HindawiPublishingCorporation BioinorganicChemistryandApplications Volume2006,ArticleID83131,Pages1–13 DOI10.1155/BCA/2006/83131 Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds ZahidH.Chohan,1M.Arif,1MuhammadA.Akhtar,1andClaudiuT.Supuran2 1DepartmentofChemistry,BahauddinZakariyaUniversity,Multan60800,Pakistan 2LaboratoriodiChimicaBioinorganica,DipartimentodiChimica,PoloScientificoeTecnologico, Universita`degliStudidiFirenze,Rm188,ViadellaLastruccia3,50019SestoFiorentino,Florence,Italy Received2July2006;Revised12October2006;Accepted13October2006 Aseriesofantibacterialandantifungalaminoacid-derivedcompoundsandtheircobalt(II),copper(II),nickel(II),andzinc(II) metalcomplexeshavebeensynthesizedandcharacterizedbytheirelementalanalyses,molarconductances,magneticmoments, andIR,andelectronicspectralmeasurements.Ligands(L )–(L )werederivedbycondensationofβ-diketoneswithglycine,pheny- 1 5 lalanine,valine,andhistidineandactasbidentatetowardsmetalions(cobalt,copper,nickel,andzinc)viatheazomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized lig- ands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H O) ]Cl (where M = 2 4 Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L) (H O) ] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The 2 2 2 magneticmomentdatasuggestedforthecomplexestohaveanoctahedralgeometryaroundthecentralmetalatom.Theelec- tronicspectraldataalsosupportedthesameoctahedralgeometryofthecomplexes.ElementalanalysesandNMRspectraldata of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II)complexes,werescreenedfortheirinvitroantibacterialactivityagainstfourGram-negative(Escherichiacoli,Shigella flexeneri,Pseudomonasaeruginosa,andSalmonellatyphi)andtwoGram-positive(BacillussubtilisandStaphylococcusaureus)bac- terialstrainsandforinvitroantifungalactivityagainstTrichophytonlongifusus,Candidaalbicans,Aspergillusflavus,Microsporum canis,Fusariumsolani,andCandidaglaberata.Theresultsofthesestudiesshowthemetal(II)complexestobemoreantibacte- rial/antifungalagainstoneormorespeciesascomparedtotheuncomplexedligands.Thebrineshrimpbioassaywasalsocarried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed potent cytotoxic ac- tivityasLD = 8.974×10−4,7.022×10−4,8.839×10−4,7.133×10−4,and9.725×10−4M/mL,respectively, againstArtemia 50 salina. Copyright©2006ZahidH.Chohanetal. This is an open access article distributed under the Creative Commons Attribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. INTRODUCTION ity. Various tumors tend to have poor blood supplies, and thereforeaminoacidshavebeeneffectivelyusedtodirectni- We have already drawn attention [1–5] to the strong rela- trogen mustards into the cancer cells. For example, pheny- tionship between metals or their complexes, and antibac- lalanine mustard is used in controlling malignant myeloma terial [6–12], antitumour [13–15], and anticancer [16, 17] [29]andBurkett’slymphoma[30],andsimilarlysarcolysine activities. A number of in vivo studies have indicated [18– [31] is used to treat wide range of tumors. Indeed, certain 20]thatbiologicallyactivecompoundsbecomemorebacte- tumorsandcancercellsareunabletoproducealltheamino riostatic and carcinostatic upon chelation. Such interaction acids synthesized by the normal cells. Therefore, these cells of transition-metal ions with amino acids and peptides is require an external supply of such essential amino acids to of immense biological importance [21–23]. It has been re- passontothecancercellsbythebloodstream.Intherecent ported [24–28] that metal complexes of amino acid Schiff past,anumberofstudieshavehighlightedtheuseofacety- bases with transition metals possess anticarcinogenic activ- lacetone in various significant applications [32–37]. In the 2 BioinorganicChemistryandApplications H3C CH2 O H3C OH EXPERIMENTAL C C Materialandmethods N CH3 N CH3 CR CR Solventsusedwereanalyticalgrades;allmetal(II)wereused as chloride salts. IR spectra were recorded on the Philips OH O OH O Analytical PU 9800 FTIR spectrophotometer. NMR spec- (Keto) (Enol) trawererecordedonPerkin-Elmer283Bspectrometer.UV- L1=R=(cid:0)H2 