Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems D.V.Kupriyanov,I.M.Sokolov DepartmentofTheoreticalPhysics,St.-PetersburgStatePolytechnicUniversity 195251,St.-Petersburg,Russia M.D.Havey DepartmentofPhysics,OldDominionUniversity,Norfolk,VA23529 7 1 0 2 n a Abstract J Coherenteffectsmanifestedinlightscatteringfromcold,opticallydenseanddisorderedatomicsystemsarereviewed 1 from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through 1 several physical atomic physics based processes which have been at least partly explored experimentally. These ] includeillustrationsdrawnfromthecoherentbackscatteringeffect,randomlasinginatomicgases,quantummemories h andlight-atomsinterfaceassistedbythelighttrappingmechanism. Currentunderstandingandchallengesassociated p withthetransitiontohighatomicdensitiesandcooperativityinthescatteringprocessisalsodiscussedinsomedetail. - t n Keywords: Lightscattering,coldatoms,coherenceindisorderedsystems,quantuminterface. a 34.50.Rk,34.80.Qb,42.50.Ct,03.67.Mn u q [ c 2017.ThismanuscriptversionismadeavailableundertheCC-BY-NC-ND4.0License. 1 (cid:13) v 6 Contents 1 8 1 Introduction 2 2 0 2 Basicapproaches,assumptionsanddefinitions 3 . 1 2.1 Thelong-wavelengthdipoleapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 2.2 Thelightcorrelationfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 2.3 TheGreen’sfunctionformalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 2.4 Graphicalimagesofthebasicinteractionsandimportantdiagramblocks . . . . . . . . . . . . . . . . 7 : v 2.4.1 Generalanalysis: Thefieldsubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Xi 2.4.2 Generalanalysis: Theatomicsubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.3 Weakprobe,samplesusceptibilityandthescatteringtensor. . . . . . . . . . . . . . . . . . . 11 r a 2.4.4 Diagramexpansionofthecorrelationfunction . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Theretarded-typeGreen’sfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Thelighttransportequationandthediffusionapproximation . . . . . . . . . . . . . . . . . . . . . . 16 2.6.1 Thelighttransportequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6.2 Thediffusionapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Coherentbackscatteringoflight 20 3.1 Observationsspecifictoatomicsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Polarizationandanisotropyeffects,anti-localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Saturationandnon-lineareffectsincoherentbackscattering . . . . . . . . . . . . . . . . . . . . . . . 27 Emailaddress:[email protected](D.V.Kupriyanov) PreprintsubmittedtoPhysicReports January12,2017 4 DiffusetransportinthegainedandLambda-configuredsystems 32 4.1 Randomlasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Lightdiffusioninanamplifyingmediumandtherandomlasingeffect . . . . . . . . . . . . . 32 4.1.2 Ramanamplificationofthetrappedradiation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Randomlasinginainhomogeneousanddisorderedsystemofcoldatoms . . . . . . . . . . . 38 4.1.4 Coherencepropertiesoftherandomlaserradiation . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Electromagneticallyinducedtransparencywithscatteredlight . . . . . . . . . . . . . . . . . . . . . 41 4.3 Quantummemoryassistedbylighttrappingmechanism. . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Importanceoftheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 Generaldescriptionofthememoryprotocolbasedonlightdiffusion . . . . . . . . . . . . . . 47 4.3.3 QuantummemoryforthemacroscopicanalogoftheΨ( ) Bellstate . . . . . . . . . . . . . . 49 − 4.3.4 Nanofiber-assistedquantummemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Lightscatteringondenseandcomplexatomicsystems 53 5.1 Overviewoftheproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Scalarandothersimplifyingmodelsoftheatoms-lightinteraction . . . . . . . . . . . . . . . . . . . 