ebook img

Metabolomics of Inflammatory Arthritis PDF

319 Pages·2014·7.03 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metabolomics of Inflammatory Arthritis

Metabolomics of Inflammatory Arthritis Sabrina Reenu Kapoor Supervisors: Dr Stephen Young Professor Karim Raza Professor Ulrich Gunther School of Immunity and Infection College of Medical and Dental Sciences The University of Birmingham February 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Background Rheumatoid arthritis (RA) is associated with both local and systemic inflammation which influences the function of the whole body as well as local tissues in the joints. Significant consequences of this are changes in metabolism. Hence, we hypothesised that chronic inflammation alters metabolism and that the metabolic profile of an individual patient with early inflammatory arthritis predicts the subsequent course of disease. Furthermore, we suggested that these metabolic changes would identify biomarkers of response to treatment in inflammatory arthritis and provide novel insights into disease mechanisms. Methods Using NMR spectroscopy of serum, urine and synovial fibroblasts we derived metabolic profiles and subjected these to multi-parameter analyses to identify metabolic differences associated with inflammation. Results We were able to predict outcome in patients with early arthritis using material derived from cultured synovial fibroblasts but were unable to do so using serum. There was a significant association between CRP levels in the patients’ serum and the metabolic profile of their synovial fibroblasts and their serum. There was also a significant association between the metabolomic fingerprint of synovial fibroblasts and the fibroblasts’ IL6 production. We found differences in metabolites between urine samples of RA and psoriatic arthritis (PsA) patients and were able to predict responses to anti-TNF therapy in patients with RA. Discussion Our results demonstrate that underlying inflammatory processes drive significant changes in metabolism that can be measured in the peripheral blood, synovial fibroblasts and urine samples in patients with inflammatory arthritis. Declaration I have carried out all the work in this thesis myself including writing all the initial manuscripts that have been published from this thesis apart from: 1. Synovial biopsies which were done by Dr Andrew Filer and initial culture was done by a technician. 2. Measurement of glutamine levels in the urine which were done at Birmingham Childrens Hospital 3. Some of the clinical samples were collected by other clinicians including myself 4. The serum samples from group 1 of the early arthritis cohort were processed by Dr Stephen Young but analysed by me. Acknowledgements I owe thanks to many people for their help, support and guidance throughout the project. I would particularly like to thank my supervisors Steve Young and Karim Raza for their enthusiasm for science and continued support. I would also like to thank my third supervisor Ulrich Gunther for his help with NMR. I am also grateful to Dr Andrew Filer for providing clinical samples and to Professor Chris Buckley for his helpful comments and advice. I would also like to thank Dr Graham Wallace for reading through my thesis. Many thanks also to Anne Garfield, Lorraine Yeo, Kath Howlett, John Byrne, Martin Fitzpatrick, Holly Adams, Rachel Bayley and Mark Pearson for their much valued technical help. I would like to thank all the members of the Rheumatology Research Group for all their constant support. Finally, my thanks go to my family in particular Ash, Priyanka and Sachin for their support during this PHD. I am grateful to Arthritis Research UK who have provided the funding for this project, along with the Wellcome Trust who funded the NMR spectrometers and the Henry Wellcome building for NMR. Publications • Young SP*, Kapoor SR*, Viant MR, Byrne JJ, Filer A, Buckley CD, Kitas GD and Raza K. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. Aug 2013; 65(8):2015-23 (*Joint first author) • Kapoor SR, Filer A, Fitzpatrick MA, Fisher BA, Taylor PC, Buckley CD, McInnes IB, Raza K and Young SP. Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis. Arthritis Rheum. June 2013; 65(6):1448-56. • Sabrina Kapoor, Martin Fitzpatrick, Elizabeth Clay, Rachel Bayley, Graham R. Wallace and Stephen P. Young (2012). Metabolomics in the Analysis of Inflammatory Diseases, Metabolomics, Dr Ute Roessner (Ed.), ISBN: 978-953-51- 0046-1, InTech, DOI: 10.5772/31814. Available from: http://www.intechopen.com/books/metabolomics/metabolomics-in-the-analysis-of- inflammatory-diseases. Abbreviations ACPA Anti-citrullinated protein antibody ACR American College of Rheumatology ANOVA Analysis of variance Anti-CarP Anti-carbamylated antibodies AS Ankylosing spondylitis ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase BCAA Branched chain amino acids CD Crohn’s disease CHD Coronary heart disease CSF Cerebrospinal fluid CTLA-4 Cytotoxic T-lymphocyte associated 4 CU Chronic non-infectious uveitis DAS Disease activity score DATA Differentiating the mechanism of action of anti-TNF-α agents DMARDs Disease-modifying anti-rheumatic drugs D O Deuterium oxide 2 EBV Epstein-Barr virus ELISAs Enzyme-linked immune-sorbent assays EPA Eicosapentaenoic acid EULAR European League Against Rheumatism GALGO Genetic ALGOrithm GSTM1 Glutathione S-transferase M1 HIF Hypoxia-inducible factor IBD Inflammatory bowel disease IL Interleukin IP-10 Interferon gamma-induced protein 10 LV Latent variable LIU Lens-induced uveitis MCP Metacarpopharyngeal MCP-1 Monocyte chemotactic protein-1 MIP-1α Macrophage inflammatory protein-1α MMPs Matrix metalloproteinases MRI Magnetic resonance imaging MS Mass spectrometry NMR Nuclear magnetic resonance NOAR Norfolk Arthritis Register OA Osteoarthritis PADI4 Peptidyl arginine deiminase type IV PBS Phosphate buffered saline PCA Principal component analysis PLSDA Partial least squared discriminate analysis PLSR Partial least squares regression analysis PPM Parts per million PsA Psoriatic arthritis PTPN22 Protein tyrosine phosphate, non-receptor type 22 RA Rheumatoid arthritis RANKL RANK ligand RANTES Regulated on activation, normal T cell expressed and secreted RASFs Rheumatoid arthritis synovial fibroblasts ReA Reactive arthritis RF Rheumatoid factor SE Shared epitope SF Synovial fluid SNP Single nucleotide polymorphism SIL6R Soluble IL6 receptor STAT4 signal transducer and activator of transcription 4 TCR T cell receptor TCZ Tocilizumab TMA Trimethylamine TMSP Trimethylsilyl 2,2,3,3-tetradeuteropropionic acid TNF-α Tumour necrosis factor-alpha TNFAI3 TNFα-induced protein 3 UC Ulcerative colitis VEGF Vascular endothelial growth factor VIP Variable importance of the projection Contents 1.0 Introduction ................................................................................................................... 1 1.1 Rheumatoid Arthritis ................................................................................................... 1 1.1.1 Classification ......................................................................................................... 1 1.1.2 Aetiology ............................................................................................................... 4 1.1.3 Pathology ............................................................................................................. 12 1.1.4 Autoantibodies .................................................................................................... 16 1.2 Early Rheumatoid Arthritis ........................................................................................ 18 1.2.1 Phases of rheumatoid arthritis ............................................................................. 18 1.2.2 Importance of treating rheumatoid arthritis early ............................................... 