Studies in Computational Intelligence 704 Amir Nakib El-Ghazali Talbi E ditors Metaheuristics for Medicine and Biology Studies in Computational Intelligence Volume 704 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Of particular value to both the contributors and the readership are the short publication timeframe and the worldwide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/7092 Amir Nakib El-Ghazali Talbi (cid:129) Editors Metaheuristics for Medicine and Biology 123 Editors Amir Nakib El-Ghazali Talbi Laboratoire Images,Signaux etSystèmes INRIA LilleNord Europe ParcScientifique Intelligents dela Haute Borne UniversitéParis EstCréteil Laboratoired’InformatiqueFondamentalede Créteil Lille(UMR CNRS 8022) France Villeneuve d’Ascq France ISSN 1860-949X ISSN 1860-9503 (electronic) Studies in Computational Intelligence ISBN978-3-662-54426-6 ISBN978-3-662-54428-0 (eBook) DOI 10.1007/978-3-662-54428-0 LibraryofCongressControlNumber:2017933440 ©Springer-VerlagGmbHGermany2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHGermany Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany To my parents (Amir Nakib) Preface The metaheuristics appeared in the eighties. These global optimization algorithms arestochasticandcanbeappliedtoanyproblem,attheconditionitisformulatedas a mono-objective or multiobjective optimization problem. They are called nature inspired because their origin comes from the observation of natural behavior: analogy with physics (simulated annealing, microcanonical annealing), with biol- ogy (evolutionary algorithms) or with ethology (ant colonies, particle swarms). Theyalsocanbeextended,particularlytomultiobjectiveoptimization.Algorithms, techniques, and methods based on metaheuristic paradigm have been successfully applied to a wide range of complex problems. From the perspective of science development, metaheuristics is an emerging interdisciplinary area between natural sciences, biology, sociology, and computer science. Its rapid growth is a natural product of the rapid development of interdisciplinary research today. Medical imaging has established itself as a very important research area pri- marily due to the rapid development of sensors, communication technologies, databases, processors, etc. The phenomenal growth in the technologies and appli- cations for medical imaging has allowed for many interesting results concerning, Medical image acquisition, Medical image processing, and Telemedicine. This book “Metaheuristics for Medicine and Biology” aims at providing a reviewforresearchersinterestedintheadvancesandapplicationsofmetaheuristics to biomedical engineering. The book is oriented towards both theoretical and applications aspects of metaheuristics to biomedical imaging. Paris Amir Nakib December 2016 El-Ghazali Talbi vii Acknowledgements The Guest Editor, would like to thank: (cid:129) Dr. R. Blanc, co-head of the Department of Interventional Neuroradiology, Fondation A. De Rothschild, Paris, France. (cid:129) Pr. P. Decq Head of the Department of Neurosurgery at CHU Henri Mondor, Créteil, France. ix Contents 1 Design of Static Metaheuristics for Medical Image Analysis.... .. 1 Amir Nakib 1.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 1 1.2 Image Segmentation as an Optimization Problem .... ..... .. 2 1.3 Metaheuristics’ Enhancement for Medical Image Segmentation... .... ..... .... .... .... .... .... ..... .. 3 1.3.1 Hybrid Ant Colony System (ACS). .... .... ..... .. 3 1.3.2 Enhanced BBO for Image Segmentation. .... ..... .. 8 1.3.3 Enhanced DE for Image Thresholding .. .... ..... .. 13 1.3.4 Metaheuristic for Contours Detection in 2D Ultrasound Images .... .... .... .... ..... .. 16 1.4 Conclusion. .... .... ..... .... .... .... .... .... ..... .. 21 References .. .... .... .... ..... .... .... .... .... .... ..... .. 21 2 Multi-level Image Thresholding Based on Hybrid Differential Evolution Algorithm. Application on Medical Images.... ..... .. 23 M. Ali, P. Siarry and M. Pant 2.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 23 2.2 Gaussian Curve Fitting..... .... .... .... .... .... ..... .. 24 2.3 Overall Probability of Error. .... .... .... .... .... ..... .. 25 2.4 Hybrid Differential Evolution (HDE).. .... .... .... ..... .. 26 2.5 Experimental Results . ..... .... .... .... .... .... ..... .. 28 2.6 MRI Slices Segmentation... .... .... .... .... .... ..... .. 32 2.7 Conclusions.... .... ..... .... .... .... .... .... ..... .. 35 References .. .... .... .... ..... .... .... .... .... .... ..... .. 35 3 Fuzzy Edge Detection in Computed Tomography Through Genetic Algorithm Optimization . .... .... .... ..... .. 37 A.M.T. Gouicem, M. Yahi and A. Taleb-Ahmed 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 37 xi xii Contents 3.1.1 Problem Statement . .... .... .... .... .... ..... .. 38 3.2 Applied Methods.... ..... .... .... .... .... .... ..... .. 39 3.2.1 Implementation of Fuzzy Inference. .... .... ..... .. 40 3.2.2 Genetic Algorithm (GA). .... .... .... .... ..... .. 41 3.2.3 Optimization by Genetic Algorithm .... .... ..... .. 43 3.3 Results and Discussion..... .... .... .... .... .... ..... .. 44 3.4 Conclusion. .... .... ..... .... .... .... .... .... ..... .. 46 References .. .... .... .... ..... .... .... .... .... .... ..... .. 47 4 Particle Swarm Optimization Based Fast Chan-Vese Algorithm for Medical Image Segmentation.... .... .... ..... .. 49 Devraj Mandal, Amitava Chatterjee and Madhubanti Maitra 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 49 4.2 The C-V Model (Piecewise-Constant Model) for Image Segmentation... .... ..... .... .... .... .... .... ..... .. 51 4.2.1 Level Set Formulation of the Model.... .... ..... .. 52 4.2.2 The C-V Algorithm .... .... .... .... .... ..... .. 53 4.2.3 The Strengths and Drawbacks of the C-V Algorithm... ..... .... .... .... .... .... ..... .. 53 4.2.4 Extension of C-V Model for Vector-Valued Images. .. 55 4.2.5 Extension of C-V Model for Multi-phase Level Set Implementation. .... .... .... .... .... ..... .. 56 4.3 Evolutionary Formulation of Our Fast C-V Model.... ..... .. 58 4.4 Particle Swarm Optimization (PSO) Based Fast C-V Model . .. 58 4.5 Implementation and Results. .... .... .... .... .... ..... .. 62 4.5.1 Two-Class Implementation for Scalar Images. ..... .. 62 4.5.2 Two-Class Implementation for Vector Valued Images . .... ..... .... .... .... .... .... ..... .. 65 4.5.3 Multi-class Implementation of Our Proposed Model.. .... ..... .... .... .... .... .... ..... .. 66 4.6 Conclusions.... .... ..... .... .... .... .... .... ..... .. 71 References .. .... .... .... ..... .... .... .... .... .... ..... .. 72 5 Evidential Deformable Model for Contour Tracking. Application on Brain Cine MR Sequences . .... .... .... ..... .. 75 Sarra Naffakhi, Amir Nakib and Atef Hamouda 5.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 75 5.2 Related Works.. .... ..... .... .... .... .... .... ..... .. 76 5.3 The Evidence Theory. ..... .... .... .... .... .... ..... .. 78 5.4 Proposed Method.... ..... .... .... .... .... .... ..... .. 78 5.4.1 Description.. ..... .... .... .... .... .... ..... .. 79 5.4.2 Evidential Modeling.... .... .... .... .... ..... .. 80 5.4.3 Combination Rule from Each Source ... .... ..... .. 81