54 5.3 Theself-consistentmacroscopicapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Themicroscopicapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.1 Thetransitionamplitudeandthescatteringcrosssection . . . . . . . . . . . . . . . . . . . . 57 5.4.2 TheresolventoperatorandN-particleGreen’sfunction . . . . . . . . . . . . . . . . . . . . . 58 5.4.3 Theself-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4.4 Illustrativeexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Summaryandoutlooks 62 Appendix A Entanglementoftheatom-fieldvariablesinthedipolegauge 64 Appendix B ThebasicGreen’sfunctionsoftheKeldysh’sdiagramapproach 66 Appendix B.1 Fieldsubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Appendix B.2 Atomicsubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Appendix C Matrixelementsofatomicdipoleandmagneticmomentoperators 67 1. Introduction Cold atomic systems are quite challenging and promising objects for research in quantum optics and atomic physics. This circumstance grows broadly out of a wide range of applications and fundamental explorations that can be found in such research areas as atomic and molecular spectroscopy, metrology, quantum simulations, and quantuminformationscience. Eachofthesesubjectsinitselfisworthyofoneormorecomprehensivereviews. The optical responses of non-linear coherent controlled media were the subject of intensive discussions a decade ago [1]. Atpresentthelight-matterinterfaceresultinginquantummemories,quantumentanglement,andquantumnon- demolitionmeasurementsformsthebackgroundforvariouschallengingimplicationsofthephysicalprotocolsbased oncoherentlycontrolledandopticallydenseatomicsystems[2,3].Surprisingly,butpracticallyindependentlyofthis, thevariouscoherentmechanismsaffectinglightdiffusion,withemphasisontheroleofdisorderinlighttransportand incontextoflocalizationphenomenaandwavedynamicsinrandommediahavebeenintensivelystudiedduringthe lasttwodecades[4–6]. Inthisreviewwearemotivatedtofollowhowthesefrontierresearchdirectionsstudyingthesamephysicalobjects, butsometimewithanaimtowardsdifferentgoals,haveanaturaltendencyforintegratingthevariousphysicalideas and approaches. Indeed, in nearly all aspects research in the above areas depends on interaction of the physical systemswithelectromagneticradiation,eithertopreparethesystem,tointerrogateit,orinthecaseofseveralmutually coherentappliedfieldstomanipulatethebarephysicalpropertiesforpossiblepracticalapplications.Evenintheleast complex case of a single very weak field, or a single photon resonantly probing a gas of two state systems, there 2 aresubtletiestotheprocessesthatcanoccur,thesebeingreflectedinthecollectiveandcooperativeresponsesofthe system. Forthisreason,wehavebeenmotivatedtoreviewtheessentialtheoreticalandexperimentaltoolsthathave beenused,ordeveloped,overthepasttwodecadestostudycollectiveandcooperativeeffectsincoldandessentially atomic gases. In this, although principally focus on theoretical approacheshere, we have at the same time, and in most cases, stayed close to physical phenomena which have been observed in the laboratory. It is intriguing that the discussed phenomena may partly have classical precursors but the intrinsic quantum nature of atomic systems and the interaction process dramatically modify their observable behavior as well as the dependencieson external parameters. Theseincludethecoherentbackscatteringeffect,randomlasing,manipulationoflightdiffusionthrough electromagneticallyinducedtransparency,andquantummemoriesbasedondiffusivelighttransport. Anotherarea ofmotivationcomesfromrecognizingthatan atomicgas(evenif, as in ourdiscussion, notquan- tum degenerate) at low temperatures, combined with interacting coherent fields, is essential a many body physics problem;thegeneralopticalpropertiesofaggregatedandmesoscopicallyscaledmatterdiffersignificantlyfromthose of individualatomic scatterers. In the case of a very dilute gasof atomsthe response of the system to appliedand weakresonant,ornonresonant,monochromaticelectromagneticradiationcanberelevantlyunderstoodviatheentire Green’sfunctionformalism. Thiseventuallystatesaself-consistentmacroscopicapproachbasedonMaxwelltheory