ebook img

Mesoscopic Phenomena in Multifunctional Materials: Synthesis, Characterization, Modeling and Applications PDF

324 Pages·2014·13.745 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mesoscopic Phenomena in Multifunctional Materials: Synthesis, Characterization, Modeling and Applications

Springer Series in Materials Science 198 Avadh Saxena Antoni Planes Editors Mesoscopic Phenomena in Multifunctional Materials Synthesis, Characterization, Modeling and Applications Springer Series in Materials Science Volume 198 Series editors Robert Hull, Charlottesville, USA Chennupati Jagadish, Canberra, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China For furthervolumes: http://www.springer.com/series/856 The Springer Series in Materials Science covers the complete spectrum of mate- rials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. Avadh Saxena Antoni Planes • Editors Mesoscopic Phenomena in Multifunctional Materials Synthesis, Characterization, Modeling and Applications 123 Editors AvadhSaxena Antoni Planes Theoretical Division Estructura iConstitutents delaMatèria Los AlamosNational Laboratory Universitat deBarcelona Los Alamos Barcelona USA Catalonia Spain ISSN 0933-033X ISSN 2196-2812 (electronic) ISBN 978-3-642-55374-5 ISBN 978-3-642-55375-2 (eBook) DOI 10.1007/978-3-642-55375-2 Springer Heidelberg NewYork Dordrecht London LibraryofCongressControlNumber:2014943128 (cid:2)Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ‘‘Mesoscopic Phenomena in Multifunctional Materials’’ is at the heart of many current technologies and entails a fundamental need to control various materials functionalities such as magnetoelectricity and piezo-response at the mesoscale. Thebookbringsoutthestateoftheartonthepresentunderstandingandpotential applications of complex multifunctional materials. The main emphasis is on the multiscalebridgingofpropertiesfromnano-tomacroscopicscalesinthisclassof (multiferroic and multifunctional) materials with the aim of discovering novel properties and applications in the context of Materials by Design. The book is expected to be broadly accessible and caters to graduate students, beginning researchers as well as experts. The twelve chapters in the book are partly a review with a broad perspective and partly original research that delineates open issues in the field. The scope of thebookisasfollows.‘‘Ahighlydesirablefeatureofmodernmaterialsscienceis to optimize multiple functionalities in the same single phase material and control these via cross-response in multiple external fields. Magnetoelastic and multifer- roic materials are representative examples of this paradigm. Now that the nano- and continuum length (and time) scales have been understood in great detail, the next important frontier is to connect these two limiting scales by probing and modelingthemesoscalephysicsofthesematerials.Seamlessintegrationacrossthe scales and information flow between different length (and time) scales are key features. Clearly these concepts can also be extended to composites of materials with complementary properties.’’ Thefirsttwochaptersprovideadescriptionofnanoscalecharacterizationofand nanoscale phase transformations in multifunctional materials. Chapter 3 focusses ontherelevanceofmodellingofmicrostructure,heterogeneitiesanddiscussesthe importance of using large computational capabilities in designing materials with desired properties. A special emphasis is placed on information theoretic and co-design aspects of materials modeling strategies. The thermodynamics of mul- tiferroic materials is developed in detail in the next chapter including technolog- ically important multicaloric effects. Examples for prototypical multiferroic systems are also provided. Chapters 5 and 6 provide an in-depth description of high resolution imaging techniques for both real-space and k-space imaging of mesoscopic phenomena, in particular domains, anti-phase boundaries, magnetic fluxlines andmagneticvorticesinmagneticshape memoryandrelatedmaterials. v vi Preface Some examples of the techniques include energy-filtered transmission electron microscopy, phase reconstructed Lorentz transmission electron microscopy and electron holography. Chapter7isanextensivereviewofcombinatorialandothersynthesisstrategies fortechnologicallyimportant(e.g.inmagneticrecording,datastorageandmobile communications) magnetoelectric hexagonal ferrites, in particular single phase cryogenic as well as room temperature materials. Chapter 8 deals with domain boundary engineering by functionalizing them, examples being conductive twin boundaries and chiral twin walls. It also delineates how to achieve high domain wall densities to optimize functionality. Chapter 9 further emphasizes the physics offerroic and multiferroic domain walls including their dynamics and octahedral tilts.Chapters10and11focusontheroleofdisorderinrelaxorferroelectricsand ferroelastics,respectively,withanemphasisonglassyphenomena:polarglassand strainglass(as ferroic extensionsofspin glass).Thenotionsofpolarnanoregions and strain nanodomains are specifically emphasized in this context. Finally, the last chapter elucidates two important applications of shape memory materials in power generation and refrigeration technologies based on entropy change during thetransformationandreversiblechangesintheirphysicalproperties.Therolesof hysteresis, fatigue, magnetocrystalline anisotropy and combinatorial synthesis are underscored. These chapters discuss many open questions and set the stage for future research in this still evolving field. A close integration of various synthesis, characterization, modeling, simulation and data-aware strategies (that use tech- niques from information science, e.g. data mining and machine learning) is urgently needed to fully harness the potential of multifunctional materials. In addition to researchers, the book will serve as a valuable resource for graduate studentsinmaterialsscienceandengineering,condensedmatterphysicsandother related disciplines. Los Alamos, USA Avadh Saxena Barcelona, Spain Antoni Planes Contents 1 Nanoscale Characterization of Multiferroic Materials . . . . . . . . . 1 Jan Seidel and Ramamoorthy Ramesh 1.1 Scanning Probe Microscopy: Nanoscale Transport and Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 X-Ray Based Techniques: XRD, XAS and XMCD- and XMLD-PEEM. . . . . . . . . . . . . . . . . . . . . . 