L2=R=(cid:0)HCH2C6H5 visible spectra were obtained in DMF on a Hitachi U-2000 L3=R=(cid:0)HCH(CH3)2 double-beamspectrophotometer.C,H,andNanalyses,con- L4=R=(cid:0)HC3H3N2 ductance and magnetic measurements were carried out on L5=R=(cid:0)HCH3 solid compounds using the respective instruments. Melting points were recorded on a Gallenkamp apparatus and are Figure1:Proposedstructureoftheligands(L1)–(L5). notcorrected.Thecomplexeswereanalyzedfortheirmetal contentsbyEDTAtitration[38].Antibacterialandantifun- gal screening was done at HEJ Research Institute of Chem- istry,InternationalCenterforChemicalSciences,University present studies, ligands (L )–(L ) (Figure1) were obtained ofKarachi,Pakistan. 1 5 bythecondensationreactionbetweenaminoacids(glycine, phenylalanine, alanine, valine, or histidine) and acetylace- PreparationofSchiff-bases(L )–(L ) 1 5 tone with this hope that it may provide us valuable theo- retical information for exploring metal-based bacteriostatic Acetylacetone (20mmol) in ethanol (10mL) was added to and/orcarcinostaticpharmaceuticalswithhighefficacyand a stirred solution of the amino acid (20mmol) in water lowtoxicity.Inthiseffort,wehavealsointroducedanazome- (30mL). The mixture was refluxed for 4–6 hours during thine(−C=N)linkagewiththeconcernthatitmaypermita whichthecolorofthesolutionturnedtoyellow-orange.The notablevarietyintheremarkablechemistryandbehaviorof completion of reaction was monitored through TLC. After suchcompounds.Thesynthesizedaminoacid-derivedcom- completion of the reaction, it was cooled to afford a solid pounds(L )–(L )havebeenexposedtoactasbidentateto- product.Thesolidresiduewasfiltered,washedwithethanol, 1 5 wardsdivalentmetalatomssolelythroughtheazomethine-N thenwithether,anddried.Crystallizationfromamixtureof andcarboxylatogroupsformingastable5-memberedchelate ethanol-propanol(60:40)affordedthedesiredligands.The ringsystem.Themetal(II)complexes,(1)–(40)ofthetypes samemethodwasappliedforthepreparationofallotherlig- [M(L)(H O) ] and [M(L) (H O) ]Cl (where M = Co(II), andsbyusingthecorrespondingaminoacidsand/oracety- 2 4 2 2 2 Cu(II), Ni(II), and Zn(II) and L = amino acid-derived lig- lacetone,workinginthesameconditionswiththeirrespec- ands(L )–(L ))wereformedbyastoichiometricratioofM: tivemolarratio. 1 5 Las(1 : 2)and(1 : 1),respectively.Thesetwodifferentsto- ichiometricratiosoftheligandincorporatedwiththemetal {[(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene] ionwereusedinordertostudytheeffectofthepresenceof amino}aceticacid(L ) 1 oneortwoligands,respectively,onthebiologicalactivity.All thesecompoundshavebeencharacterizedbytheirIR,NMR, Yield 52%; mp 294◦C; IR (KBr, cm−1): 3444 (OH), 3015 molarconductance,magneticmoment,andelementalanal- (C=C), 1700 (COOH), 1635 (azomethine, HC=N); 1H yses.TheIRoftheligandsandtheircorrespondingmetal(II) NMR (DMSO-d6, δ, ppm): 1.85 (s, 6H, CH3), 2.83 (t, 2H, complexes are in agreement with the proposed structures. CH2), 5.18 (t, 1H, CH), 6.94 (s, 1H, azomethine), 10.27 (s, The magnetic moment and electronic spectral data suggest 1H,OH),11.29(s,1H,COOH).Anal.Calcd.forC7H11NO3 for all the complexes to have an octahedral geometry. Ele- (157.0):C,53.50;H,7.01;N,8.92.Found:C,53.32;H,7.41; mental analyses and NMR spectral data of the ligands and N,8.86%.1HNMRofZn(II)complex(DMSO-d6,δ,ppm): their metal(II) complexes also agree with the structures as 2.08(s,6H,CH3),2.98(t,2H,CH2),5.37(t,1H,CH),7.48 anticipated.Alltheseligandsalongwiththeirmetal(II)com- (s,1H,azomethine),10.58(s,1H,OH),11.36(s,4H,OH2). plexes were screened for their in vitro antibacterial activity againstfourGram-negative(Ecoli,Sflexenari,Paeruginosa, {[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}- andStyphi)andtwoGram-positive(BsubtilisandSaureus) 3-phenylpropanoicacid(L ) 2 bacterial strains and for in vitro antifungal activity against T longifusus, C albicans, A flavus, M canis, F solani, and C Yield 56%; mp 242◦C; IR (KBr, cm−1): 3444 (OH), 3049 glaberata.Thesecompoundshaveshownvariedantibacterial (C=C),1703(COOH),1635(azomethine,C=N);1HNMR andantifungalactivitiesagainstoneormorebacterial/fungal (DMSO-d6, δ, ppm): 1H NMR (DMSO-d6, δ, ppm): 1.75 strainsandthisactivityenhancedoncoordination/chelation. (s, 6H, CH3), 2.53 (t, 2H, CH2), 3.18 (t, 1H, CH2), 3.73 The reported compounds are not only good candidates as (t, 2H, CH2), 6.67 (s, 1H, azomethine), 7.16–7.79 (m, 5H, antibacterial and antifungal agents, but also are a promis- Ph),10.27(s,1H,OH),11.29(s,1H,COOH).Anal.Calcd. ingadditionofnewclassofcompoundsasthemetal-based for C14H19NO2 (233.0): C, 68.02; H, 6.88; N, 5.67. Found: drugs. C, 68.33; H, 7.15; N, 5.83%. 