andontheconceptofsubsequentmultiplescatteringfromspatialinhomogeneities. However,uponincreasingtheatomicdensity,thequantumopticsofsuchsystemsmodifiessuchaclassicalvision anddevelopscorrelatedcharacteristicsintheinteractionprocess. Thisisespeciallytrueincoldandnearlymotionless atomicgases, wherecoherencesharedbetweenappliedandscattered fields, andthe atomscomprisingthe samples, cansurviveenvironmentalorthermaldecoherenceforsubstantialperiodsoftime. Wearethenalsointerestedinthe evolutionofthequantumopticsofacoldatomicgasasthephysicaldensityofthegasincreases,uptothepointwhere strongatom-atominteractionscandominatethephysics. Thecrucialpeculiarityofthelight-atominteractioninthis caseisthatboththefarfieldradiativecouplingandnearfieldstaticinteractionmediatethecooperativedynamicsof anatomic ensemble. Remarkableprogressof the pastdecadesin developingnumericalmethodsand approachesin quantumelectrodynamicsgivesusatoolforexploitingthemicroscopicsimulationsforlightscatteringfromatomic samplesofmacroscopicsize. Thelastsectionofthisreviewisdedicatedinparttoaspectsofthissubject. 2. Basicapproaches,assumptionsanddefinitions 2.1. Thelong-wavelengthdipoleapproximation Mostofthe calculationsofinteractionprocessesofthe electromagneticfieldwith atomicsystems inthe optical domainare performedin the dipoleapproximation. The dipoleapproximationcanbe rigorouslyintroducedvia the Power,ZienauandWoolleycanonical/unitarygaugetransformation[7,8]. Forpracticalapplicationsthegeneraland rather cumbersome formalism can be simplified with the assumption that the atomic size is much smaller than a typicalwavelengthofthefieldmodesactuallycontributingtotheinteractionprocess. Suchalong-wavelengthdipole approximation, see [9] for derivation details, leads to the following interaction Hamiltonian for an atomic system consistingofN dipole-typescatterersinteractingwiththequantizedelectromagneticfield N Hˆ = dˆ(a)Eˆ(r ) + Hˆ , int a self − Xa=1 Hˆ = N 2π e dˆ(a) 2. (2.1) self s · Xa=1 V Xs (cid:16) (cid:17) Thefirstandmostimportanttermischaracteristicallyinterpretedastheinteractionofana-thatomicdipoled(a) with theelectric field Eˆ(r) atthepointof thedipolelocation. However,as strictly definedin the dipolegauge,thelatter quantityperformsthemicroscopicdisplacementfieldanditcanbeexpressedbyastandardexpansioninthebasisof planewaves s k,e ,whereα = 1,2enumeratestwoorthogonaltransversepolarizationvectorsforeachk,which kα ≡ weassumehereaslinearandreal Eˆ(r) Eˆ(+)(r) + Eˆ( )(r) − ≡ 3 2π~ω 1/2 = s! iesaseiksr−iesa†se−iksr Xs V h i N 4π = Eˆ (r)+ es(es dˆ(b))eiks(r−rb). (2.2) ⊥ Xb=1 V Xs · Here as and a†s are the annihilation and creation operators for the s-th field mode and the quantization scheme in- cludesperiodicboundaryconditionsonthequantizationvolume . Thethirdlineshowsthedifferencebetweenthe actual transverse electric field denoted as Eˆ (r) and the displacVement field. The second term in Eq.(2.1) appears ⊥ as a non-convergingself energy of the dipoles. This term is often omitted in the interaction Hamiltonian since it doesnotprincipallyaffectthedipoledynamics,particularlywhenthedifferencebetweenthetransverseelectricand displacementfieldsissmall. Thevectorpotentialoperatorisgivenby Aˆ(r) Aˆ(+)(r) + Aˆ( )(r) − ≡ 2π~c2 1/2 = ω ! esaseiksr + esa†se−iksr (2.3) Xs sV h i andthisoperatorisnotmodifiedbythetransformationfromtheCoulombtothedipolegauge,see[9]. Letusmakea fewremarksconcerningtheapplicabilityofthedipoleapproachandhowitisrelatedtothelevel of disorder in the atomic system. The difference between the transverse electric and displacement fields becomes important at distances comparable with the atomic size. For a low density atomic ensemble, when the atoms are separatedbyaradiationzonesuchthatn Ż3 1,n isthedensityofatoms,Ż = λ/2πandλisthelightwavelength, 0 0 ≪ the difference between the above quantities in the interaction operatorcan be safely ignored. In terms of disorder, classificationofsuchadiluteatomicgasperformsahomogeneousandslightlydisorderedconfigurationofthedipole scatterers, where the