8 1.3 Probing Magnetism: Neutron Scattering and Mössbauer Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Optical Methods: Raman Spectroscopy and Second Harmonic Generation (SHG) . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 High-Resolution Electron Microscopy and Spectroscopy. . . . . 15 1.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Nanoscale Phase Transformations in Functional Materials. . . . . . 23 T. Waitz, W. Schranz and A. Tröster 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Multifunctional Materials . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Size Effects on Functional Properties . . . . . . . . . . . . 25 2.2 General Aspects of Phase Stability in Nanomaterials . . . . . . . 27 2.3 Critical Temperatures of Nanoscale Ferromagnetic and Ferroelectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 First Order Phase Transformations and Ferroelastic Martensitic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 Phase Transformations of Nanoscale Martensitic Materials . . . . . . . . . . . . . . . . . . . . . . . 33 2.4.2 Functional Properties of Nanoscale Martensitic Materials . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3 Transition Pathways of First Order Phase Transformations in Nanostructured Solids . . . . . . . . . 38 2.5 Domains in Ferroic Materials. . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Size Dependent Domain Pattern and Scaling Laws. . . 42 2.5.2 Kinetics of Nanodomains. . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 2.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Heterogeneities, The Mesoscale and Multifunctional Materials Codesign: Insights and Challenges. . . . . . . . . . . . . . . . 57 Turab Lookman 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Beyond Bloch and Boltzmann . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 The Mesoscale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Codesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Materials Codesign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6 Materials Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Thermodynamics of Multiferroic Materials. . . . . . . . . . . . . . . . . 73 Teresa Castán, Antoni Planes and Avadh Saxena 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Basic Field Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 General Thermodynamic Description of Multiferroic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.1 Clausius–Clapeyron Equations. . . . . . . . . . . . . . . . . 83 4.3.2 Multicaloric Effects in Multiferroic Materials . . . . . . 84 4.3.3 Example: The Case of Magnetic Ferrotoroidic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Landau Models: Examples of Multiferroic Materials. . . . . . . . 90 4.4.1 Example: Magnetoelectric Materials. . . . . . . . . . . . . 92 4.4.2 Example: Magnetic Shape-Memory Materials . . . . . . 96 4.4.3 Example: Ferrotoroidic Materials . . . . . . . . . . . . . . . 100 4.5 Ferroic Tweed and Generalized Glassy States . . . . . . . . . . . . 103 4.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 High Resolution Imaging Techniques for Understanding of Mesoscopic Phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Yasukazu Murakami 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Analysis of Crystallographic Nanostructures . . . . . . . . . . . . . 110 5.2.1 Method of Energy-Filtered TEM . . . . . . . . . . . . . . . 111 5.2.2 Structure Analysis for the Premartensitic State in Ti Ni Fe Alloy. . . . . . . . . . . . . . . . . . . . . . . . 113 50 48 2 5.2.3 Real Space Observations for the Premartensitic State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2.4 Premartensitic Modulation Observed in Lattice Images . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Contents ix 5.3 Analysis of Magnetic Nanostructures . . . . . . . . . . . . . . . . . . 120 5.3.1 Methods of Magnetic Imaging. . . . . . . . . . . . . . . . . 121 5.3.2 Revealing Magnetic Nanostructures in CMR Manganites . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.3 Understanding of Interface Magnetism in a Heusler Alloy Ni Mn Al Ga . . . . . . . . . . 128 50 25 12.5 12.5 5.4 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 Imaging of Domains and Vortices in Multifunctional Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Charudatta Phatak and Marc De Graef 6.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Magnetic Domain Observations in the Transmission Electron Microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2.1 Classical Lorentz Transmission Electron Microscopy. . . . . . . . . . . . . . . . . . . . . . . . 139 6.2.2 Quantum Mechanical Description of LTEM . . . . . . . 141 6.2.3 Phase Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 146 6.3 Domain Observations in Ni MnGa Alloys. . . . . . . . . . . . . . . 148 2 6.3.1 Domain Walls in Austenite . . . . . . . . . . . . . . . . . . . 148 6.3.2 Domain Walls in Martensite . . . . . . . . . . . . . . . . . . 151 6.3.3 Vortices in Finely Twinned Martensite . . . . . . . . . . . 153 6.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7 Multiferroic and Magnetoelectric Hexagonal Ferrites . . . . . . . . . 159 Robert C. Pullar 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.1.1 Multiferroic and Magnetoelectric Hexaferrites . . . . . . 162 7.2 The Structure of the Hexagonal Ferrites . . . . . . . . . . . . . . . . 163 7.2.1 The S, R and T Blocks. . . . . . . . . . . . . . . . . . . . . . 165 7.2.2 The M Ferrites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.2.3 The Y Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.2.4 The Z Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2.5 The U Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.2.6 Electrical Conductivity of Ferrites . . . . . . . . . . . . . . 170 7.3 Formation of Hexagonal Ferrites . . . . . . . . . . . . . . . . . . . . . 171 7.3.1 Formation of the M Ferrites. . . . . . . . . . . . . . . . . . . 173 7.3.2 Formation of Y Ferrite . . . . . . . . . . . . . . . . . . . . . . 175 7.3.3 Formation of Z Ferrite . . . . . . . . . . . . . . . . . . . . . . 175 7.3.4 Formation of U Ferrite . . . . . . . . . . . . . . . . . . . . . . 176

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.