1H NMR of Zn(II) complex ZahidH.Chohanetal 3 (DMSO-d , δ, ppm): 1.97 (s, 6H, CH ), 2.86 (t, 2H, CH ), BIOLOGICALACTIVITY 6 3 2 3.41 (t, 1H, CH ), 3.96 (t, 2H, CH ), 7.51 (s, 1H, azome- 2 2 thine), 7.36–7.93 (m, 5H, Ph), 10.58 (s, 1H, OH), 11.36 (s, Antibacterialbioassay(invitro) 4H,OH ). 2 All the synthesized ligands (L )–(L ) and their correspond- 1 5 ingmetal(II)complexes(1)–(20)werescreenedinvitrofor {[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}- theirantibacterialactivityagainstfourGram-negative(Ecoli, 3-methylbutanoicacid(L ) 3 Sflexenari,Paeruginosa,andStyphi)andtwoGram-positive Yield 54%; mp 210◦C; IR (KBr, cm−1): 3444 (OH), 3049 (BsubtilisandSaureus)bacterialstrainsusingagar-welldif- (C=C),1708(COOH),1635(azomethine,C=N);1HNMR fusion method [39]. Two to eight hours old bacterial in- (DMSO-d ,δ,ppm):1.88(s,12H,CH ),3.16(t,1H,CH), oculums containing approximately104–106 colonyforming 6 3 3.73 (t, 1H, CH), 5.52 (t, 1H, CH), 10.27 (s, 1H, OH), units (CFU)/mL were used in these assays. The wells were 11.29(s,1H,COOH).Anal.Calcd.forC H NO (199.0): dug in the media with the help of a sterile metallic borer 10 17 3 C, 60.30; H, 8.54; N, 7.04. Found: C, 60.64; H, 8.37; N, with centers at least 24mm. Recommended concentration 7.46%. 1H NMR of Zn(II) complex (DMSO-d , δ, ppm): (100μl) of the test sample (1mg/mL in DMSO) was intro- 6 2.03(s,12H,CH ),3.37(t,1H,CH),3.96(t,1H,CH),5.87 ducedintherespectivewells.Otherwellssupplementedwith 3 (t,1H,CH),10.56(s,1H,OH),11.36(s,4H,OH ). DMSOandreferenceantibacterialdrug,imipenumservedas 2 negative and positive controls, respectively. The plates were incubatedimmediatelyat37◦Cfor20hours.Activitywasde- {[2-(3-Hydroxy-1-methylbutyl)-2-en-1-ylidene]amino}- terminedbymeasuringthediameterofzonesshowingcom- 3-(imidazol-4-yl)propanoicacid(L ) 4 pleteinhibition(mm).Growthinhibitionwascompared[40] Yield 51%; mp 194◦C; IR (KBr, cm−1): 3444 (OH), 3045 withthestandarddrug.Inordertoclarifyanyparticipating (C=C),1705(COOH),1635(azomethine,C=N);1HNMR role of DMSO in the biological screening, separate studies (DMSO-d , δ, ppm): 1H NMR (DMSO-d , δ, ppm): 1.75 werecarriedoutwiththesolutionsaloneofDMSOandthey 6 6 (s, 6H, CH ), 3.36 (t, 1H, CH), 3.78 (s, 1H, CH), 7.96 (s, showednoactivityagainstanybacterialstrains. 3 1H, imidazol), 8.26 (d, 1H, imidazol), 10.27 (s, 1H, OH), 10.84 (s, 1H, NH), 11.29 (s, 1H, COOH). Anal. Calcd. for Antifungalactivity(invitro) C H N O (223.0): C, 55.23; H, 7.11; N, 17.53. Found: 10 13 3 3 C, 55.53; H, 7.38; N, 17.26%; 1H NMR of Zn(II) complex Antifungal activities of all compounds were studied against (DMSO-d , δ, ppm): 2.07 (s, 6H, CH ), 3.58 (t, 1H, CH), sixfungalcultures,Tlongifusus,Calbicans,Aflavus,Mcanis, 6 3 3.94(s,1H,CH),8.25(s,1H,imidazol),8.47(dd,1H,imi- F solani, and C glaberata. Sabouraud dextrose agar (Oxoid, dazol),10.58(s,1H,OH),11.13(s,1H,NH),11.36(s,4H, Hampshire,England)wasseededwith105(cfu) mL−1fungal OH ). sporesuspensionsandwastransferredtopetriplates.Discs 2 soaked in 20mL (10μg/mL in DMSO) of all compounds were placed at different positions on the agar surface. The {[2-(3-Hydroxy-1-methylbutyl)-2-en-1- plateswereincubatedat32◦Cforsevendays.Theresultswere ylidene]amino}propanoicacid(L ) 5 recorded as zones of inhibition in mm and were compared Yield 53%; mp 160◦C; IR (KBr, cm−1): 3444 (OH), 3018 withstandarddrugsMiconazoleandAmphotericinB. (C=C),1700(COOH),1635(azomethine,C=N);1HNMR (DMSO-d6, δ, ppm): 1.85 (s, 9H, CH3), 5.18 (t, 1H, CH), Minimuminhibitoryconcentration(MIC) 5.34(t,1H,CH),10.27(s,1H,OH),11.29(s,1H,COOH). Anal. Calcd. for C H NO (171.0): C, 47.76; H, 7.46; N, Compoundscontainingantibacterialactivityover80%were 8 13 3 20.90. Found: C, 47.57; H, 7.28; N, 20.77%. 