transport length for light diffusion l is much longer than the light bar-wavelength Ż. The tr description of the light transport in such a medium can be explicitly described in terms of the Green’s function formalismandintheself-consistentmacroscopicMaxwelltheoryapproach. Analternatesituationoccurswhenn Ż3 > 1bringsthesystemtothestronglydisorderedregimedefinedthrough 0 the Ioffe-Regel condition l Ż, which was originally pointed out in [10], and which we simplify here for the tr ∼ particular case of cold atomic systems. For such a dense configuration the exact definitions (2.1), (2.2) become important. One should be quite careful with substituting (2.2) to (2.1) and then to any operator equationsbecause any atomic variable commutes with the operator of the displacement field but not always with the operator of the transverseelectricfield. Inadensesystemtheself-energytermcannotbeignoredandinsomecalculationalschemes can manifestitself in the dynamicsof atomic variablesin cooperationwith anothersingularterm, namely,with the self-contactdipoleinteraction. Thelatterappearswhenr = r = r forinteractionofa specifica-thdipolein(2.1) a b withthelongitudinalfieldcreatedbythesamedipoleinthesecondtermofthelastlineinEq.(2.2). Throughoutourdiscussion,orientedtowardsexistingexperimentalcapabilities,wewillmostlydealwiththedilute atomicconfigurationsforwhichtheabovedifficultiescanbesmoothedandarenotactuallyimportant. Butwecome backtotheprobleminthelastpartofthisreviewinSection5,whereweconsiderthesituationwithalargedegreeof disorder,cooperativityandlocalfieldeffects. InAppendix Awehavealsodiscussedsomefacetsofthedipolegauge withrespecttoatomicsubsystems. 2.2. Thelightcorrelationfunction Theintrinsiccharacteristicsoflightassociatedwithitsenergytransferandcoherenceareexpressedbyitscorrela- tionfunction D(E)(r,t;r,t) = Eˆ( )(r,t )Eˆ(+)(r,t) . (2.4) µν ′ ′ ν− ′ ′ µ D E HeretheanglebracketsdenotethestatisticalaveragingoftheHeisenbergfieldoperatorsEµ(+)(r,t)andEν(−)(r′,t′),with frequencyandpolarizationcomponentsgivenby(2.2). Havinginmind,inthissection,mostlyadiluteatomicsystem withlowdensity,weshallconsiderthiscorrelationfunctionsimilarlydefinedbothoutsideandinsidethemediumand associatethefieldoperatorswiththetransverseelectricfieldcomponents.Therigorousanddetailedanalysispresented byGlauberinhisseminalpapers[11]introducesthegeneralsetofcorrelationfunctionsofhigherorders,whichare 4 measurablebycoincidencespectroscopyandbyhomodynedetectiontechniques. Herewerestrictourconsideration onlytothefirstordercorrelationfunctiondefinedbyEq.(2.4). Iftheopticalfieldlocallyperformsastationaryplanewavefreelypropagatinginthedirectionnthenthespectral energydistributedwithitcanbeexpressedbyaFouriertransformoverthetimedifferenceτ=t t ′ − c I(n,r,ω) = ∞dτeiωτ D(E)(r,t¯+τ/2;r,t¯ τ/2). (2.5) 2π Z µµ − µX=x,y −∞ Heret¯isunderstoodasatimeargumentdependencewhichvanishesundersteadystateconditions. Fortimedepen- dent processes it is more convenient and natural to introduce the Poynting vector associated with the light energy transportedinthedirectionn. Thiscanbedoneviatracingthecorrelationfunctionoveritspolarizationcomponents µ= x,yintheplaneorthogonaltonandconsideringitatcoincidentspatialpointsandtimes. c I(n,r,t) = D(E)(r,t;r,t). (2.6) 2π µµ µX=x,y In some situations, see Section 2.6.1 below, these two representations can be mixed with the Wigner-type density matrix,whichconsiderstheinstantaneouspartofthefieldenergyfluxforacertainpartofitsspectrumasdistributed nearthepointrandpropagatinginthedirectionn. TherelevantexpressionforthecombinedquantityI(n,r,ω,t)with t¯ twouldbegivenbyEq.