ebook img

Messier 35 (NGC2168) DANCe I. Membership, proper motions and multi-wavelength photometry PDF

3.3 MB·English
by  H. Bouy
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Messier 35 (NGC2168) DANCe I. Membership, proper motions and multi-wavelength photometry

Astronomy&Astrophysicsmanuscriptno.dance_m35 (cid:13)cESO2015 January20,2015 Messier 35 (NGC 2168) DANCe I. Membership, proper motions and multi-wavelength photometry H.Bouy1,E.Bertin2,D.Barrado1,L.M.Sarro3,J.Olivares3,4,5,E.Moraux4,5,J.Bouvier4,5,J.-C.Cuillandre6,Á. Ribas1,7,8,andY.Beletsky9 1 Centro de Astrobiología, depto de Astroísica, INTA-CSIC, PO BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid,Spain e-mail:[email protected] 2 Institutd’AstrophysiquedeParis,CNRSUMR7095andUPMC,98bisbdArago,F-75014Paris,France 5 1 3 Dpt.deInteligenciaArtificial,UNED,JuandelRosal,16,28040Madrid,Spain 0 2 4 Univ.GrenobleAlpes,IPAG,F-38000Grenoble,France n 5 CNRS,IPAG,F-38000Grenoble,France a 6 Canada-France-HawaiiTelescopeCorporation,65-1238MamalahoaHighway,Kamuela,HI96743,USA J 9 7 EuropeanSpaceAstronomyCentre(ESA),P.O.Box,78,28691VillanuevadelaCañada,Madrid,Spain 1 8 ISDEFE-ESAC,P.O.Box,78,28691VillanuevadelaCañada,Madrid,Spain ] R 9 LasCampanasObservatory,CarnegieInstitutionofWashington,ColinaelPino,601Casilla,LaSerena,Chile S . h Received;accepted18/01/2015 p - o ABSTRACT r t s Context.Messier35(NGC2168)isanimportantyoungnearbycluster.Itsage,richnessandrelativeproximitymakeitaprivileged a targetforstellarevolutionstudies.TheKeplerK2missionrecentlyobserveditandprovidedhighaccuracyphotometrictimeseries [ ofalargenumberofsourcesinthisareaofthesky.Identifyingthecluster’smembersisthereforeofhighimportancetooptimizethe interpretationandanalysisoftheKeplerK2data. 1 Aims.Weaimatidentifyingthecluster’smembersbyderivingmembershipprobabilitiesforthesourceswithin1◦ ofthecluster’s v center,goingfurtherawaythanequivalentpreviousstudies. 6 Methods. We measure accurate proper motions and multi-wavelength (optical and near-infrared) photometry using ground based 1 archivalimagesofthecluster.Weusethesemeasurementstocomputemembershipprobabilities.Thelistofcandidatemembersfrom 4 BarradoyNavascuésetal.(2001)isusedastrainingsettoidentifythecluster’slocusinamulti-dimensionalspacemadeofproper 4 motions,luminositiesandcolors. 0 Results.Thefinalcatalogincludes338892sourceswithmulti-wavelengthphotometry.Approximatelyhalf(194452)weredetected . 1 atmorethantwoepochsandwemeasuredtheirpropermotionandusedittoderivemembershipprobability.Atotalof4349candidate 0 memberswithmembershipprobabilitiesgreaterthan50%arefoundinthissampleintheluminosityrangebetween10and22mag. 5 Theslowpropermotionoftheclusterandtheoverlapofitssequencewiththefieldandbackgroundsequencesinalmostallcolor- 1 magnitude and color-color diagrams complicate the analysis and the contamination level is expected to be significant. Our study : neverthelessprovidesacoherentandquantitativemembershipanalysisofMessier35basedonalargefractionofthebestground- v baseddatasetsobtainedoverthepast18years.Assuch,itrepresentsavaluableinputforfollow-upstudiesusinginparticularthe i X KeplerK2photometrictimeseries. r Keywords. Propermotions,Stars:kinematicsanddynamics,Galaxy:openclustersandassociations:individual:NGC2168 a 1. Introduction masses,perhapsindicatingdifferencesintheInitialMassFunc- tions(IMF).Itisclearthatasignificantimprovementinthecom- Different galactic environments, it is assumed, produce distinct pletenessofthecensusofdifferentassociationsprovidekeyin- formationtounderstandstarformationandevolution. populationsduringthestarformationepisodes.Fromveryloose