1H NMR of selectedforminimuminhibitoryconcentration(MIC)stud- Zn(II)complex(DMSO-d ,δ,ppm):2.12(s,9H,CH ),5.41 ies (Table5). The minimum inhibitory concentration was 6 3 (t, 1H, CH), 5.63 (t, 1H, CH), 10.58 (s, 1H, OH), 11.36 (s, determined using the disc diffusion technique [39] by pre- 4H,OH ). paringdiscscontaining10,25,50,and100μg/mLofthecom- 2 poundsandapplyingtheprotocol. Preparationofmetal(II)complexes Cytotoxicity(invitro) For the preparation of metal(II) complexes, a solution (30mL) of the corresponding ligand in hot methanol was Brine shrimp (Artemia salina leach) eggs were hatched in a added to a stirred solution of metal(II) chloride in ethanol shallowrectangularplasticdish(22×32cm),filledwitharti- (25mL) having a required molar ratio of M : L (1 : 1 and ficialseawater,whichwasprepared[24]withcommercialsalt 1:2).Themixturewasrefluxedfor3hoursandthencooled mixtureanddoubledistilledwater.Anunequalpartitionwas toroomtemperaturewhichsolidifiedoncooling.Thesolid madeintheplasticdishwiththehelpofaperforateddevice. thus obtained was filtered, washed with methanol/ethanol Approximately 50mg of eggs were sprinkled into the large andether,andfinallydriedinairtoaffordthedesiredprod- compartment, which was darkened while the matter com- uct.Crystallizationfromaqueous/ethanol(40 : 60)gavethe partmentwasopenedtoordinarylight.Aftertwodays,nau- expectedmetalcomplex. pliiwerecollectedbyapipettefromthelightedside.Asample 4 BioinorganicChemistryandApplications of the test compound was prepared by dissolving 20mg of group of amino acid has taken place resulting into the for- eachcompoundin2mLofDMF.Fromthisstocksolutions, mationofthedesiredligands(L )–(L ).Also,thepresenceof 1 5 500, 50, and 5μg/mL were transferred to 9 vials (three for bandsat3015–3025and3444–3450cm−1duetoν(C=C)and eachdilutionwereusedforeachtestsampleandLD isthe ν(OH)intheligandsclearlygaveanevidence[43]ofestab- 50 meanofthreevalues)andonevialwaskeptascontrolhav- lishing keto-enol tautomeric system in which these ligands ing2mLofDMFonly.Thesolventwasallowedtoevaporate behave as enol. Moreover, on comparison of the IR spectra overnight. After two days, when shrimp larvae were ready, oftheligandswiththeirmetal(II)complexesshowed[45]a 1mLofseawaterand10shrimpswereaddedtoeachvial(30 majorshifttolowerwavenumbersby15–20cm−1inazome- shrimps/dilution)andthevolumewasadjustedwithseawa- thineν(C=N)at1610–1620cm−1suggestinginvolvementof terto5mLpervial.After24hours,thenumbersofsurvivors the azomethine-N with the metal(II) ion. Also, disappear- werecounted.DatawereanalyzedbyFinneycomputerpro- anceofthestretchingfrequencyat1700–1708cm−1assigned gramtodeterminetheLD50values[41]. to ν(COOH) and appearance of new νas and νs modes of the (−CO ) group at 1590 and 1385cm−1, respectively, the 2 Δνvalue(205cm−1)isconsistentwithcarboxylatecoordina- RESULTANDDISCUSSION tionwiththemetalatoms.Theseoveralldatasuggestthatthe azomethine-Nandcarboxylate-Ogroupsareinvolvedinco- Physicochemicalpropertiesofobtainedcompounds ordinationwiththemetal(II)ionincomplexes(1)–(40).In Theligands(L )–(L )werepreparedbyrefluxinganappro- thelow-frequencyregion,spectraofthemetal(II)complexes 1 5 priateamountofrespectiveaminoacidwiththecorrespond- (Table1)exhibited[46]newbandswhicharenotpresentin ing acetylacetone in ethanol. The structures of the synthe- thespectraoftheligands.Thesebandsarelocatedat525and sizedligandswereestablishedwiththehelpoftheirIR,NMR, 470cm−1, which are attributed to ν(M−O) and ν(M−N). and microanalytical data. All metal(II) complexes (1)–(40) Thecoordinatedwaterinallthemetal(II)complexespresents oftheseligandswerepreparedbyusingtherespectivemetal different peaks at 990cm−1 (rocking) and 760cm−1 (wag- salts as chloride with the corresponding ligands in two dif- ging),whereasnoneofthesevibrationsappearinthespectra ferent molar ratios of metal : ligand