(2.5),preservingtimedependenceintherighthandside. → Even in a dilute but optically dense medium randomly scattering light over all directions, the original incident planelightwavewill befracturedintomanypackets. Thesefragmentswillpropagateandbere-scatteredbyatoms moreorlessindependently. Followingsuchanaturalrandomization,thelightpropagationwouldbevisualizedasa diffusionprocessandatanyspatialpointatacertaintimetherewouldbecontributions(2.6)arrivingfromanydirec- tions. Thisprocesswoulddevelopincoherentlyandisexpectedtobedescribedbya diffusiontypemasterequation forthelocallightenergy. Inapplicationsandintheliteraturetherearenumerousexamplesoflighttransportmaster equations,see[12,13],whichoperatewiththetimedependentlocalintensity.Ageneralfeatureofthediffusivetrans- portisthattheinitialcoherentpropertiesoflightseemcompletelylostandtheemergingwaveswouldbeunpolarized andincoherentsuchthatonlytheoutgoingenergyfluxwouldbeaphysicallyimportantcharacteristicforthediffusion process. However, as we will see, withoutthermallosses this naive pointof view cannotbe exactly true and there existmanifestationsofthewavenatureandcoherenceinthemultiplescatteringprocess. 2.3. TheGreen’sfunctionformalism Convenientexpansionsforthecorrelationfunction(2.4)canbesubsequentlybuiltupviaitsperturbationtheory analysis. Letustransformtheoriginaldefinition(2.4),performedintheHeisenbergrepresentation,totheinteraction representation D(E)(r,t;r,t) = T˜S Eˆ(0, )(r,t ) TSEˆ(0,+)(r,t) , (2.7) µν ′ ′ † ν − ′ ′ µ D h i h iE wherethechronologicaloperatorsT andT˜ respectivelyorderandanti-orderintimethefieldandatomicoperatorsin thebrackets.TheevolutionoperatorS isgivenby i S = S( , ) = Texp ∞Hˆ(0)(t)dt . (2.8) ∞ −∞ "−~Z int # −∞ Hereandbelowwesuperscriptby”0”thetime-dependentoperatorsintheinteractionrepresentation. Theimportant step in introducing the representation (2.7) is that initial conditions are moved to the infinite past as is typically assumed in scattering theory. That allows us to approach and specify Eq.(2.7) by the limits t,t where it ′ → −∞ reproducesthecorrelationfunctionoftheincidentlight. Furtherperturbationtheoryexpansionof(2.7)canbedoneinthesecond-quantizedformalismintroducedforboth thefieldandatomicsubsystems. ThenthefirsttermintheinteractionHamiltonian(2.1),expressedbyatomicsecond quantizedΨ-operators,see[14],andconsideredintheinteractionrepresentationtransformstothefollowingform Hˆ(0)(t) = d3rdµ Eˆ(0)(r,t)Ψˆ(0) (r,t)Ψˆ(0)(r,t) + H.c., (2.9) int − Z nm µ n † m Xn,m 5 where,forthesakeofgenerality,weusecovariantnotationforthetensorindicesinthedipolematrixelementandfor theelectricfieldcomponents.1 TheΨ-operatorsforthesetofthegroundstatesmaregivenby 1 Ψˆ(m0)(r,t) = √ e~ip·rbpm(t) Xp V 1 Ψˆ(m0)†(r,t) = √ e−~ip·rb†pm(t) (2.10) Xp V Herebpmandb†pmarerespectivelytheannihilationandcreationoperatorsofanatomwithmomentumpintheinternal Zeemanquantumstate m. The Ψ-operatorsinthe excitedstates ncan besimilarly definedby trivialsubstitutionof m n. Inthecaseofnearresonantinteractiononecansmooththetimederivationandaccept → iω Eˆ(0,+)(r,t) + 0 Aˆ(0,+)(r,t) → c iω Eˆ(0, )(r,t) 0 Aˆ(0, )(r,t) (2.11) − − → − c suchthateachfrequencycomponentoftheelectricfieldoperatorcanbeexpressedbythesimilarcomponentofthe vectorpotentialoperator.Thefrequencyω shouldbeassociatedherewithanatomicresonancefrequency,whichcan 0 varyforeachparticularexcitationtransition. Also applyingthe standardassumptionsofthe rotatingwave approxi- mation(RWA)reducestheinteractionHamiltoniantothefollowingform ω Hˆ(0)(t) i 0 d3rdµ Aˆ(0,+)(r,t)Ψˆ(0)(r,t)Ψˆ(0)(r,t) + H.c., (2.12) int ≈ − c Z nm µ n † m Xn,m whichkeepsonlycounter-rotatingHeisenbergtermsinthefieldandatomicsubsystems. Straightforward expansion of the evolution operators creates the operators’ products, which can be always re- alignedtotheN-orderedform,whenthecreationandannihilationoperatorsaremovedtotheleftandrightsidesof theaveragingexpressionrespectively. ThereareseveraltypesofGreen’sfunctionscreatedinthisprocedure,which areassociatedwith thedifferentchronologicalorderinginthetransposedoperators. We willusethefollowingcon- vention,see[15,16]forfurtherdetails. If,asintheexampleofEq.