20 1.2.3 Predicting outcome in early rheumatoid arthritis ................................................ 20 1.2.4 Predicting response to treatment in rheumatoid arthritis .................................... 21 1.3 Metabolism in inflammatory disease ......................................................................... 25 1.3.1 The inflammatory process ................................................................................... 25 1.3.2 Metabolic consequences of inflammation ........................................................... 25 1.4 Metabolomics ............................................................................................................. 30 1.4.1 The metabolome .................................................................................................. 30 1.4.2 Approaches to metabolomics .............................................................................. 31 1.4.3 Metabolomics of inflammatory disease .............................................................. 33 1.5 Summary .................................................................................................................... 46 1.6 Aims and hypothesis .................................................................................................. 46 2.0 Materials and methods ................................................................................................ 47 2.1 Samples ...................................................................................................................... 47 2.1.1 Serum .................................................................................................................. 47 2.1.2 Urine .................................................................................................................... 47 2.1.3 Fibroblasts ........................................................................................................... 47 2.2 Fibroblast cell culture ................................................................................................ 48 2.2.1 General culture guidelines ................................................................................... 48 2.2.2 Trypsinisation of cells (splitting) ........................................................................ 50 2.2.3 Cell quenching and extraction protocol: ............................................................. 51 2.3 Cell extraction procedure to produce samples for NMR ........................................... 52 2.4 Sample preparation for NMR .................................................................................... 53 2.4.1 Materials .............................................................................................................. 53 2.4.2 Preparation of sodium phosphate buffer ............................................................. 53 2.4.3 Serum samples .................................................................................................... 53 2.4.4 Urine samples ...................................................................................................... 54 2.4.5 Fibroblast medium samples ................................................................................. 54 2.4.6 Fibroblast cells .................................................................................................... 54 2.5 Metabolomic analysis ................................................................................................ 55 2.6 Statistical analyses ..................................................................................................... 56 2.6.1 Principal components analysis (PCA) ................................................................. 56 2.6.2 Partial least square discriminant analysis (PLS-DA) .......................................... 57 2.6.3 GALGO ............................................................................................................... 57 2.6.4 Partial least squares regression analysis (PLS-R) ............................................... 58 2.6.5 Identification of metabolites ............................................................................... 58 2.7 Enzyme-linked immune-sorbent assays (ELISAs) .................................................... 59 2.8 Multiplex analysis ...................................................................................................... 60 3.0 Quality Control of the biofluids used ......................................................................... 62 3.1 Blood .......................................................................................................................... 62 3.1.1 Introduction ......................................................................................................... 62 3.1.2 Materials and methods ........................................................................................ 64 3.1.3 Results ................................................................................................................. 66 3.1.4 Discussion ........................................................................................................... 74 3.2 Urine .......................................................................................................................... 76 3.2.1 First void or random urine ................................................................................... 76 3.2.2 Discussion: urine ................................................................................................. 78 3.3 Number of fibroblasts required to produce a NMR spectrum ................................... 79 3.3.1 Introduction ......................................................................................................... 79 3.3.2 Materials and methods ........................................................................................ 80 3.3.3 Results ................................................................................................................. 81 3.4 Fibroblast medium ..................................................................................................... 86 3.4.1 Introduction ......................................................................................................... 86 3.4.2 Materials and methods ........................................................................................ 87 3.4.3 Results ................................................................................................................. 88 3.5 Discussion: Fibroblasts and fibroblast medium ......................................................... 92 3.6 Conclusions ................................................................................................................ 93 4.0 DATA (Differentiating the mechanism of action of anti-TNF-α agents) study ..... 95 4.1 Introduction ................................................................................................................ 95 4.2 Patients ....................................................................................................................... 97 4.3 Results ........................................................................................................................ 99 4.3.1 RA and PsA at baseline ....................................................................................... 99 4.3.2 RA and predictors of response to anti-TNFα therapy ....................................... 107 4.3.3 Comparison of metabolites predicting response to therapy in RA ................... 113 4.3.4 Effect of TNFα antagonists on metabolite profiles ........................................... 114

Description:
Metabolomics of Inflammatory Arthritis. Sabrina Reenu Kapoor. Supervisors: Dr Stephen Young. Professor Karim Raza. Professor Ulrich Gunther.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.