as 1 : 2 and 1 : 1. ofuncoordinatedligands. Allthesecomplexesareintensivelycoloredairandmoisture stableamorphoussolidswhichdecomposewithoutmelting. NMRspectra Theyareinsolubleincommonorganicsolventsandonlysol- ubleinwater,DMF,andDMSO.Molarconductancevalues The1HNMRspectraldataarereportedalongwiththepos- ofthesolublecomplexesinDMF(10−3Msolutionat25◦C) sible assignments in “experimental.” All the protons were indicatedthatcomplexeshavingmolarratioofmetal:ligand found as to be in their expected region [47]. The conclu- as 1 : 2 have lower values (26–35Ohm−1cm−2mol−1) in- sions drawn from these studies lend further support to the dicating that they are all nonelectrolytic in nature. How- modeofbondingdiscussedintheirIRspectra.Inthespec- ever, the complexes having molar ratio of metal : ligand as traofdiamagneticZn(II)complexes,coordinationofthelig- 1 : 1 showed higher values (122–128Ohm−1cm−2mol−1) andsviaazomethine-Nandcarboxylate-Owasestablishedby indicating them as electrolytic [42]. The elemental analy- downfield shifting of these signals in the Zn(II) complexes ses data (Table1) agree well with the proposed formulae duetotheincreasedconjugationandcoordination[48].The for the ligands and also confirmed the [M(L)2(OH2)2] number of protons calculated from the integration curves (Figure2(a)) and [M(L)(OH2)4]Cl (Figure2(b)) composi- and those obtained from the values of the expected CHN tion of the metal(II) chelates. Efforts to grow good crystals analysesagreewith each other. Itwasobserved that DMSO of the ligands and their metal chelates for X-ray diffraction didnothaveanycoordinatingeffectneitheronthespectraof studieswereunsuccessfulduetotheirpoorsolubilityincom- theligandsnoronitsmetalcomplexes. monorganicsolvents. Electronicspectra IRspectra The Co(II) complexes exhibited well-resolved bands at Diketones and related compounds such as acetylacetone 17543–18018cm−1andastronghigh-energybandat21739– in the present studies are capable of exhibiting keto-enol 22222cm−1 (Table2) and are assigned [49] to the transi- tautomerism and react with metal cations to form metal tions4T (F)→4T (F),4T (F)→4T (P)forahigh-spinoc- 1g 2g 1g 1g complexes. The selected IR spectra of the ligands and its tahedral geometry [50]. A high-intensity band at 28565– metal(II) complexes along with their tentative assignments 29215cm−1wasassignedtothemetaltoligandchargetrans- are reported in “experimental” and in Table2, respectively. fer.Themagneticsusceptibilitymeasurements(4.7–4.9BM) The IR spectra of all the ligands show [43] the absence of for the solid Co(II) complexes are also indicative of three bandsat3245and1745cm−1duetoν(HN )groupofamino unpaired electrons per Co(II) ion suggesting [51] consis- 2 acids and ν(C=O) of acetylacetone. Instead, a new promi- tency with their octahedral environment. The electronic nentbandat1635cm−1 duetoazomethineν(C=N)linkage spectra of the Cu(II) complexes (Table2) showed two low- appearedinalltheligandsindicating[44]thatcondensation energyweakbandsat15151–15873cm−1 andastronghigh- between ketone moiety of acetylacetone and that of amino energybandat30255–30420cm−1.Thelow-energybandin ZahidH.Chohanetal 5 Table1:Physicalandanalyticaldataofthemetal(II)complexes(1)–(40). Calc(found)% Number Metalchelate MP(◦C) Yield(%) C H N [Co(L ) (H O) ][406.9] (1) 1 2 2 2 336–338 71 41.28(41.61) 5.90(5.42) 6.88(6.13) C H CoN O 14 24 2 8 [Cu(L ) (H O) ][411.5] (2) 1 2 2 2 328–330 73 40.82(40.44) 5.83(5.52) 6.80(6.45) C H CuN O 14 24 2 8 [Ni(L ) (H O) ][406.7] (3) 1 2 2 2 330–332 70 41.31(41.65) 5.90(5.98) 6.88(6.57) C H NiN O 14 24 2 8 [Zn(L ) (H O) ][411.4] (4) 1 2 2 2 331–332 70 40.84(40.63) 5.83(5.62) 6.81(6.96) C H ZnN O 14 24 2 8 [Co(L ) (H O) ][586.9] (5) 2 2 2 2 378–380 72 57.25(57.53) 6.13(6.55) 4.77(4.63) C H CoN O 28 36 2 8 [Cu(L ) (H O) ][563.5] (6) 2 2 2 2 335–337 72 56.80(56.66) 6.09(6.37) 4.73(4.58) C H CuN O 28 36 2 8 [Ni(L ) (H O) ][586.7] (7) 2 2 2 2 338–340 73 57.27(57.14) 6.14(6.47) 4.77(4.84) C H NiN O 28 36 2 8 [Zn(L ) (H O) ][591.4] (8) 2 2 2 2 332–334 72 56.82(56.98) 6.09(5.84) 4.73(4.65) C H