(2.7),anoperatorcontributesfromtheleftbrackets (generatedbyexpansionofS andT˜-ordered),weassociateitwiththe”+”signandwealternativelyassociateitwith † the” ”signifitcontributesfromtherightbrackets(generatedbyexpansionofS andT-ordered). Finaltransforma- − tionof anyoperatorproductto its N-orderedformis knownas Wick’sTheorem[16, 17] and, in an exampleof the fieldsubsystem,oneobtainsthefollowingsetofGreen’sfunctions iDµ(σ1µ1σ22)(r1,t1;r2,t2) = Tσ1σ2 Aˆ(µ01)(r1,t1)Aˆ(µ02)(r2,t2) − N Aˆ(µ01)(r1,t1)Aˆ(µ02)(r2,t2) h i h i (2.13) ⇒ where σ ,σ equals either + or are the sign indicators showing the original location of the field operators and 1 2 T isthechronologicaloperato−rassociatedwiththislocation. ThatstandsforthatT = T, T = T˜, T isthe σ1σ2 −− ++ +− identicaloperatorandT isthetranspositionoperator. Intherotatingwaveapproximationonlypositivefrequency + − componentsoftheGreen’sfunctions(2.13)canappearforanychronologicalordering,andthesecomponentscanbe specifiedinadiagrambythearrowoneachwavylinedirectedfromoneendassociatedwiththecreationeventtothe otherendassociatedwiththeannihilationevent. FortheatomicsubsystemwekeeponlytheGaussiantypecorrelationsforanyproductconsistingofanynumber of the atomic Ψ-operators. This approximation is often fulfilled because of the macroscopic nature of the atomic 1Weomithereandfurther(whereitisnotconfusingwiththedetailednotations)thesymbolsofinvariantsumsoverthetensorindices. 6 subsystem.ThentheatomicGreen’sfunctionsareexpressedbyallpossiblechronologicalcouplingsbetweencreation andannihilationoperators iGm(σ11mσ22)(r1,t1;r2,t2) = Tσ1σ2Ψˆ(m01)(r1,t1)Ψˆ(m02)†(r2,t2) D E (2.14) ⇒ ItisimportantthatanytranspositionoftheΨ-operatorsobeystheruleofquantumstatistics,suchthatitshouldchange thesigninthecaseofFermionicoperators.Thispermutationrulenormallymanifestsitselfforloop-typediagramsby anextraminussignforeachloopintheFermioniccase. LetusalsopointoutthattheappliedGaussianfactorization isarelevantapproximationonlyforanon-degeneratequantumgasanditfailsinthecaseofquantumdegeneracy,for example,inthecaseoftheBose-Einsteincondensate. The exact analytical expressions of the complete set of the original unperturbed Green’s functions (2.13) and (2.14)forthefieldandatomicsubsystemsaregiveninAppendix B. 2.4. Graphicalimagesofthebasicinteractionsandimportantdiagramblocks 2.4.1. Generalanalysis: Thefieldsubsystem Therearetwotypesofinteractiondiagramsbetweenlightandatoms.Ifpartofthelightisoriginallyinaclassical mode,beingasuperpositionoftheeigenstatesofthefieldannihilationoperators(2.3),thenitgeneratesthefollowing interactiondiagrams i dµ (+)(r,t) ± ~ nmEµ ⇔ i dµ ( )(r,t) (2.15) ±~ mnEµ− ⇔ Theuppergraphdescribestheexcitationtransitionfromthegroundstate m to theexcitedstate n initiatedbythe positive frequency component of the classical field (+)(r,t). The lower|griaph respectively desc|riibes the induced µ E transitionfromtheexcitedtothegroundstateinitiatedbythenegativefrequencycomponent (µ−)(r,t). Inthosecases E whenaclassicalfieldisappliedonemptytransitions,whichcanbeinvolvedintheexcitationprocesswithotherfields, wewillrefertoitasacontrolmode. Similarprocessesinitiatedbythequantizedfieldareexpressedbythediagrams ω 0 dµ ∓ ~c nm ⇔ ω 0 dµ (2.16) ±~c mn ⇔ Inthisdiagramtheshortwavylinecanbeanedgefragmentofthepropagationfunction,givenby(2.13),butcanbe alsoassociatedwiththecorrelationfunctionoftheexternalfieldi.e.withthelightwaveincidentonthemedium. In thelattercase wewillnormallyassumethisfieldtobeweakandinsomeexamplesevenclassical. Nevertheless,to distinguishitfromthefield(2.15)which,inturn,willbemostlyconsideredasastrongcontrolmodeunaffectedbythe 7 medium,wewilldisplaysuchaprobeasashortwavyline. Theprobemodecanbestronglymodifiedbythemedium andcanbegeneratedbytheprocessesofspontaneousemission. Iftheprobefieldoriginallyperformsacoherentpulsepropagatingthroughtheatomicsample,thenthedynamics ofitscoherentcomponentisdescribedbythefollowinggraphicalequation Aˆ(+)(r,t) = S T SAˆ(0,+)(r,t) h µ i † µ D h iE (2.17) ⇒ Here,andfurtherinthediagrams,wewillomitevidentspecificationoftheatomicstatesandfieldpolarizations. The self-energy part of this diagram performs the retarded-type polarization operator, and the double lines express the ”dressed”atomicpropagators(Green’sfunctions),whichaccumulatedalltheinteractionprocesses. Letusalsopoint outthatundertherotatingwaveapproximationandinalowdensitylimitnormallythereisnovertex-typecorrection