and young associations such as Taurus-Auriga, doomed to be Inthiscontext,theopenclusterMessier35(NGC2168,here- dispersedverysooninthegalacticgravitationalwell,tothevery afterM35)isveryinterestinginseveralaspects.Firstbecauseit oldhalopopulationinmassiveglobularclusters,thereisalarge is a quasi-twin of the Pleiades cluster, with a similar age (Vi- gamut in ages, compactness, metallicity, internal dynamics, to- dal1973)butadifferentmetallicity.Second,theKeplerK2mis- tal mass, spatial distribution and distribution of the individual sion(Howelletal.2014)hasjustprovidedexquisitephotometric Articlenumber,page1of6 A&Aproofs:manuscriptno.dance_m35 time series, so that a detailed distribution of the rotational pe- riods for different masses will be available (e.g Meibom et al. 2009).Moreover,M35isnotsocrowdedthatconfusionisama- jor problem and its size (about 1 sq. deg) is very suitable for follow-upmulti-objectspectroscopy(Barradoetal.2001a). Several studies have provided estimates of other key clus- terparameterssuchasitsage,itscensusanditsmetallicity.Ta- ble 1 gives an overview of the cluster’s properties found in the literature in the past fifteen years. However, there is no a clear consensus for most of them. Sung & Bessell (1999) derived a distance modulus of (m− M) = 9.60±0.10 corresponding to 0 832 pc, a reddening of E(B−V) = 0.255±0.024 mag and an ageof200+200Myr.Kaliraietal.(2003)pushedtheclusteralit- −100 tlebitfurther,to912+70 pcandderivedanisochronefittingage −65 of 180 Myr. More recently, McNamara et al. (2011) obtained a distanceof732±145pcfromtheinternalpropermotions.This dynamical distance and the radial velocity dispersion obtained byGelleretal.(2010)implyanageof133Myr,accordingtothe Fig. 1. Estimated error on the proper motion as a function of i-band sameauthors.Anagedeterminationbasedonacompletelydif- magnitude. The color scale represents the maximum time difference ferent technique –gyrochronology– was performed by Meibom usedforeachmeasurement.ThepredictionforGaiaisover-plottedfor et al. (2009), yielding a value between 134 Myr and 161 Myr. comparison. Reimers&Koester(1988),byusingthewhitedwarfcoolingage, derivedanageintherange70-100Myr,whereasBarrado(2001), with the same technique, estimated 180 Myr. The rotation pat- tern suggests an age slightly older than the Pleiades (175 Myr ofeachCCD,flat-fieldcorrection,badpixelmasking,CCD-to- compared to 125 Myr). The same conclusion is reached when CCD gain harmonization in the case of multi-chip instruments, the lithium abundances are compared, since the lithium disper- fringing correction (when needed for the reddest filters), de- sion, which is itself related to rotation for a given stellar mass, stripping, background subtraction and non-linearity correction is no longer obvious for M35 (Barrado et al. 2001a) while it inthecaseofnear-infrareddetectors. is very significant in the case of the Pleiades (see, for instance Aperture, PSF and model photometry were extracted from Soderblometal.1993). the individual images using SExtractor (Bertin & Arnouts Regarding chemical composition, Steinhauer & Deliyannis 1996) and PSFEx (Bertin 2011). The individual catalogs were (2004)quotedanunpublishedworkwithametallicity[Fe/H]= thenregisteredandalignedonthesamephotometricscaleusing −0.143±0.014,verysimilartothevalueobtainedbyourgroup Scamp(Bertin2006). ([Fe/H]=−0.21±0.10)usinghighspectralresolutiondataand spectralsynthesis,(Barradoetal.2001a). The photometric zero-points were derived using standard The cluster is also relatively