ZnN O 28 36 2 8 [Co(L ) (H O) ][490.9] (9) 3 2 2 2 339–341 74 48.89(48.73) 7.33(7.62) 5.70(5.53) C H CoN O 20 36 2 8 [Cu(L ) (H O) ][495.5] (10) 3 2 2 2 344–346 73 48.43(48.87) 7.26(7.18) 5.65(5.85) C H CuN O 20 36 2 8 [Ni(L ) (H O) ][490.7] (11) 3 2 2 2 340–342 73 48.91(48.76) 7.34(7.58) 5.71(5.43) C H NiN O 20 36 2 8 [Zn(L ) (H O) ][495.4] (12) 3 2 2 2 337–339 72 48.45(48.63) 7.27(7.47) 5.65(5.96) C H ZnN O 20 36 2 8 [Co(L ) (H O) ][566.9] (13) 4 2 2 2 238–240 72 46.57(46.66) 5.64(5.53) 14.82(14.72) C H CoN O 22 32 6 8 [Cu(L ) (H O) ][571.5] (14) 4 2 2 2 230–232 70 46.19(46.54) 5.60(5.43) 14.70(14.57) C H CuN O 22 32 6 8 [Ni(L ) (H O) ][566.7] (15) 4 2 2 2 227–229 71 46.59(46.62) 5.65(5.57) 14.82(14.66) C H NiN O 22 32 6 8 [Zn(L ) (H O) ][571.4] (16) 4 2 2 2 225–227 72 46.20(46.06) 5.60(5.81) 14.70(14.98) C H ZnN O 22 32 6 8 [Co(L ) (H O) ][434.9] (17) 5 2 2 2 240–242 73 44.15(44.48) 6.44(6.16) 6.44(6.82) C H CoN O 16 28 2 8 [Cu(L ) (H O) ][439.5] (18) 5 2 2 2 244–246 72 43.68(43.36) 6.37(6.56) 6.37(6.73) C H CuN O 16 28 2 8 [Ni(L ) (H O) ][434.7] (19) 5 2 2 2 245–247 70 44.16(44.44) 6.44(6.38) 6.44(6.16) C H NiN O 16 28 2 8 [Zn(L ) (H O) ][439.4] (20) 5 2 2 2 236–238 69 43.70(43.34) 6.37(6.15) 6.37(6.62) C H ZnN O 16 28 2 8 [Co(L )(H O) ]Cl[322.4] (21) 1 2 4 206–208 70 26.05(26.37) 5.58(5.41) 4.34(4.13) C H CoNO Cl 7 18 7 [Cu(L )(H O) ]Cl[327.0] (22) 1 2 4 216–218 71 25.68(25.44) 5.50(5.82) 4.28(4.45) C H CuNO Cl 7 18 7 [Ni(L )(H O) ]Cl[322.2] (23) 1 2 4 212–214 72 26.07(26.38) 5.59(5.88) 4.35(4.54) C H NiNO Cl 7 18 7 [Zn(L )(H O) ]Cl[326.9] (24) 1 2 4 202–204 70 25.70(25.53) 5.51(5.62) 4.28(4.11) C H ZnNO Cl 7 18 7 6 BioinorganicChemistryandApplications Table1:Continued. Calc(found)% Number Metalchelate MP(◦C) Yield(%) C H N [Co(L )(H O) ]Cl[412.4] (25) 2 2 4 218–220 73 40.73(40.93) 5.82(5.55) 3.39(3.18) C H CoNO Cl 14 24 7 [Cu(L )(H O) ]Cl[417] (26) 2 2 4 227–229 72 40.28(40.46) 5.75(5.64) 3.36(3.67) C H CuNO Cl 14 24 7 [Ni(L )(H O) ]Cl[412.2] (27) 2 2 4 220–222 73 40.76(40.43) 5.82(5.64) 3.40(3.13) C H NiNO Cl 14 24 7 [Zn(L )(H O) ]Cl[416.9] (28) 2 2 4 214–216 72 40.30(40.48) 5.76(5.40) 3.36(3.58) C H ZnNO Cl 14 24 7 [Co(L )(H O) ]Cl[364.4] (29) 3 2 4 230–232 70 32.93(32.67) 6.59(6.35) 3.84(3.53) C H CoNO Cl 10 24 7 [Cu(L )(H O) ]Cl[369.0] (30) 3 2 4 238–240 71 32.52(32.84) 6.50(6.18) 3.79(3.88) C H CuNO Cl 10 24 7 [Ni(L )(H O) ]Cl[364.2] (31) 3 2 4 240–242 72 32.95(33.28) 6.59(6.34) 3.84(3.63) C H NiNO Cl 10 24 7 [Zn(L )(H O) ]Cl[368.9] (32) 3 2 4 235–237 73 32.53(32.43) 6.51(6.87) 3.80(3.96) C H ZnNO Cl 10 24 7 [Co(L )(H O) ]Cl[402.4] (33) 4 2 4 233–235 73 32.80(32.66) 5.47(5.53) 10.44(10.72) C H CoN O Cl 11 22 3 7 [Cu(L )(H O) ]Cl[407.0] (34) 4 2 4 235–237 74 32.43(32.64) 5.40(5.27) 10.32(10.57) C H CuN O Cl 11 22 3 7 [Ni(L )(H O) ]Cl[402.2] (35) 4 2 4 220–222 73 32.82(32.58) 5.47(5.65) 10.44(10.68) C H NiN O Cl 11 22 3 7 [Zn(L )(H O) ]Cl[406.9] (36) 4 2 4 238–240 72 32.44(32.06) 5.41(5.83) 10.32(10.78) C H ZnN O Cl 11 22 3 7 [Co(L )(H O) ]Cl[336.4] (37) 5 2 4 244–246 73 28.53(28.68) 5.94(5.64) 4.16(4.52) C H CoNO Cl 8 20 7 [Cu(L )(H O) ]Cl[341.0] (38) 5 2 4 248–250 72 28.15(28.36) 5.86(5.56) 4.11(4.43) C H CuNO Cl 8 20 7 [Ni(L )(H O) ]Cl[336.2] (39) 5 2 4 244–246 73 28.56(28.74) 5.95(5.78) 4.16(4.56) C H NiNO Cl 8 20 7 [Zn(L )(H O) ]Cl[340.9] (40) 5 2 4 247–249 72 28.16(28.48) 5.87(5.65) 4.11(4.42) C H ZnNO Cl 8 20 7 H3C OH C H3C OH O O OH2 CH3 C N OH2 CH3 CR M CR OH2 N Cl N M CR CH3 OH2 O O C CH3 OH2 OH2 O O OH M=Co(II),Cu(II),Ni(II)orZn(II) M=Co(II),Cu(II),Ni(II)orZn(II) (a) (b) Figure2:Proposedstructuresofthemetal(II)complexes(1)–(40). ZahidH.Chohanetal 7 Table2:Physicalandspectraldataofthemetal(II)complexes(1)–(40). Number Color BM(μeff) IR(cm−1) λmax(cm−1) 3444(OH),3020(OH ), 2 (1) Darkbrown 4.4 1610(C=N),1385(C−O), 17543,21739,29290 525(M−O),470(M−N) 3450(OH),3025(OH ), 2 (2) Lightblue 1.7 1620(C=N),1335(C−O), 15151,30235 440(M−N),520(M−O) 3445(OH),3015(OH ), 2 12897,16528, (3) Dullgreen 3.1 1615(C=N),1335(C−O), 24390,30215 430(M−N),535(M−O) 3448(OH),3025(OH ), 2 (4) Off-white Dia 