in the structure of the polarizationoperator. One exceptionto this rule, associated with internalcorrelationsin the coherentexcitationprocess,willbediscussedinSection3.3. Thefundamentalsolutionofequation(2.17)definesthe positivefrequencycomponentoftheretarded-typeGreen’sfunction,whichisgivenby i (R) (r ,t ;r ,t ) = Aˆ(+)(r ,t ), Aˆ( )(r ,t ) θ(t t ) Dµ1µ2;+ 1 1 2 2 µ1 1 1 µ−2 2 2 1− 2 Dh iE ⇒ = (2.18) whereweputanindexofthefrequencycomponentinthesubscriptline. Thisfunctionperformstheaveragedcom- mutatorofthecompleteHeisenbergoperatorsofthequantizedfield. Itsgraphicaldefinitionshowsthatthisfunction can be expressed by the original vacuum lines (2.13) subsequently ”dressed” by the interactions generated in the expansionof the evolutionaryoperator. Any double wavy line can be interpretedas the relevantlyorderedproduct of the dressed quantum field fluctuations. For example, the subtracted term in the second line of Eq.(2.18) is the resultofhigherorderinteractionprocessesanditincludesthecontributionofincoherentlyscatteredlightaswellas fluorescenceassociated with the processes of optical pumping,and with other non-linearprocesses initiated by the interactingfields. ThistermcanbeexpressedanalyticallybythefollowingproductoftheHeisenbergoperators iDµ(−1µ+2);+(r1,t1;r2,t2) = hAˆ(µ−2)(r2,t2)Aˆ(µ+1)(r1,t1)i−hAˆ(µ−2)(r2,t2)ihAˆ(µ+1)(r1,t1)i = T˜S Aˆ(0, )(r ,t ) TSAˆ(0,+)(r ,t ) T˜ S Aˆ(0, )(r ,t ) S S TSAˆ(0,+)(r ,t ) † µ2− 2 2 µ1 1 1 − † µ2− 2 2 † µ1 1 1 D h i h iE D h i ED h iE (2.19) ⇒ With the acceptance of the relations (2.11) this Green’s function gives us the correlation function of the radiation modediffuselypropagatingthroughtheatomicmedium. OtherGreen’sfunctions,dressedbytheinteraction,canbe similarlyexpressedaccordinglytotheirorderingrules. ThelastlineinEq.(2.18)indicatesausefulsymmetryrelation fortheretarded-typephotonpropagator. 8 Iftheprobefieldincidentonthemediumexistsinacoherentstatethenequation(2.17)isapplicableinthemost generalcaseevenif thisfieldisstrong. Thenthelasttermofthisequationlegitimizesthe situationwhentheupper energylevelsofatomscanbesignificantlypopulated. Thus, this termbecomesresponsibleforamplificationof the propagatingprobemode via inducedemission and such an amplificationmanifestsitself in the retardedpropagator (2.18) as well. In an optically dense gas the probe pulse will be immediately split into many scattered fragments, such that equation (2.17) considered only for its forward propagationis actually insufficient. Nevertheless, further dynamicsofeachscatteredfragmentalongashortfreepropagationsegmentbetweensubsequentscatteringeventsis alsoexpressedbythe retardedpropagator(2.18), i.e.bythefundamentalsolutionofequation(2.17). Amplification ofthediffuselypropagatinglightisadesirablescenariofortherandomlasing,whichwewilldiscussinSection4.1 in more detail. We will further see from this and other examples that coherenceis not completely lost in the light diffusionprocess. 2.4.2. Generalanalysis: Theatomicsubsystem We emphasizethattheentire dynamicsofthe lightsubsystemshouldbe consideredtogetherwiththe dynamics of the atomic subsystem and the atomic Green’s functions (2.14) are strongly modified by the interaction with the electromagneticfield. Letusdefinethefollowingdifferentialoperatorassociatedwithfreeevolutionofanatom ∂ ~ 1 Gˆ 1 = i + E , (2.20) −0j ∂t 2m △j− ~ j j 0 where jdenotesr ,t aswellasspecifiestheinternalstatem ,n ...with j = 1,2...;m istheatomicmass,andE j j j j 0 j denotestheenergyofthespecificatomicstateinthedefinitions(2.10),(2.14). Thenwecanintroducethefollowing graphicalprecursorofakineticequationfortheatomicdensitymatrix Gˆ 1 Gˆ 1 −01 − −02∗ (cid:16) (cid:17) ⇒ + (2.21) InthisgeneraldiagrammaticformwXCeohacceptanyelectromagnetic-typeinteractionscouplingtheatomicgroundand excited states. The first line gives the free dynamics of the atoms, which is quantum mechanical for their internal degreesoffreedomandassumedtobeclassicalfortheirspatialmotion. Thenexttwolinesdescribetheinteraction withquantizedmodesandcanincludeinteractionswiththescatteredortrappedlight.Thedoublywavylinesexpress thecorrelationfunctionsofthequantizedmodesdressedbyinteractionwiththemedium. ThelastlineinEq.(2.21) symbolicallyindicates all possible interactionswith externalcoherentmodes, which can be opticaland microwave and in some configurations these modes can be either depleted or modified by interaction with the medium. The inwardoroutwardarrowsonthedresseddoubledashedlines(notshown,buthavetoattributethem)dependonthe concretevertextypespecifiedbythebasicinteractiondiagrams(2.15). The single particle atomic densitymatrix ρ (p,r,t) is expressedbyG( +)-typeGreen’sfunctions, see (2.14), m1m2 − dressedbytheinteractionprocesses i ( +) (r ,t ;r ,t ) = Ψˆ (r ,t )Ψˆ (r ,t ) Gm−1m2 1 1 2 2 ± †m2 2 2 m1 1 1 D E = T˜ S Ψˆ(0) (r ,t ) T SΨˆ(0)(r ,t ) (2.22) † m2† 2 2 m1 1 1 D h i h iE 9 viathefollowingWigner-typetransform d3p i i p2 E +E i ( +) (r ,t ;r ,t ) = exp p(r r ) + m1 m2 (t t ) Gm−1m2 1 1 2 2 ±Z (2π~)3 (~ 1− 2 − ~"2m 2 # 1− 2 ) r +r t +t ρ p, 1 2, 1 2 , (2.23) × m1m2(cid:18) 2 2 (cid:19) wheret t 0and theexternalsign, either+ or , relatesto eitherBosonicor Fermionicstatistics respectively. 1 2 − ∼ − Insemiclassicalconditions,whenthedensitymatrixdependsontheatomicmomentumpandspatialcoordinateras classicalvariables,thedifferenceinstatisticsvanishesinthefinalkineticequation. If the scattered light is weak and characterizedby a small degeneracyparameter (small numberof photonsper coherencevolume)itplaysanegligibleroleintheatomicdynamics,whichthenismostlyaffectedbyinteractionwith vacuumquantizedmodes. Insuchasituationtheabovegraphicalequation(2.21)canbestraightforwardlyconverted to a kinetic equation responsible for the dynamics of the single particle density matrix (2.23). The density matrix describing the dynamics of an arbitrary atom driven by external fields obeys the following Lindblad-type master equationwrittenintheoperatorform ∂ p i i i + ρˆ = Hˆ ,ρˆ Vˆ(t),ρˆ Uˆ(t),ρˆ + ˆρˆ. (2.24) "∂t m ∇# −~ 0 − ~ − ~ R 0 h i h i h i Here ρˆ = ρˆ(p,r,t) and the left-hand side performs a full time convective derivative of the density operator where p/m = v is the atomic velocityand is the gradientoperator. The first term in the right-handside is responsible 0 for free dynamics of the atom driven∇by its internal Hamiltonian Hˆ and the second and third terms describe the 0 interactionswithexternalfields. WedenotetheseinteractiontermsasV(t)foropticalmodesandU(t)formicrowave modes. Forthemonochromaticcase,andintherotatingwaveapproximation,theinteractionoperatorsaregivenby Vˆ(t) = −dˆ(−)E0e−iωct+ikcr−dˆ(+)E∗0eiωct−ikcr, Uˆ(t) = mˆ( )H e iΩt mˆ(+)H eiΩt, (2.25) − − 0 − − ∗0 wheredˆ( ) andmˆ( ) are theraising/loweringcomponentsofthe electricdipoleandmagneticmomentoperators;E ∓ ∓ 0 andH arethecomplexamplitudesoftheelectricandmagneticfieldsrespectively.Inthecaseofthemicrowavefield 0 wecanignoreitsspatialprofilesinceitswavelengthistypicallymuchlargerthanthesizeoftheatomiccloud. Inthe caseoflinearpolarizationsforbothfieldsinadirectionalongtheZ-axistheinteractionmatrixelementsaredefined asfollows, V = (d ) E , nm˜ z nm˜ 0 U = (m ) H , (2.26) mm˜ z mm˜ 0 wherewefollowaconventionwheren,n,...specifyanyupperstatesandm,m,...anygroundstates. If,asinmatrix ′ ′ elements(2.26), we needtodistinguishthegroundstates belongingtodifferenthyperfinesublevelsweadditionally overscribebytildethestatesbelongingtootherhyperfinesublevels. ThespontaneousradiativedecayoftheupperstatesandoftheopticalcoherencescontributesinEq.(2.24)bythe followingrelaxationterms ˆρˆ = γρ (p,r,t), nn R nn − ′ (cid:16) (cid:17) ′ γ ˆρˆ = ρ (p,r,t), (2.27) nm R nm −2 (cid:16) (cid:17) where γ is the natural radiative decay rate. In the important example of alkali-metal atoms the optical pumping repopulationprocess providingthe atomic polarizationtransfer from the upperto the groundstate via spontaneous decayisdescribedbythefollowingincoming-typeterm (cid:16)Rˆρˆ(cid:17)m′m = γ Xnn ρn′n(p,r,t)Xq CFF0′′MM′0′1qCFF0MM01q ′ ×(−)F0−F0′ h(2F0′ +1)(2F0+1)i1/2(2J+1) ( FS′ 1I FJ0′ )( SF 1I FJ0 ) (2.28) 10