massive: Leonard & Merritt fieldsobtainedthesamenightwheneveravailable,orall-skycat- (1989) derived a central total mass in the range 1600-3200 aloguessuchas2MASS(Skrutskieetal.2006)inJ,HandKs, M using dynamical models. Our own estimate, for the cen- SDSSing,r,i,zandIPHAS(Drewetal.2005)inHα.Thezero- (cid:12) tralof27.5×27.5squarearcmin,is∼ 1600M ,whichallowsa pointrmsweretypicallyintherangebetween0.02and0.12mag, (cid:12) exquisitedeterminationofacompletestellarmassfunction(Bar- and were added quadratically to the measurement uncertainty. rado et al. 2001b, so far the deepest for M35) which is totally No attempt was made to calibrate the non-standard VR filters compatible with the IMF of a much younger and un-evolved used with the Mosaic and SuprimeCam cameras and the He I cluster such as Collinder 69 (Barrado et al. 2005; Bayo et al. narrowbandfilterobtainedwiththeWFC. 2011), and suggests that M35 includes several tens of potential Proper motions for all the sources were computed using substellarmembers. the method described in Bouy et al. (2013). The final residu- Thegoalofthispaperistocompletethecensusreachingwell alsontheastrometricsolutionshowadispersionoftheorderof inside the substellar domain and including the cluster outskirts 11∼12 mas. Figure 1 shows the estimated error on the proper uptoaradiusof1◦,providingmulti-epoch,multi-bandphotom- motionasafunctionofi-bandapparentmagnitude.Wenotethat etryfrompublicarchivesandfromourownrecentobservations. thepropermotionmeasurementsarenottiedtoanabsoluterefer- encesystemsuchastheICRS(InternationalCelestialReference 2. Datasets System).TheyareneverthelessexpectedtobeclosetotheICRS since extragalactic sources and background stars largely domi- WesearchedtheCFHT,NOAO,Subaru,Kiso,SDSS(DR9, Ahn natethesampleanddisplayverylittlemotionwithrespecttothe etal.2012)andINGpublicarchivesforwidefieldimagesofthe ICRS. cluster. Table 2 gives an overview of the dataset found in these archivesandinourownprivatearchives. A final master catalog of all sources (338892 in total) Ineachcase,therawdataandassociatedcalibrationframes was then produced including the measured photometry in the were downloaded. The individual raw images were processed grizJHKs filters. A total of 194452 sources (approximately using an updated version of Alambic (Vandame 2002), a soft- half) were detected at more than two epochs and their proper ware suite developed and optimized for the processing of large motionarealsoincluded.Sincethemaingoalofthesurveyfo- multi-CCDimagers,andadaptedfortheinstrumentsusedhere. cusesonthestudyofM35,onlyobjectswith|µ cosδ|≤100mas α Alambic includes standard processing procedures such as over- yr−1 and |µ | ≤100 mas yr−1 were considered for the member- δ scan,biasanddarksubtractionforeachindividualreadoutports shipanalysis. Articlenumber,page2of6 H.Bouy etal.:Messier35(NGC2168)DANCe Table1.OverviewofpreviousstudiesofM35 Reference Distance Age E(B−V) [Fe/H] (pc) (Myr) (mag) Reimers&Koester(1988) 70–100 Sung&Bessell(1999) 832±39 200+200 0.255±0.024 −100 Barrado(2001) 180 Barradoetal.(2001a) >125 −0.21±0.10 Kaliraietal.(2003) 912+70 180 −65 Steinhauer&Deliyannis(2004) −0.143±0.014 Meibometal.(2009) 134–161 Gelleretal.(2010) 133 McNamaraetal.(2011) 732±145 Table2.Instrumentsusedinthisstudy Observatory Instrument Filters Platescale Chiplayout Chipsize Fieldofview Epoch(s) Ref. [pixel−1] CFHT UH8K R,I 0(cid:48).(cid:48)205 4×2 2k×4k 29(cid:48)×29(cid:48) 1996 1 CFHT CFHT12K B,V,R,I,z 0(cid:48).(cid:48)201 6×2 2k×4k 42(cid:48)×28(cid:48) 1999,2000,2001,2002 2 CFHT MegaCam g,r 0(cid:48).