1610(C=N),1335(C−O), 28445 435(M−N),545(M−O) 3444(OH),3025(OH ), 2 (5) Darkbrown 4.2 1615(C=N),1335(C−O), 18018,22222,29565 425(M−O),390(M−N) 3444(OH),3015(OH ), 2 (6) Darkblue 1.7 1615(C=N),1335(C−O), 15873,30380 425(M−O),390(M−N) 3448(OH),3020(OH ), 2 13333,16667, (7) Darkgreen 3.1 1620(C=N),1335(C−O), 25000,30365 425(M−O),390(M−N) 3445(OH),3020(OH ), 2 (8) Cream Dia 1620(C=N),1335(C−O), 28680 425(M−O),390(M−N) 3448(OH),3025(OH ), 2 (9) Brown 4.5 1610(C=N),1335(C−O), 17750,21535,29310 425(M−O),390(M−N) 3450(OH),3015(OH ), 2 (10) Bluishgreen 1.8 1615(C=N),1335(C−O), 15470,30355 425(M−O),390(M−N) 3444(OH),3015(OH ), 2 12975,16585, (11) Darkgreen 3.3 1610(C=N),1335(C−O), 24685,30310 425(M−O),390(M−N) 3450(OH),3020(OH ), 2 (12) Paleyellow Dia 1615(C=N),1335(C−O), 28525 425(M−O),390(M−N) 3445(OH),3015(OH ), 2 (13) Teapink 4.3 1610(C=N),1335(C−O), 17850,21950,29410 425(M−O),390(M−N) 3448(OH),3025(OH ), 2 (14) Green 1.9 1615(C=N),1335(C−O), 15510,30290 425(M−O),390(M−N) 3445(OH),3025(OH ), 2 13230,16660, (15) Seagreen 3.2 1620(C=N),1335(C−O), 24880,30360 425(M−O),390(M−N) 8 BioinorganicChemistryandApplications Table2:Continued. Number Color BM(μeff) IR(cm−1) λmax(cm−1) 3444(OH),3020(OH ), 2 (16) Off-white Dia 1615(C=N),1335(C−O), 30360 425(M−O),390(M−N) 3450(OH),3015(OH ), 2 (17) Darkbrown 4.5 1620(C=N),1335(C−O), 17985,22125,29490 425(M−O),390(M−N) 3450(OH),3020(OH ), 2 (18) Blue 1.8 1620(C=N),1335(C−O), 15750,30360 425(M−O),390(M−N) 3444(OH),3020(OH ), 2 13215,16575, (19) Darkgreen 3.4 1610(C=N),1335(C−O), 24910,30355 425(M−O),390(M−N) 3445(OH),3020(OH ), 2 (20) Cream Dia 1620(C=N),1335(C−O), 28610 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (21) Darkblue 4.2 1615(C=N),1335(C−O), 18010,21745,29290 425(M−O),390(M−N) 3450(OH),3015(OH ), 2 (22) Green 1.7 1610(C=N),1335(C−O), 15545,30235 440(M−N),520(M−O) 3450(OH),3015(OH ), 2 12897,16580, (23) Dirtygreen 3.1 1615(C=N),1335(C−O), 24490,30215 430(M−N),535(M−O) 3450(OH),3025(OH ), 2 (24) Off-white Dia 1620(C=N),1335(C−O), 28445 435(M−N),545(M−O) 3448(OH),3020(OH ), 2 (25) Darkblue 4.4 1615(C=N),1335(C−O), 17500,22124,29565 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (26) Dirtygreen 1.7 1615(C=N),1335(C−O), 15795,30380 425(M−O),390(M−N) 3448(OH),3015(OH ), 2 13233,16590, (27) Seagreen 3.1 1615(C=N),1335(C−O), 25000,30365 425(M−O),390(M−N) 3450(OH),3020(OH ), 2 (28) Paleyellow Dia 1620(C=N),1335(C−O), 28680 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (29) Royalblue 4.5 1610(C=N),1335(C−O), 17750,21995,29310 425(M−O),390(M−N) 3448(OH),3015(OH ), 2 (30) Green 1.8 1620(C=N),1335(C−O), 15490,30355 425(M−O),390(M−N) ZahidH.Chohanetal 9 Table2:Continued. Number Color BM(μeff) IR(cm−1) λmax(cm−1) 3448(OH),3020(OH ), 2 12995,16655, (31) Dullgreen 3.3 1620(C=N),1335(C−O), 24685,30310 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (32) Yellow Dia 1615(C=N),1335(C−O), 28525 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (33) Purpleblue 4.3 1610(C=N),1335(C−O), 17855,21925,29410 425(M−O),390(M−N) 3448(OH),3015(OH ), 2 (34) Bluishgreen 1.9 1620(C=N),1335(C−O), 15515,30290 425(M−O),390(M−N) 3450(OH),3020(OH ), 2 13130,16565, (35) Dirtygreen 3.2 1620(C=N),1335(C−O), 24880,30360 425(M−O),390(M−N) 3450(OH),3025(OH ), 2 (36) Paleyellow Dia 1615(C=N),1335(C−O), 30360 425(M−O),390(M−N) 3448(OH),3015(OH ), 2 (37) Darkbrown 4.5 1615(C=N),1335(C−O), 17985,22125,29490 425(M−O),390(M−N) 3450(OH),3020(OH ), 2 (38) Green 1.8 1620(C=N),1335(C−O), 15750,30360 425(M−O),390(M−N) 3448(OH),3020(OH ), 2 13215,16570, (39) Lightgreen 3.4 1610(C=N),1335(C−O), 24910,30355 425(M−O),390(M−N) 3450(OH),3015(OH ), 2 (40) Cream Dia 1620(C=N),1335(C−O), 28610 425(M−O),390(M−N) this position typically is expected for an octahedral con- also an octahedral geometry for the Ni(II) complexes. The figuration and may be assigned to 10Dq corresponding electronic spectra of the Zn(II) complexes exhibited only a to the transition 2Eg→2T [49]. The strong high-energy high-intensitybandat28350–29145cm−1 andareassigned 2g band, in turn, is assigned to metal → ligand charge trans- [49]toaligand-metalchargetransfer. fer.Also,themagneticmomentvalues(1.9–2.2BM)forthe copper(II) are indicative of antiferromagnetic spin-spin in- Biologicalactivity teraction through molecular association. Hence, the cop- per(II) complexes appear to be in the octahedral geometry The antibacterial activity results presented in Table3 show with d2x–d2y ground state [51]. The electronic spectra of the that the newly synthesized compounds (L1)–(L5) and their Ni(II) complexes showed d-d bands in the regions 24390– metal(II) complexes (1)–(40) possess biological activity. 