crack direction 213 5.3.3. Microscopicappearance 216 5.4. Metalphysicsaspectsofcrackgrowth 220 5.5. Determinationoffatiguecrackgrowth rates 222 5.6. Somefatiguecrackgrowth theories 228 5.6.1. Head's theory 228 5.6.2. Thegeometricalsimilarityhypothesis 229 5.6.3. Net area stresstheories 231 5.6.4. Accumulatedstrain hypothesis 233 5.6.5. Dislocation theories 234 5.6.6. Energytheories 235 5.6.7. Frostand Dixon's theory 235 5.6.8. Afracture-mechanicscrackgrowth theory 238 5.6.9. Correlation withexperiment 239 5.7. Fatiguecrack growthdata for various materials 245 5.8. Thresholdeffectsinfatiguecrackgrowth 260 5.9. Other factors affectingcrackgrowth 263 5.9.1. Effectofthickness 263 5.9.2. Effectoftestfrequency 264 5.9.3. Effectofloadchanges 265 5.9.4. Effectofenvironment 266 5.9.5. Effectofstressstate 269 5.9.6. Methods ofincreasingresistanceto fatiguecrack growth 272 5.10. Fatiguecracksinstructures 275 5.10.1. Residualstaticstrength ofcrackedstructures 275 5.10.2. Estimation ofservicelife 283 References 285 x Contents 6. NOTES ON VARIOUS OTHER ASPECTS OF FATIGUE 293 6.1. Low-endurancefatigue 293 6.1.1. Introduction 293 6.1.2. Total strain amplitude tests 295 6.1.3. Plasticstrain amplitude tests 297 6.1.4. Mode offracture and the effectof meanstrain 300 6.1.5. Notched specimens 302 6.1.6. Discussion 304 6.2. Fatigue under varyingstressamplitudes 307 6.2.1. Introduction 307 6.2.2. ThePalmgren-Minerruleand earlyexperimentalwork 308 6.2.3. Other prediction methods 311 6.2.4. Programme loadingto simulateserviceconditions 318 6.2.5. Random loading 321 6.2.6. Servo-hydraulictestingmethods 325 6.2.7. Structural fatiguetestson vehicles 327 6.2.8. Acceleratedtesting 328 6.2.9. Discussion 329 6.3. Effectofmechanicalworking 330 6.3.1. Introduction 330 6.3.2. Effectofwork-hardening 331 6.3.3. Effectofresidualstresses 332 6.3.4. Discussion 337 6.4. Surfacetreatments 340 6.4.1. Metalplatings 340 6.4.2. Anodizing 346 6.4.3. Metallurgicalsurface-hardeningtechniques 347 6.4.4. Softlayers 352 6.5. Pressurizedcylinders 353 6.6. Fretting 364 6.7. Pin, riveted,and boltedjoints 370 6.7.1. Pinjoints 370 6.7.2. Rivetedand boltedjoints 375 6.8. Weldedjoints 379 6.8.1. Introduction 379 6.8.2. Butt weldsinstructuralsteels 379 6.8.3. Filletweldsinstructuralsteels 385 6.8.4. Butt weldsinlightalloys 390 Contents xi 6.8.5. Methods ofimprovingfatiguestrength 391 6.8.6. Spot welds 392 6.8.7. Glued, brazed,and pressure-weldedjoints 395 6.9. Shrink-fitassemblies 397 6.10. Screwedconnections 401 6.11. Rollingcontact 408 6.12. Methodsofrapidlyestimatingthefatiguelimitofamaterial 410 6.13. Statisticalanalysisoffatigue testresults 417 6.13.1.Introduction 417 6.13.2. Applications to SINcurves 418 6.13.3. Combined distributions 422 6.13.4. Testmethods basedon statisticaltheory 424 6.14. Fabricatedmaterials 427 6.15. Components and structures 429 References 436 APPENDIX 1. TERMS USED INDEFINING THE STRESS-STRAIN RELATIONSHIPS OF A MATERIAL 455 References 457 APPENDIX2 REPEATED LOADING AND FRACTURE 458 References 459 APPENDIX3. COMPARISON OF APPEARANCES OF BROKEN TENSILE AND FATIGUE SPECIMENS 460 APPENDIX 4. ELEMENTARY CONCEPTS OF PLASTIC DEFOR- MATION IN DUCTILE METALS 461 References 463 APPENDIX 5. FATIGUE TESTING MACHINES 464 A5.I. Conventional direct-stressmachines 465 AS.2. Servo-hydraulicmachines 466 A5.3. Other machines 466 ~re~ces 4~ APPENDIX 6. TEST SPECIMENS AND METHODS FOR DETER- MINATION OF PLAIN FATIGUE PROPERTIES 469 A6.1. Specimens 469 A6.2. Testingand presentation ofresults 471 References 475 xii Contents APPENDIX 7. STRESS CONCENTRATION FACTORS FOR VAR- IOUS CONFIGURATIONS 476 References 480 AUTHOR INDEX 481 SUBJECT INDEX 493 ILLUSTRATIONS Thefollowinglistoffiguresappearasseparateplate sections. FIG. 2.1. FIG. 5.4. FIG. 6.44. 2.2. 5.5. A3.I. 2.3. 5.6. A3.2. 2.4. 5.7. A5.I. 2.5. between 5.8. between A5.2. between 2.6. pp. 12-13 5.10. pp. 212-13 A5.3. pp. 460-1 2.7. 5.11. A5.4. 4.10. 5.12. A5.5. 4.11. 6.14. A5.6. 4.19. 6.18. 4.23. 6.23. [J] I Introduction MATERIALS, whether they be metallic or non-metallic, are of nopractical usetomankinduntiltheyareturnedinto workingcomponentsor structures. One link in the process chain by which this happens is called engineering design. A major problem facingthe designeristhe selectionofthe right materials fromwhichtomanufactureaparticulardesignofcomponentorstructure;the material properties mustensure that itcarries out the dutiesfor whichitwas designedwithoutbreakingwithinaguaranteedlifeandyetenableittobesold atapricewhichthecustomerispreparedtopay.Toenablehimto do this, the designer needs to know the loads to which his componentor structurewill be subjected in service,the environmentin which it willwork, the working life expected, and what it will cost to make. This information now sets boundaries on the range of materials from which to select those to use for hisspecificdesign.To finalizethechoiceofmaterials, heneedsto knowhow they behave under various loadings in various environments (that is, the material properties), and then, knowingtheseproperties, he must beable to correlate them with the load-carrying capacity of his proposed component orstructure. Thesubjectsofstressanalysisand fracture mechanicshavebeen developedexclusivelyfor this purpose. However, a number of indeterminate factors arise: the loading to be ex perienced by the component or structure in service is often known only imprecisely, manufacturing and fabrication techniques may induce residual stresseswhosemagnitudesare unknownat thedesignstage, the actualgeom etryinsomelocalregionmaydeviatefrom thatstipulatedon the drawing so thatthe originalstressanalysismaybeinerror, or the properties ofthe ma terial used in manufacture may be different from those assumed by the designer.Thus, experiencein bothchoiceofmaterial andallowable working stresses for any common grouping of various types of components and structuresisall-importantin achievinga successfulend-product. Traditional design was based on the concept of a factor of safety (to supposedly cover all unknown and imprecisely known factors), the tensile strength of the material, and a nominal stress analysis procedure. This, of course, was the only approach possible when little was known ofmaterial properties, fracture mechanisms, detailed stress analysis, and serviceload ings. The factor of safety used wasgenerally a matter of personal intuition

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.