(cid:48)187 4×9 2k×4k 1◦×1◦ 2003,2005,2011 3 CFHT WIRCam H2 0(cid:48).(cid:48)304 2×2 2k×2k 20(cid:48)×20(cid:48) 2008,2009,2010,2011 4 Subaru Suprime-Cam VR-Broad 0(cid:48).(cid:48)200 5×2 2k×4k 34(cid:48)×27(cid:48) 2005 5 INT WFC g,Hα,HeI,i,I,r,U,V 0(cid:48).(cid:48)333 3×1+1 2k×4k 34(cid:48)×34(cid:48) 2000,2002,2003,2005,2008,2009,2010 6 KPNO(Mayall) NEWFIRM J,H,Ks 0(cid:48).(cid:48)400 2×2 2k×2k 28(cid:48)×28(cid:48) 2008 7 KPNO(Mayall) MOSAIC1 VR-broad 0(cid:48).(cid:48)26 4×2 2k×4k 36(cid:48)×36(cid:48) 2006,2009,2010,2011,2012 8 KISO 2KCCD B,V,R,I 1(cid:48).(cid:48)50 1×1 2k×2k 50(cid:48)×50(cid:48) 2002,2003 9 SDSSDR9 SDSScamera u,g,r,i,z 0(cid:48).(cid:48)396 6×5 2k×2k 3◦ 2006 References:(1)Metzgeretal.(1995),(2)Cuillandreetal.(2000),(3)Bouladeetal.(2003),(4)Pugetetal.(2004),(5)Miyazakietal.(2002),(6)Ives(1998),(7)Autryetal.(2003),(8) Wolfeetal.(2000),(9)Itohetal.(2001),(10)Ahnetal.(2012) 3. Membership inconsistent with the cluster’s sequence. Their high probabil- ity is due to their proximity to the isochrone in all other color- We use the method described in Sarro et al. (2014) to derive magnitude and color-color diagrams as well as to the cluster’s membershipprobabilitiesofallthesources.Briefly,themethod locus in the proper motion diagram. These sources – probably uses a training set – in this case the sample of candidate mem- sufferingfrominaccuratephotometryinoneofthesebands–il- bersfromBarradoyNavascuésetal.(2001)–toidentifythefea- lustrate the robustness of the selection method based on a high turesthatmostefficientlyseparatethecluster’spopulationfrom dimensionalspace. thefieldandbackgroundpopulationamongallcombinationsof Table ?? gives the astrometry, photometry and membership propermotion, luminositiesandcolorsavailable. Inthecase of probability for the 338892 unique sources detected in the cor- M35, the best set was found to include the proper motions, the responding area. Note that only the sources with a proper mo- z,H,Ksluminositiesandthe(r−z),(r−i)and(J−H)colors. tion measurement have a membership probability (194452 in Oncethebestsetofcolors,luminositiesandpropermotionisse- total),astheavailabilityofapropermotionmeasurementwasa lected,amodelofthecluster’slocusdefinedbythetrainingsetis necessaryconditioninourmembershipanalysis.Usingsources fitted in the corresponding multi-dimensional space. A mixture with membership probability greater or equal to 0.9, we derive ofGaussiansisusedforthepropermotiondiagramandprinci- amedianpropermotionfortheclusterof(µ cosδ,µ )=(1.99,- palcurvesforthecluster’ssequenceinallcolor-magnitudeand α δ 0.23)±(0.82,0.71)masyr−1,wheretheuncertaintiescorrespond color-color diagrams. Membership probabilities are then com- tothescaledmedianabsolutedeviation. puted using this first model. The highest probability members are selected as new training set, and the models and the mem- Figure4showsthemembershipdistributionandcumulative bershipprobabilitiesarerecomputeduntiltheyconverge. distribution(computedfromlargetosmall)forallthesourcesin thecatalog.Thevastmajorityofthesourceshasamembership This method was originally developed and optimized for probabilityof≈0.0.Amonotonouslydecreasingdistributionfills clusters like the Pleiades, i.e clusters with a relatively large theprobabilityrangebetween0and1.0,astheresultofthelose propermotionandphotometricsequenceclearlyseparatedfrom constraintsonthephotometricandastrometricpropertiesofthe the field and background sequences in many color-magnitude cluster. diagrams. Unfortunately M35 is a worst-case scenario for the method. Its