25000, 16528–16667, and 12987–13333cm−1. These are as- These new derivatives obtained by condensation of the signed to the spin-allowed transitions 3A (F)→3T (F), amino group of amino acid with salicylaldehyde were 2g 2g 3A (F)→3T (F),and3A (F)→3T (P),respectively,consis- screenedfortheirantibacterialactivityagainstEcoli,Bsubtil- 2g 1g 2g 1g tent with their well-defined octahedral configuration. The lis,Sflexenari,Saureus,Paeruginosa,andStyphiandforan- band at 29815–30335cm−1 was assigned to metal → ligand tifungalactivity(Table4)againstTlongifusus,Calbicans,A charge transfer. The magnetic measurements (3.0–3.3BM) flavus,Mcanis,Fsolani,andCglaberata.Theseresultsexhib- showedtwounpairedelectronsperNi(II)ionsuggesting[52] ited markedly an enhancement in activity on coordination 10 BioinorganicChemistryandApplications Table 3: Results of antibacterial bioassay (concentration used Table 4: Results of antifungal bioassay (concentration used 1mg/mLofDMSO).(a)Ecoli,(b)Sflexenari,(c)Paeruginosa,(d) 200μg/mL).(a)Tlongifucus,(b)Calbicans,(c)Aflavus,(d)Mca- Styphi,(e)Saureus,(f)Bsubtilis10<:weak;>10:moderate;>16: nis,(e)Fsolani,(f)Cglaberata. significant. Organism Bacteria (a) (b) (c) (d) (e) (f) Gram-negative Gram-positive L 16 00 15 10 00 18 1 (a) (b) (c) (d) (e) (f) L 00 07 00 00 15 00 2 L1 12 07 13 11 16 15 L3 17 00 00 00 00 00 L2 14 07 14 14 15 16 L4 20 00 00 15 00 20 L3 14 08 12 15 16 17 L5 00 00 00 00 00 00 1 17 00 18 15 00 20 L 13 05 14 14 17 14 4 2 18 00 20 14 00 18 L 12 07 15 15 17 15 5 3 20 00 19 12 00 19 1 16 10 16 16 18 17 4 22 00 20 21 00 22 2 15 11 15 17 18 18 5 00 10 00 00 17 00 3 15 10 17 18 18 18 6 10 17 00 00 18 17 4 16 12 22 18 19 19 7 00 15 00 00 18 00 5 15 10 17 18 19 18 8 00 18 00 00 20 00 6 15 10 16 17 19 17 9 19 00 00 00 00 00 7 16 11 17 18 20 18 10 20 00 17 00 00 00 8 16 11 18 19 21 19 11 22 00 00 00 00 00 ) 9 17 10 17 17 18 18 n o 12 24 00 00 00 00 00 10 16 10 18 16 19 19 biti 13 22 00 00 00 00 00 11 17 11 16 17 19 18 hi ) n 14 24 20 00 25 20 20 bition 1123 1196 1120 1176 2149 2109 1198 neofi 1156 2235 0000 0108 0300 0000 0000 hi o in 14 16 11 17 17 17 18 (z 17 00 00 00 00 00 00 of 15 17 10 18 18 18 17 nd 18 00 00 00 00 00 00 e u on 16 18 11 17 20 20 20 po 19 00 00 00 00 00 00 z m und( 1178 1147 0190 1178 1178 1189 1189 Co 2201 0000 0000 0000 0109 0000 0000 o p 19 19 09 16 18 19 19 22 00 00 00 00 00 00 m o 20 25 10 19 18 20 21 23 00 18 00 00 00 00 C 21 12 07 13 12 15 17 24 20 00 00 00 24 18 22 11 06 14 13 16 18 25 00 17 17 17 17 00 23 12 06 12 12 17 16 26 00 00 15 00 00 17 24 15 09 16 14 18 24 27 00 00 00 00 15 00 25 12 08 14 13 16 16 28 00 00 00 00 00 00 26 12 07 15 12 15 17 29 00 00 00 00 00 00 27 14 08 14 12 17 19 30 00 00 00 00 00 00 28 15 09 16 14 18 19 31 00 00 00 00 00 00 29 11 08 12 12 14 15 32 00 20 00 19 00 00 33 00 20 20 20 20 20 30 12 07 12 11 16 16 34 00 00 00 00 00 20 31 13 07 14 13 15 16 35 00 00 19 00 00 00 32 14 10 15 15 17 18 36 00 00 00 00 00 00 33 13 08 14 14 16 17 37 00 00 00 00 00 00 34 14 09 13 15 15 16 38 00 00 00 00 00 00 35 12 07 14 15 16 17 39 00 00 00 00 00 00 36 14 11 16 17 17 18 40 00 00 19 00 00 20 37 11 09 15 14 15 18 ∗SD A B C D E F 38 12 08 15 15 16 16 39 13 09 14 16 17 17 ∗SD=standarddrugsMICμg/mL;A=Miconazole(70μg/mL:1.6822 40 15 10 16 17 26 19 ×10−7M),B=Miconazole(110.8μg/mL:2.6626×10−7M),C=Am- ∗SD 30 27 26 27 30 28 photericinB(20μg/mL:2.1642×10−8M),D=Miconazole(98.4μg/mL: 2.3647×10−7M),E=Miconazole(73.25μg/mL:1.7603×10−7M),F= ∗SD:standarddrug(Imipenem). Miconazole(110.8μg/mL:2.66266×10−7M).
Description: