ebook img

Messung der Dichte und der magnetischen Suszeptibilität von Zinn-Zink-Legierungen PDF

49 Pages·1964·1.043 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Messung der Dichte und der magnetischen Suszeptibilität von Zinn-Zink-Legierungen

FORSCHUNGSBERICHTE DES LANDES NORDRHEIN-WESTFALEN Nr.1391 Herausgegeben im Auftrage des Ministerpräsidenten Dr. Franz Meyers von Staatssekretär Professor Dr. h. c. Dr. E. h. Leo Brandt DK 669.5.6: 66.08 Dipl.-Phys. Dr. rer. nato Ernst Wachte! Dipl.-Phys. Erich Übela cker Max-Planck-Institut für Metallforschung Stuttgart im Auftrage des Vereins Deutscher Gießereifachleute Düsseldorf Messung der Dichte und der magnetischen Suszeptibilität von Zinn-Zink-Legierungen WESTDEUTSCHER VERLAG· KÖLN UND OPLADEN 1964 ISBN 978-3-663-03158-1 ISBN 978-3-663-04347-8 (eBook) DOI 10.1007/978-3-663-04347-8 Verlags-Nr.011391 © 1964 by Westdeutscher Verlag, Kăln und Opladen Gesamtherstellung: Westdeutscher Verlag . Inhalt 1. Einführung .................................................... 7 2. Dichtemessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 a) Allgemeines ................................................. 8 b) Apparativer Aufbau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 c) Fehlermöglichkeiten, Korrekturen und Fehlerabschätzung . . . . . . . . .. 11 d) Vorversuche und Versuchsdurchführung ........................ 14 3. Magnetische Messungen ......................................... 17 a) Apparativer Aufbau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 b) Eichmessungen . . . .. . . .. . . . . . . . . . . . . . . . .. . . .. . . . .. . . . ... . . . . .. 18 c) Fehlerabschätzung .. . . . .. . . ... . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . .. 19 d) Vorversuche und Versuchs durchführung ........................ 19 4. Legierungsherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 5. Kontrolle des Zustandsbildes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 6. Ergebnisse der Dichtmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 7. Meßergebnisse der magnetischen Untersuchung. . . . . . . . . . . . . . . . . . . . .. 31 8. Zusammenfassung............................................... 39 9. Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41 5 1. Einführung Das Zustandsbild Zinn-Zink, dessen Eutektikum bei 15,2 At.-% Zn liegt, weist auf der Zinkseite eine Liquiduskurve mit einem Wendepunkt auf, der auf An omalien im flüssigen Zustand hindeutet. Mehrere thermodynamische Arbeiten [1] bis [7] über den flüssigen Zustand der Legierungen zeigen übereinstimmend, daß die Mischungsenthalpie positiv ist. Die bei der Mischung auftretende Ver mehrung der atomaren potentiellen Energie erklärt sich durch eine Verminderung der gegenseitigen Anziehung der Atome nach dem Mischungsvorgang. Die Ver ringerung der Bindung des einzelnen Atoms an seine Nachbarn äußert sich auch im Verhalten einer Reihe anderer physikalischer Größen. So sinkt nach J. W. T AYLOR [8] die Oberflächenspannung unter den berechneten Wert, was direkt auf den geringeren gegenseitigen Zusammenhalt der Atome in der Flüssigkeit hin weist. Auch die Volumenaufweitung nach Y. MATUYAMA [9] und die von E. SCHElL und E. D. MÜLLER [7] gefundene Erhöhung des partiellen Dampfdrucks beider Metalle über die durch die lineare Mischungsregel gegebenen Werte hinaus werden durch diese Vorstellung der gelockerten Bindung erklärt. Weiterhin wurden bei flüssigen Zinn-Zink-Legierungen verschiedene Anomalien entdeckt. Hier soll besonders auf die starke Temperaturabhängigkeit der Mischungs enthalpie [7], die Anomalie der Aktivität [7] sowie das von A. ROLL und H. MOTZ [10] entdeckte außergewöhnliche Verhalten des spezifischen Widerstandes und dessen Temperaturkoeffizienten hingewiesen werden. Zum tieferen Verständnis dieser bei verschiedenen Zusammensetzungen auftretenden Phänomene ist es not wendig, den flüssigen Zustand der Legierungen auf weitere physikalische Größen zu untersuchen. Besonders interessieren das in alle späteren Berechnungen ein gehende spezifische Volumen und die magnetische Suszeptibilität, welche über das Verhalten der Leitelektronen in der Schmelze Aussagen gestatten. In den fol genden Ausführungen wird über die Messung dieser beiden Größen berichtet. 7 2. Dichtemessungen a) Allgemeines Dichtemessungen an Metallen im flüssigen Zustand sind mit den verschiedensten Methoden, wie z. B. Dilatometermethoden, direkte und indirekte Auft riebs methoden, Pyknometer- und V olumetermethoden, durchgeführt worden. Die Dichte flüssiger Metalle bis zu 1500°C wurde z. B. von F. SAUERWALD [11] mit der Methode des indirekten Auftriebs gemessen. Jedoch beschränkt der chemische Angriff der bei diesen Verfahren benutzten Salzschmelze die Methode auf gewisse Metalle und Temperaturen. Die anderen angeführten Verfahren sind für höhere Temperaturen undurchführbar oder zu unempfindlich, um Effekte wie das oft geringe Abweichen der Meßwerte von der linearen Mischungsregel exakt nach zuweisen. Hier kann nun mit gutem Erfolg die Blasenmethode [12], deren Vorläufer von H. T. GREENAWAY [13] ausgearbeitet und hernach von verschiedenen Forschern [14] bis [21] gezeigt wurde, angewendet werden. Bei der Blasenmethode wird durch ein Tauchrohr, das in verschiedene Tiefen h und h in das flüssige Metall l 2 eingeführt wird, ein Gasstrom geleitet, dessen Druck gerade so groß ist, daß es zur Ablösung von Gasblasen am unteren Eintauchende kommt. Die Dichtemessung wird also auf eine Druckmessung zurückgeführt. Der jeweils in der Höhe h und h zur Bildung einer Blase eines durch das Rohr 1 2 einströmenden Gases nötige Druck PI bzw. P2 wird bestimmt. Es ist nun: + PI = pmet . g . hl Llp' + P2 = pmet . g . h2 Llp' Der erste Summand (Pmet . g . h) ist der hydrostatische Druck in der Tiefe h, der zweite (Llp') der in verschiedenen Höhen gleiche Oberflächenspannungsanteil. Somit folgt: Llp = PI - P2 = pmet . g(hl - h2) = pmet • g . Llh oder Llp pmet = --. g. Llh Der Druck PI und P2 ist an einem Manometer mit Wassersäule ablesbar. Somit ist: 8 wobei ZI - Z2 = ßZ die Differenz der Wassersäulen ZI und Z2, die PI und P2 das Gleichgewicht halten, ist. Die Dichte des Metalls pmet berechnet sich also nach der Gleichung: Korrekturen dieser Formel werden an anderer Stelle besprochen. b) Apparativer Aufbau Die für die Dichtemessungen verwendete Apparatur [12] ist schematisch in Abb. 1 dargestellt. Zum Aufheizen der Probe dient ein Ofen mit Molybdänwicklung von 10 1 Argon Abb. 1 Schema der Apparatur zur Dichtemessung flüssiger Metalle 9 60 cm Höhe und 20 cm Dmr., dessen Heizdraht direkt um einen großen Tonerde tubus (3) gewickelt ist und in dessen Innenraum sich der Tiegel mit dem zu unter suchenden Metall befindet. Der Ofen ist mit Ziegeln geringer Dichte (1) angefüllt, welche wärmeisolierend wirken. Die äußere Ofenwand enthält Rohre für die Wasserkühlung (2). Der große Tubus (3) hat einen Durchmesser von 5 cm und wird durch Spezialgummidichtungsringe (4) gehalten, die den Ofen abdichten. Zum Schutz der Molybdänwicklungen wird in das Ofeninnere ein Gemisch von 90% Stickstoff und 10% Wasserstoff eingeleitet, nachdem dieses eine Palladium Reinigungsanlage (5) und zur Trocknung Magnesiumperchlorat (6) durchströmt hat. Der Ofen steht auf einem durch Schrauben verstellbaren Dreifuß, mit dessen Hilfe man ihn genau vertikal aufstellen kann. Der Tiegel ruht auf mehreren inein andergeschobenen Tonerderohren, die der Übersichtlichkeit halber nicht mit ein gezeichnet sind. Er hat eine Höhe von 6 cm und einen Durchmesser von ungefähr 3,2 cm. Das Metall füllt im flüssigen Zustand etwa 2/3 des Tiegels aus. Um längs des Tiegels eine möglichst gute Temperaturkonstanz zu erzielen, wurde der Heiz draht in drei Einzelwicklungen aufgeteilt. Die den Tiegel umgebende Wicklung hat bei 3 kW Gesamtleistung einen um 200 W geringeren Leistungsaufwand als der obere und untere Nachbar. Auf diese Weise werden längs einer Strecke von 10 cm innerhalb der mittleren Wicklung nur Temperaturunterschiede von ± 2°e in bezug auf den im Ofenzentrum herrschenden Temperaturwert festgestellt. Als Schutz- und Blasenbildungsgas wird meist Argon benutzt, welches nacheinander eine Trocknungsanlage (7), einen mit Eisenspänen gefüllten, auf 600° e geheizten Ofen (8) zur Sauerstoffentfernung, einen zweiten Trockner (7), einen weiteren, mit Magnesium gefüllten, auf 500° e geheizten Ofen (9) und eine Staubreinigungs anlage (10) durchläuft. Das Tauchrohr besteht normalerweise aus Quarz oder Tonerde. Seine Form wird später diskutiert. Nach Möglichkeit sollen nicht mehr als vier bis fünf Blasen pro Minute im flüssigen Metall erzeugt werden. Um den dazu nötigen minimalen Überdruck herzustellen, benutzt man einen Druckregler (11). Den zur Blasen bildung nötigen Druck liest man an einem Manometer (12) ab. Das Manometer befindet sich in einem Ölbad (13), dessen Temperatur mit einem Thermometer (14) auf 1/100e genau abgelesen werden kann. Als Manometerflüssigkeit dient Wasser. Bildet sich im flüssigen Metall eine Blase, so steigt der Druck im Mano meter bis zu einem Maximalwert, der der Ablösung der Blase entspricht. Die Ab lesung des höchsten und tiefsten Standes des Wassermeniskus erfolgt mittels eines Kathetometers auf 1/20 mm. Die Höheneinstellung des Tauchrohres erfolgt mit einer Mikrometerschraube (16) auf I/IOD mm genau. Die Temperaturmessung erfolgt mit Hilfe von Thermoelementen. Darüber hinaus ist für Messungen bei sehr hohen Temperaturen ein Prismenansatz für pyro metrische Messungen vorhanden (17). Neben der Öffnung für das Tauchrohr befinden sich im Ofendeckel zwei mit Gummidichtungen versehene Löcher zur Einführung eines Thermoelementschutzrohres in das flüssige Metall sowie zur Probenentnahme im flüssigen Zustand. Die Temperaturregelung des Ofens, bei der der Widerstand der Heizwicklung als Zweig einer WHEATsToNE-Brücke als regelndes Element wirkt, ist von G. eAVALIER und G. URBAIN [22,23] beschrie- 10 ben worden. Die Temperatur wird an einem gegebenen Punkt auf ± I/2°C konstant gehalten. c) Fehlermöglichkeiten, Korrekturen und Fehlerabschätzung Um mit der Blasenmethode brauchbare Ergebnisse zu erzielen, müssen folgende Voraussetzungen erfüllt sein: 1. Der durch Oberflächenspannung bewirkte Druckanteil ßp' muß wirklich konstant sein und sich bei Differenzbildung herausheben. 2. Die Schmelze muß homogen und ohne wesentlichen Temperaturgradienten sein. 3. Das blasenbildende Gas darf nicht auf die Schmelze einwirken. Zu 1: Damit immer eine konstante Blasenform erreicht wird, muß eine Haut bildung auf der Metalloberfläche im Innern der Blasen vermieden werden, was durch die Reinigungsanlage gewährleistet wird. Eine wichtige Rolle in diesem Zusammenhang spielt die Aus bildung des Tauchrohres. Die Blasenablösung erfolgt bei Be netzung am inneren Rand, bei Nichtbenetzung am äußeren Rand des Rohres. Die Ränder müssen, um eine reproduzierb are Blasenablösung zu ermöglichen, gut ausgebildet und rund sein. Je größer der Radius r des Tauchrohres ist, um so kleiner wird ßp'. Jedoch ist r dadurch, daß bei zu großen Blasen das Metall an der Oberfläche verspritzt, eine Grenze gesetzt. Die beste Reproduzierbarkeit erhält man mit einem abgeschliffenen, in Abb. 2 skizzierten Tubus. Die Blasen haben damit einen be 45° vorzugten Weg, und nach ihrer Loslösung steigt, wie auch Abb.2 experimentell nachgewiesen wurde, das Metall kaum im Tauch Blasenrohr rohr hoch. Zu2: Bei Einstellung des Temperaturgleichgewichts sind, wie durch Messungen in verschiedenen Tiefen nachgeprüft wurde, die Temperaturunterschiede im Metall nicht größer als ± 1/20 C. Zu dieser Konstanz trägt auch die Durchmischung durch die Blasenbildung bei. Daß die Schmelze homogen ist, wird später gezeigt. Zu 3: Zur Verhinderung von Oxydation wurde für die Zinn-Zink-Legierungen ein Gemisch von 98% Argon und 2% Wasserstoff verwendet. Nach A. SIEVERTS und W. KRuMBHAAR [24] ist Wasserstoff in Zinn bis 800°C, in Zink bis 6000 C unlöslich. Argon ist in Metallen völlig unlöslich. An der Formel zur Berechnung der Dichte des flüssigen Metalls 11 sind verschiedene Korrekturen anzubringen: ßh wird durch die Dilatation des Tauchrohres vergrößert. Ist T 0 die Raum temperatur, T die Meßtemperatur und a der lineare Ausdehnungskoeffizient des Tubus, so wird: Senkt man den Tubus um ßh, so verdrängt er eine gewisse Flüssigkeitsmenge, so daß das Niveau im Tiegel um den Betrag dh ansteigt. Ist 2 RT der Tiegelinnendurchmesser bei Meßtemperatur und 2 rT der Tauchrohr außendurchmesser bei Meßtemperatur, so gilt: rf' ßhT = (Rf - rf) dh. Daraus folgt dh = (ßhT· rf) / (R,~ - rn. ßhT muß um diesen Wert dh vergrößert werden: (1 + + ~ ~) ~ ßhT dh = ßhT R rf = ßhT R Rf 2' T-rT T-rT Es ist also: R2 + + ßhT dh = ßhT (1 a(T - To)) T o R,y, - rf Ist der Tiegel aus dem gleichen Material wie der Tubus, so ist, wenn Rund r Tiegelinnenradius und Tubusaußenradius bei T 0 sind: Rf Rf-r,y, Hat, wie in unserem Falle, der Tubus den Ausdehnungskoeffizienten a, der Tiegel den Ausdehnungskoeffizienten ß, so folgt: 1 1 Rt-rf 1 - r,y,/Rf 1 _ r2(1 + a(T - TO))2 + R2(1 ß(T - To)) 2 Als weitere Korrektur kommt noch ein Faktor k dazu, der dadurch zustande kommt, daß die Mikrometerschraube bei einer vollen Umdrehung den Tubus nicht genau um 1 mm senkt. Der Faktor wurde interferometrisch bestimmt. Die Endformel für das korrigierte ßh lautet also: + R,y, ßhkorr = ßhT (1 a(T - To)) k. o R,y, - r,y, Durch Differentiation läßt sich der größtmögliche Fehler einer Einzelmessung abschätzen. 12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.