proper motion is relatively small and its sequence NGC2158isanintermediateage(1∼2Gyr)clusteratadis- largely overlaps with the field and background sequence in al- tance of ≈3600 pc (Carraro et al. 2002) located at a projected mostallcolor-magnitudeandcolor-colordiagrams.Tolimitthe distance of only 25(cid:48) from M35. It is therefore included in the contamination and enhance the contrast between cluster mem- areacoveredbythepresentstudyandpossiblycontaminatesthe bers and field and background sources, we chose to restrict the membershipanalysis.Toestimatethelevelofcontaminationdue analysis to a radius of 1◦ around the cluster’s center located toNGC2158members,weselectallthesourceslocatedwithin atα=06h08m54.0s,andδ=+24◦20(cid:48)00(cid:48)(cid:48)(J2000).Figure2shows 3(cid:48) of its center. Given the distance and projected density pro- theirspatialdistribution.Itshowsthatthenorth-westernpartof fileofNGC2158,thesesourcesareexpectedtobeintheirvast the survey was shallower than the rest of the survey, as fewer majority members of NGC 2158. Figure 5 shows the sequence members were selected. It also shows that a number of high formed by these sources in various color-magnitude diagrams probability members have (r − i) or (i − Ks) color apparently madeofcolorsandluminositiesusedforthemembershipanal- Articlenumber,page3of6 A&Aproofs:manuscriptno.dance_m35 Fig.3.Colormagnitudeandpropermotiondiagramsofthe194452sourcesofthesampledetectedatmorethantwoepochs.Left:r vsr−i. Middle:ivsi−Ks.Right:propermotiondiagram.Sourceswithamembershipprobabilitygreaterorequalto0.5arerepresentedinthetoppanels withacolorscaleproportionaltotheirprobability.Therestofthesourcesisrepresentedinthebottompanels. Fig.4.Distribution(blue,leftscale)andcumulativedistribution(red, computedfromlargetosmallvalues,rightscale)ofmembershipprob- Fig.2.Spatialdistributionofsourcesusedastrainingset(greensquares, abilitiesforthe194452sourcesofthesample from BarradoyNavascuésetal.2001)andofthe4349sourcesofthe finalsamplewithmembershipprobabilitygreaterthan0.5.Background image:2MASSJ-band. i (cid:46)17 mag. We find that only 27 sources with a probability of membership to M35 greater than 0.5 are located within 3(cid:48) ysispresentedhere,andcomparesittothesequenceformedby of NGC 2158, and 53 within 5(cid:48). Given the projected size of objects with a probability of membership to M35 greater than NGC2158core,littlecontaminationisexpectedbeyond5(cid:48),and 0.5accordingtoouranalysis.Thetwosequencesoverlapmostly thecontaminationbyNGC2158membersmustnotreachmore at the bright end, and contamination must occur mostly above than1∼2%atmost. Articlenumber,page4of6 H.Bouy etal.:Messier35(NGC2168)DANCe Fig.5.Color-magnitudediagramsoftheM35highprobabilitymembers(≥0.5.reddots)andofallthesourceswithin3(cid:48) ofNGC2158center(blue dots). 4. Conclusions publicallyavailablethroughtheIsaacNewtonGroup’sWideFieldCameraSur- veyProgramme.TheIsaacNewtonTelescopeisoperatedontheislandofLa Wehaveprocessedandanalyzedatotalof4867wide-fieldopti- PalmabytheIsaacNewtonGroupintheSpanishObservatoriodelRoquedelos calandnear-infraredimagesofM35obtainedfromvariouspub- MuchachosoftheInstitutodeAstrofísicadeCanarias.Thisresearchusedthe lic astronomical archives. The images cover 18 years of time facilitiesoftheCanadianAstronomyDataCentreoperatedbytheNationalRe- searchCouncilofCanadawiththesupportoftheCanadianSpaceAgency.This baseline and typically reach a depth of 21≈22 mag in the op- researchdrawsupondatadistributedbytheNOAOScienceArchive.NOAOis tical and ≈19 mag in the near-infrared, while saturation arises operatedbytheAssociationofUniversitiesforResearchinAstronomy(AURA) around 12∼13 mag at the bright end. This dataset allows us to undercooperativeagreementwiththeNationalScienceFoundation.Thispubli- derivemulti-wavelengthphotometryfromtheopticaltothenear- cationmakesuseofdataproductsfromtheTwoMicronAllSkySurvey,whichis ajointprojectoftheUniversityofMassachusettsandtheInfraredProcessingand infrared for 338892 sources, and proper motions for 194452 AnalysisCenter/CaliforniaInstituteofTechnology,fundedbytheNationalAero- ofthem.Weusethesemeasurementstoderivethemembership nautics and Space Administration and the National Science Foundation. This probabilityofallthesourceswithapropermotionmeasurement. workisbasedinpartondataobtainedaspartoftheUKIRTInfraredDeepSky Weobtain: Survey.ThisresearchhasmadeuseoftheVizieRandAladinimagesandcata- logueaccesstoolsandoftheSIMBADdatabase,operatedatCDS,Strasbourg, France.ThisresearchmadeuseofdatafromtheSDSSsurvey.Fundingforthe – 4349candidatememberswithprobabilitygreaterthan50% creationanddistributionoftheSDSSArchivehasbeenprovidedbytheAlfred – 1726candidatememberswithprobabilitygreaterthan75% P.SloanFoundation,theParticipatingInstitutions,theNationalAeronauticsand – 305candidatememberswithprobabilitygreaterthan95% SpaceAdministration,theNationalScienceFoundation,theU.S.Departmentof Energy,theJapaneseMonbukagakusho,andtheMaxPlanckSociety.TheSDSS Websiteishttp://www.sdss.org/.TheParticipatingInstitutionsareTheUniver- ThesenumbersareconsistentwiththecensuspresentedinBar- sityofChicago,Fermilab,theInstituteforAdvancedStudy,theJapanParticipa- radoyNavascuésetal.(2001)overasmallerarea.Contamina- tionGroup,TheJohnsHopkinsUniversity,theMax-Planck-InstituteforAstron- tionisexpectedtobesignificantasthelocusoftheclusterinthe omy(MPIA),theMax-Planck-InstituteforAstrophysics(MPA),NewMexico propermotion,color-magnitudeandcolor-colordiagramsover- StateUniversity,PrincetonUniversity,theUnitedStatesNavalObservatory,and theUniversityofWashington.BasedondatacollectedatSubaruTelescopeand lapslargelywiththefieldandbackgroundlocus.Thisnewstudy Kisoobservatory(UniversityofTokyo)andobtainedfromtheSMOKA,which nevertheless provides a coherent and quantitative membership isoperatedbytheAstronomyDataCenter,NationalAstronomicalObservatory analysis of M35 based on a large fraction of the best ground- ofJapan. baseddatasetsobtainedoverthepast18years. Acknowledgements. H. Bouy is funded by the the Ramón y Cajal fellowship program number RYC-2009-04497. This research has been funded by Span- References ishgrantsAYA2012-38897-C02-01.E.Morauxackowledgesfundingfromthe AgenceNationalepourlaRechercheprogramANR2010JCJC05011“DESC Ahn,C.P.,Alexandroff,R.,AllendePrieto,C.,etal.2012,ApJS,203,21 (DynamicalEvolutionofStellarClusters)”.A.RibasisfundedbyESACSci- Autry, R. G., Probst, R. G., Starr, B. M., et al. 2003, in Society of Photo- enceOperationsDivisionresearchfundswithcodeSC1300016149.Basedon OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.4841,So- observationsobtainedwithMegaPrime/MegaCam,ajointprojectofCFHTand cietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries, CEA/DAPNIA,attheCanada-France-HawaiiTelescope(CFHT)whichisoper- ed.M.Iye&A.F.M.Moorwood,525–539 atedbytheNationalResearchCouncil(NRC)ofCanada,theInstitutNational Barrado, D. 2001, in Highlights of Spanish astrophysics II, ed. J. Zamorano, desSciencedel’UniversoftheCentreNationaldelaRechercheScientifique J.Gorgas,&J.Gallego,161 (CNRS) of France, and the University of Hawaii. Based on observations ob- Barrado,D.,Deliyannis,C.P.,&Stauffer,J.R.2001a,ApJ,549,452 tainedwithWIRCam,ajointprojectofCFHT,Taiwan,Korea,Canada,France, Barrado,D.,Stauffer,J.R.,&Bouvier,J.2005,inAstrophysicsandSpaceSci- attheCanada-France-HawaiiTelescope(CFHT)whichisoperatedbytheNa- enceLibrary,Vol.327,TheInitialMassFunction50YearsLater,ed.E.Cor- tionalResearchCouncil(NRC)ofCanada,theInstituteNationaldesSciences belli,F.Palla,&H.Zinnecker,133 del’UniversoftheCentreNationaldelaRechercheScientifiqueofFrance,and Barrado,D.,Stauffer,J.R.,Bouvier,J.,&Martín,E.L.2001b,ApJ,546,1006 theUniversityofHawaii.ThispapermakesuseofdataobtainedfromtheIsaac BarradoyNavascués,D.,Stauffer,J.R.,Bouvier,J.,&Martín,E.L.2001,ApJ, NewtonGroupArchivewhichismaintainedaspartoftheCASUAstronomi- 546,1006 calDataCentreattheInstituteofAstronomy,Cambridge.Thedatawasmade Bayo,A.,Barrado,D.,Stauffer,J.,etal.2011,A&A,536,A63 Articlenumber,page5of6 A&Aproofs:manuscriptno.dance_m35 Bertin,E.2006,inAstronomicalSocietyofthePacificConferenceSeries,Vol. 351,AstronomicalDataAnalysisSoftwareandSystemsXV,ed.C.Gabriel, C.Arviset,D.Ponz,&S.Enrique,112–+ Bertin,E.2011,inAstronomicalSocietyofthePacificConferenceSeries,Vol. 442,AstronomicalDataAnalysisSoftwareandSystemsXX,ed.I.N.Evans, A.Accomazzi,D.J.Mink,&A.H.Rots,435 Bertin,E.&Arnouts,S.1996,A&AS,117,393 Boulade, O., Charlot, X., Abbon, P., et al. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. M.Iye&A.F.M.Moorwood,72–81 Bouy,H.,Bertin,E.,Moraux,E.,etal.2013,A&A,554,A101 Carraro,G.,Girardi,L.,&Marigo,P.2002,MNRAS,332,705 Cuillandre,J.-C.,Luppino,G.A.,Starr,B.M.,&Isani,S.2000,inPresentedat theSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Conference, Vol.4008,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Con- ferenceSeries,ed.M.Iye&A.F.Moorwood,1010–1021 Drew,J.E.,Greimel,R.,Irwin,M.J.,etal.2005,MNRAS,362,753 Geller,A.M.,Mathieu,R.D.,Braden,E.K.,etal.2010,AJ,139,1383 Howell,S.B.,Sobeck,C.,Haas,M.,etal.2014,PASP,126,398 Itoh,N.,Soyano,T.,Tarusawa,K.,etal.2001,PublicationsoftheNationalAs- tronomicalObservatoryofJapan,6,41 Ives,D.1998,IEEESpectrum,16,20 Kalirai,J.S.,Fahlman,G.G.,Richer,H.B.,&Ventura,P.2003,AJ,126,1402 Leonard,P.J.T.&Merritt,D.1989,ApJ,339,195 McNamara,B.J.,Harrison,T.E.,McArthur,B.E.,&Benedict,G.F.2011,AJ, 142,53 Meibom,S.,Mathieu,R.D.,&Stassun,K.G.2009,ApJ,695,679 Metzger,M.R.,Luppino,G.A.,&Miyazaki,S.1995,inBulletinoftheAmer- icanAstronomicalSociety,Vol.27,BulletinoftheAmericanAstronomical Society,1389–+ Miyazaki,S.,Komiyama,Y.,Sekiguchi,M.,etal.2002,PASJ,54,833 Puget, P., Stadler, E., Doyon, R., et al. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5492, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. A.F.M.Moorwood&M.Iye,978–987 Reimers,D.&Koester,D.1988,A&A,202,77 Sarro,L.M.,Bouy,H.,Berihuete,A.,etal.2014,A&A,563,A45 Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Soderblom,D.R.,Jones,B.F.,Balachandran,S.,etal.1993,AJ,106,1059 Steinhauer,A.&Deliyannis,C.P.2004,ApJ,614,L65 Sung,H.&Bessell,M.S.1999,MNRAS,306,361 Vandame,B.2002,inPresentedattheSocietyofPhoto-OpticalInstrumenta- tionEngineers(SPIE)Conference,Vol.4847,AstronomicalDataAnalysis II.EditedbyStarck,Jean-Luc;Murtagh,FionnD.ProceedingsoftheSPIE, Volume4847,pp.123-134(2002).,ed.J.-L.Starck&F.D.Murtagh,123–134 Vidal,N.V.1973,A&AS,11,93 Wolfe, T., Armandroff, T., Blouke, M. M., et al. 2000, in Society of Photo- OpticalInstrumentationEngineers(SPIE)ConferenceSeries,Vol.3965,So- cietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries, ed.M.M.Blouke,N.Sampat,G.M.Williams,&T.Yeh,80–91 Articlenumber,page6of6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.